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Max-Planck-Institut f̈ur Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany

Received: 20 November 2006 – Accepted: 22 January 2007 – Published: 1 February 2007

Abstract. Magnetosphere-ionosphere interactions involve
electric currents that circulate between the two regions;
the associated Lorentz forces, existing in both regions as
matched opposite pairs, are generally viewed as the primary
mechanism by which linear momentum, derived ultimately
from solar wind flow, is transferred from the magnetosphere
to the ionosphere, where it is further transferred by colli-
sions to the neutral atmosphere. For a given total amount
of current, however, the total force is proportional toLB
and in general, sinceL2B∼ constant by flux conservation,
is much larger in the ionosphere than in the magnetosphere
(L = effective length,B = magnetic field). The magneto-
sphere may be described as possesing a mechanical advan-
tage: the Lorentz force in it is coupled with a Lorentz force
in the ionosphere that has been amplified by a factor given
approximately by the square root of magnetic field magni-
tude ratio (∼20 to 40 on field lines connected to the outer
magnetosphere). The linear momentum transferred to the
ionosphere (and thence to the atmosphere) as the result of
magnetic stresses applied by the magnetosphere can thus
be much larger than the momentum supplied by the solar
wind through tangential stress. The added linear momen-
tum comes from within the Earth, extracted by the Lorentz
force on currents that arise as a consequence of magnetic per-
turbation fields from the ionosphere (specifically, the shield-
ing currents within the Earth that keep out the time-varying
external fields). This implies at once that Fukushima’s the-
orem on the vanishing of ground-level magnetic perturba-
tions cannot be fully applicable, a conclusion confirmed by
re-examining the assumptions from which the theorem is
derived. To balance the inferred Lorentz force within the
Earth’s interior, there must exist an antisunward mechanical
stress there, only a small part of which is the acceleration of
the entire Earth system by the net force exerted on it by the
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solar wind. The solar-wind interaction can thus give rise to
internal forces, significantly larger than the force exerted by
the solar wind itself, between the ionosphere and the neutral
atmosphere as well as within the current-carrying regions of
the Earth’s interior.

Keywords. Ionosphere (Ionosphere-atmosphere inter-
actions) – Magnetospheric physics (Magnetosphere-
ionosphere interactions; Solar wind-magnetosphere interac-
tions)

1 Introduction

Transfer of momentum from the solar wind stands second
only to transfer of energy and mass in any list of scientific
objectives for an investigation of the magnetosphere. The
basic concepts were introduced in a classic paper bySiscoe
(1966). The solar wind exerts a net antisunward force on
the magnetosphere, both through a normal stress (related to
deflection of its flow) and through a tangential stress (now as-
cribed primarily to connection of magnetic fields through the
magnetopause). This force is ultimately transferred to the
planet Earth, a conclusion argued bySiscoe(1966) on the
grounds that nothing else is massive enough to sustain the
force without being blown away but also derivable, as I show
here (Sect.5), from a more specific argument.Siscoe(1966)
describes the force on the Earth as a magnetic force, exerted
by the gradient of the field from magnetopause and magne-
totail currents that interacts with the Earth’s dipole moment.
At the Earth’s surface the gradient appears as the day-night
asymmetry of the Chapman-Ferraro disturbance field; from
the condition that the gradient should match the solar-wind
force on the magnetosphere,Siscoe(1966) infers an upper
limit to the asymmetry (noon higher than midnight by no
more than∼ a few nT).
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More recently, attention has increasingly been directed to-
ward the possible contribution of drag forces on the high-
latitude ionosphere, associated with the tangential stress
of the solar wind and mediated by Birkeland (magnetic-
field-aligned) currents between the ionosphere and the outer
magnetosphere, in particular the so-called region 1 currents
(Iijima and Potemra, 1976). Siscoe et al.(2002) propose that,
in the limit of very strong solar wind interaction (transpolar
potential saturation regime), stresses associated with region
1 currents assume the dominant role in transmitting forces
exerted by and on the solar wind.

In all these discussions it appears mostly to have been
taken for granted that the linear momentum supplied by the
solar wind is simply transferred to the other regions and that
any force exerted on the ionosphere or on the Earth is equal
to the force applied by the solar wind. The purpose of this
paper is to point out that this is not the case: as a conse-
quence of very simple considerations of magnetic field ge-
ometry, any given current system flowing between the mag-
netosphere and the ionosphere implies a much larger Lorentz
force in the ionosphere than it does in the magnetosphere.
This conclusion has been reached independently bySiscoe
and Siebert(2006) for the special case of forces associated
with region 1 currents, in the context of a general discussion
of solar wind forces on the magnetosphere and their rela-
tion to observed thermospheric effects during large magnetic
storms.

In effect, as far as Lorentz forces are concerned, the mag-
netosphere may be said to act on the ionosphere as a simple
machine (e.g. lever or pulley) with a very considerable me-
chanical advantage. A force applied by the solar wind may
then appear as a much larger force on the ionosphere, rais-
ing the question (since linear momentum is conserved) where
the excess linear momentum is coming from. I show that it
is coming from Lorentz forces exerted on currents within the
Earth’s interior that arise as the result of the disturbance fields
from the ionosphere; the various arguments commonly made
(notably the celebrated theorem ofFukushima, 1969, 1971,
1985b) that these disturbance fields are unimportant below
the ionosphere must therefore be of limited applicability.

2 Mechanical and electromagnetic stress balance equa-
tions

Conservation of linear momentum in an extended medium
is discussed in any textbook of fluid mechanics or plasma
physics (see, e.g.,Landau and Lifshitz, 1959; Rossi and
Olbert, 1970; Siscoe, 1983, the latter a treatment intended
specifically for magnetospheric applications). The local (dif-
ferential) form of the momentum equation (written in the
standard conservation form: partial time derivative of den-
sity of conserved quantity plus divergence of flux density of
conserved quantity) is

∂G/∂t + ∇ · (ρV V + P − T) = 0 (1)

where

G = ρV + (E × B/4πc) (2)

is the linear momentum per unit volume, the first term rep-
resenting the momentum of bulk flow of the medium and
the second the momentum of the electromagnetic field (I use
Gaussian units throughout);ρ, V , andP are, respectively, the
mass density, bulk flow velocity, and pressure tensor of the
medium;T is the sum of the Maxwell stress tensorTM (the
divergence of which is equal to the Lorentz force per unit
volume) plus the stress tensors representing any other forces.
The global form of the momentum equation, obtained by in-
tegrating Eq. (1) over a given volume, states that the total lin-
ear momentum contained within the volume changes at a rate
that is given by a surface integral over the boundary of the
volume; the three terms in the surface integral, correspond-
ing to the three terms within the divergence in Eq. (1), repre-
sent the net rate of momentum transfer across the boundary
by bulk flow (first term), by thermal motion of particles (sec-
ond term: pressure tensor), and by the action of forces on
the medium (third term: stress tensors of the various forces).
That the total force acting on the medium within the vol-
ume can be expressed as the surface integral of the appropri-
ate stress tensor is an essential condition for conserving total
linear momentum. For an isolated system, with negligible
surface terms, the total linear momentum remains constant.

Under the usual assumptions of charge quasi-neutrality
of the plasma, nonrelativistic bulk flows, and Alfvén speed
VA

2
�c2, the electromagnetic contribution to the linear mo-

mentum density (second term on the right-hand side of
Eq. (2) and the electric-field terms in the Maxwell stress ten-
sor can be neglected. The Lorentz force then reduces to just
the magnetic force, given by the divergence of the Maxwell
stress tensor

J × B/c = ∇ · TM = ∇ ·

[
BB/4π − I

(
B2/8π

)]
(3)

(I is the unit dyad,I ij=δij ); to derive relation (3), Ampère’s
law

J = (c/4π) ∇ × B (4)

needs to be invoked.
For the purposes of this paper, three aspects of the above

general formulation, embodied in Eqs. (4), (3), and (1), are
important:

1) Equation (4) implies the current continuity condition
∇·J=0, which is the basis for the results discussed in Sect.3.

2) Equation (1) in its integral form, applied to a sequence
of nested boundary surfaces from the magnetopause inward
to the center of the Earth, forms the basis for the discussion
in Sect.5 of linear momentum transfer from the solar wind.

3) Equation (3), by allowing the Lorentz force integrated
over a given volume to be calculated as the Maxwell stress
tensor integrated over the surface bounding the volume, im-
plies a reciprocity relation that is the basis for the limitations
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to Fukushima’s theorem discussed in Sect.6. Foranychosen
volume, the total Lorentz force exerted on currents within
the volume can be calculated in this way, with no constraints
from current closure; even if the current does not close within
the volume, the total Lorentz force is a well defined physical
quantity – in contrast to the magnetic field of an unclosed cur-
rent segment, which in general has only a mathematical sig-
nificance (Vasyliūnas, 1999). This force is given, however,
by the surface integral of the Maxwell stress tensor, and one
may view the surface in two ways: either as the outer bound-
ary of the chosen volume, or as the inner boundary of the rest
of space, the difference being only in the sign of the normal
vector. Hence the total Lorentz force on currents (closed or
unclosed)within any volume is precisely equal and opposite
to the total Lorentz force on currentsoutsidethat volume;
this applies to each Cartesian vector component, taken sep-
arately. A corollary is that magnetic fields due entirely to
currents confined within a volume exert no net force on the
volume.

3 Relation between Lorentz forces in the magneto-
sphere and the ionosphere

The interaction between the magnetosphere and the iono-
sphere proceeds to a large extent by means of electric
currents that flow in both regions, coupled by Birkeland
(magnetic-field-aligned) currents between the two; much of
the classical theory of magnetosphere-ionosphere coupling
consists simply of the self-consistency conditions on these
currents and on the associated plasma flows and stresses. As
a prototypical example, Fig.1 shows a sketch of the complete
system of region 1 currents. The segmentI−I ′ flows from
dawn to dusk in the polar ionosphere. The segmentM′

−M
flows from dusk to dawn somewhere in the outer magneto-
sphere; the precise location has not been conclusively iden-
tified but is generally assumed to be near the magnetopause,
its boundary layers, or the adjacent magnetosheath. The seg-
mentsM−I andI ′

−M′ are the region 1 currents proper:
Birkeland currents flowing into the ionosphere on the dawn
side and out of the ionosphere on the dusk side.

Current continuity imposes a relation between the currents
in the different segments. With the segments idealized, for
simplicity, as line currents in Fig.1 (in reality, of course,
they have appreciable width in the transverse directions), the
relation is simply that the total currentI is the same every-
where. The total Lorentz force exerted on the plasma in
each segment can now be computed. The segmentsM−I
andI ′

−M′ are (very nearly) aligned with the ambient mag-
netic field and hence have negligible Lorentz force. At the
ionospheric segmentI−I ′, the ambient magnetic fieldBi is
downward, and the Lorentz forceFi is directed antisunward.
At the magnetospheric segmentM−M′, the vertical com-
ponent of the ambient magnetic fieldBm is (for the assumed
location) likewise downward but, with the current reversed,
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the normal vector. Hence the total Lorentz force on currents
(closed or unclosed) within any volume is precisely equal
and opposite to the total Lorentz force on currents outside
that volume; this applies to each Cartesian vector component,
taken separately. A corollary is that magnetic fields due en-
tirely to currents confined within a volume exert no net force
on the volume.

3 Relation between Lorentz forces in the magneto-
sphere and the ionosphere

The interaction between the magnetosphere and the iono-
sphere proceeds to a large extent by means of electric
currents that flow in both regions, coupled by Birkeland
(magnetic-field-aligned) currents between the two; much of
the classical theory of magnetosphere-ionosphere coupling
consists simply of the self-consistency conditions on these
currents and on the associated plasma flows and stresses. As
a prototypical example, Fig. 1 shows a sketch of the complete
system of region 1 currents. The segment I − I ′ flows from
dawn to dusk in the polar ionosphere. The segmentM′−M
flows from dusk to dawn somewhere in the outer magneto-
sphere; the precise location has not been conclusively iden-
tified but is generally assumed to be near the magnetopause,
its boundary layers, or the adjacent magnetosheath. The seg-
mentsM−I and I ′ −M′ are the region 1 currents proper:
Birkeland currents flowing into the ionosphere on the dawn
side and out of the ionosphere on the dusk side.

Current continuity imposes a relation between the currents
in the different segments. With the segments idealized, for
simplicity, as line currents in Fig. 1 (in reality, of course,
they have appreciable width in the transverse directions), the
relation is simply that the total current I is the same every-
where. The total Lorentz force exerted on the plasma in each
segment can now be computed. The segments M− I and
I ′ − M′ are (very nearly) aligned with the ambient mag-
netic field and hence have negligible Lorentz force. At the
ionospheric segment I−I ′, the ambient magnetic fieldBi is
downward, and the Lorentz force Fi is directed antisunward.
At the magnetospheric segment M−M′, the vertical com-
ponent of the ambient magnetic field Bm is (for the assumed
location) likewise downward but, with the current reversed,
the Lorentz force Fm in the plane is directed sunward. The
magnitude of the forces is

Fi ≈ (I/c)BiLi Fm ≈ (I/c)BmLm (5)

where Li, Lm are the effective lengths of the respective seg-
ments; the current I is the same in both. From conservation
of magnetic flux

BiLihi ≈ BmLmhm (6)

where hi, hm are the effective widths of the segments in the
direction transverse to the current. From Eqs. (5) and (6),
the ratio of the Lorentz force in the ionosphere to that in the
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Fig. 1. Schematic diagram of region 1 currents in northern hemi-
sphere, viewed from above the north pole (Sun to the left).

magnetosphere is

Fi/Fm ≈ hm/hi ≈ [(Bi/Bm) (Li/hi) (hm/Lm)]1/2

∼
√
Bi/Bm (7)

where the last approximation follows from the reasonable
assumption that the ratio of width to length does not differ
greatly between the two regions.

In the simplest description of tangential drag at the mag-
netopause, the sunward Lorentz force of the magnetospheric
segment M − M′ is balanced by deceleration of plasma
flow in the magnetosheath and thus extracts antisunward lin-
ear momentum from the solar wind. The associated anti-
sunward Lorentz force of the ionospheric segment I − I ′,
balanced by frictional force between plasma and neutrals,
imparts antisunward linear momentum to the neutral atmo-
sphere. The amount of momentum imparted here is, how-
ever, much larger than the amount extracted from the solar
wind: according to Eq. (7), the approximate amplification
factor of the ionospheric over the magnetospheric force is in-
versely proportional to the linear width of the current, hence
(by flux conservation) directly proportional to the square root
of magnetic field strength — typically a factor ∼ 20 to 40.
Siscoe and Siebert (2006) reached the same conclusion by
carrying out a global MHD simulation of the magnetosphere
subject to a strong tangential drag: finding directly that the
momentum transfer to the Earth was much larger than that
across the magnetopause, they interpreted the difference by
a geometrical argument identical to that given here in deriv-
ing Eq. (7).

The geometrical argument is in fact quite general and is
not restricted to the region 1 current system or direct solar-
wind interaction. (For example, Fig. 1 with the sense of all
the currents reversed can be viewed as a sketch of the region
2 currents (Iijima and Potemra, 1976), the only other differ-
ence being that the closure current M−M′ in this case is
generally thought to be located in the plasma sheet where the

Fig. 1. Schematic diagram of region 1 currents in Northern Hemi-
sphere, viewed from above the north pole (Sun to the left).

the Lorentz forceFm in the plane is directed sunward. The
magnitude of the forces is

Fi ≈ (I/c) BiLi Fm ≈ (I/c) BmLm (5)

whereLi , Lm are the effective lengths of the respective seg-
ments; the currentI is the same in both. From conservation
of magnetic flux

BiLihi ≈ BmLmhm (6)

wherehi , hm are the effective widths of the segments in the
direction transverse to the current. From Eqs. (5) and (6),
the ratio of the Lorentz force in the ionosphere to that in the
magnetosphere is

Fi/Fm ≈ hm/hi ≈ [(Bi/Bm) (Li/hi) (hm/Lm)]1/2

∼
√
Bi/Bm (7)

where the last approximation follows from the reasonable
assumption that the ratio of width to length does not differ
greatly between the two regions.

In the simplest description of tangential drag at the mag-
netopause, the sunward Lorentz force of the magnetospheric
segmentM−M′ is balanced by deceleration of plasma flow
in the magnetosheath and thus extracts antisunward linear
momentum from the solar wind. The associated antisun-
ward Lorentz force of the ionospheric segmentI−I ′, bal-
anced by frictional force between plasma and neutrals, im-
parts antisunward linear momentum to the neutral atmo-
sphere. The amount of momentum imparted here is, how-
ever, much larger than the amount extracted from the solar
wind: according to Eq. (7), the approximate amplification
factor of the ionospheric over the magnetospheric force is in-
versely proportional to the linear width of the current, hence
(by flux conservation) directly proportional to the square root
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Fig. 2. Relation between forces in ionosphere and magnetosphere
for system of region 1 currents (Fig. 1), illustrated by analogy to a
simple lever system with mechanical advantage (antisunward is up).

ambient magnetic field is upward, hence the Lorentz force
on both the magnetospheric and the ionospheric segments is
now sunward.) For any system involving currents that cir-
culate between the magnetosphere and the ionosphere, the
Lorentz force exerted by the ionospheric portion is propor-
tional to that exerted by the magnetospheric portion but is
also amplified relative to it by a factor, given in Eq. (7), which
depends only on the geometrical configuration of the current
and of the magnetic field. The situation is analogous to that
of a mechanical force amplified by a simple machine, as il-
lustrated in Fig. 2 which represents the Lorentz forces of the
configuration in Fig. 1 as forces acting on a lever. The ampli-
fication factor is often referred to as the mechanical advan-
tage of the machine.

A further property shared by simple machines and by
Lorentz forces in the magnetosphere-ionosphere system is
that whereas force is amplified, energy is not. A suitable
lever may greatly reduce the force one must apply to raise a
given weight, but it does not change at all the amount of work
one must do in raising it. Similarly, the rate of electromag-
netic energy conversion is given by current times potential
difference; the total current is the same in both regions, and
as long as the potential difference is the same (analogous to
the requirement in the mechanical case that the lever is not
being deformed), the rate of energy conversion in the iono-
sphere is equal in magnitude (and opposite in sign) to that in
the magnetosphere.

4 Implications of amplified Lorentz force

Given the result (Sect. 2) that the total Lorentz force within
a volume must be matched by an equal and opposite Lorentz
force somewhere outside the volume, where is this recipro-
cal force in the case of the Lorentz force on the ionospheric
segment of the magnetosphere-ionosphere current system? It
cannot be the magnetospheric segment, the Lorentz force on
which is smaller by the amplification factor (Sect. 3) and
thus cannot be equal (not to mention the possibility that it
may even not be opposite, one counterexample being the re-
gion 2 current system). A related question is: given the re-
sult (Sect. 3) that the linear momentum being imparted to the
neutral atmosphere is much larger than that being extracted
from the solar wind, where does the additional linear mo-
mentum come from?

To the two questions there is a single answer: wherever the
reciprocal Lorentz force is located, it extracts linear momen-
tum from the surrounding medium. In terms of the mechani-
cal analog in Fig. 2, this location corresponds to the fulcrum
(support) of the lever, the force through the fulcrum being
what maintains overall balance with both the direct and the
amplified applied force. In the present case, the location evi-
dently must be inward of the ionosphere and hence within the
conducting regions of the Earth’s interior; furthermore, the
existence of the Lorentz force there must be connected with
electromagnetic effects of currents in the ionosphere (this is
the only way the ionosphere can act across the intervening
poorly conducting atmosphere to influence the Earth’s inte-
rior).

It might be argued that, since the excess Lorentz force is
exerted by the Earth’s dipole field acting on currents in the
ionosphere, it must therefore be balanced by an equal and
opposite Lorentz force exerted by the magnetic perturbation
fields from the ionosphere acting on the dynamo currents that
produce the Earth’s dipole. However, since the Lorentz force
has a direction fixed relative to the Sun-Earth line, the mag-
netic perturbation fields from the associated currents nec-
essarily vary with local time; in a frame of reference fixed
to the rotating Earth, they appear as time-varying perturba-
tions at the diurnal period and therefore can penetrate into
the conducting interior to a depth of no more than about 0.1
or at most 0.2RE (e.g. Price, 1967; Carovillano and Siscoe,
1973), well outside the presumed dynamo region.

The effect of the amplified Lorentz force in the ionosphere
on the Earth’s interior is thus more complicated than the sim-
ple interaction with dynamo currents sketched above; it must
involve in an essential way the interior currents that shield
out the time-varying external disturbance fields. A proper
description requires following the global transfer of linear
momentum from the solar wind inward all the way to the
center of the Earth.

5 Linear momentum transfer from the solar wind

The total force exerted on the magnetosphere-ionosphere-
atmosphere-Earth system as the result of interaction with the
solar wind can be calculated by integrating the divergence
term in Eq. (1) over the volume of the entire system and thus
can be expressed as the surface integral of the stress tensor
over the outer boundary of the volume. (This surface integral
is also, by definition, equal to the rate of linear momentum
transfer across the surface.) By separating out the Maxwell
stress, the total force can be written as the sum of electro-
magnetic and mechanical contributions:

F EM =
∫
dS ·

[
BB/4π − I

(
B2/8π

)]
(8)

F mech = −
∫
dS · (ρV V + P) . (9)

Gravity is represented by a term in the total stress tensor T
(e.g., Siscoe, 1970, 1983) but may alternatively and more

Fig. 2. Relation between forces in ionosphere and magnetosphere
for system of region 1 currents (Fig.1), illustrated by analogy to a
simple lever system with mechanical advantage (antisunward is up).

of magnetic field strength – typically a factor∼20 to 40.Sis-
coe and Siebert(2006) reached the same conclusion by car-
rying out a global MHD simulation of the magnetosphere
subject to a strong tangential drag: finding directly that the
momentum transfer to the Earth was much larger than that
across the magnetopause, they interpreted the difference by
a geometrical argument identical to that given here in deriv-
ing Eq. (7).

The geometrical argument is in fact quite general and is
not restricted to the region 1 current system or direct solar-
wind interaction. (For example, Fig.1 with the sense of all
the currents reversed can be viewed as a sketch of the region 2
currents (Iijima and Potemra, 1976), the only other differ-
ence being that the closure currentM−M′ in this case is
generally thought to be located in the plasma sheet where the
ambient magnetic field is upward, hence the Lorentz force
on both the magnetospheric and the ionospheric segments is
now sunward.) For any system involving currents that cir-
culate between the magnetosphere and the ionosphere, the
Lorentz force exerted by the ionospheric portion is propor-
tional to that exerted by the magnetospheric portion but is
also amplified relative to it by a factor, given in Eq. (7), which
depends only on the geometrical configuration of the current
and of the magnetic field. The situation is analogous to that
of a mechanical force amplified by a simple machine, as il-
lustrated in Fig.2 which represents the Lorentz forces of the
configuration in Fig.1 as forces acting on a lever. The ampli-
fication factor is often referred to as the mechanical advan-
tage of the machine.

A further property shared by simple machines and by
Lorentz forces in the magnetosphere-ionosphere system is
that whereas force is amplified, energy is not. A suitable
lever may greatly reduce the force one must apply to raise a
given weight, but it does not change at all the amount of work
one must do in raising it. Similarly, the rate of electromag-
netic energy conversion is given by current times potential
difference; the total current is the same in both regions, and
as long as the potential difference is the same (analogous to
the requirement in the mechanical case that the lever is not
being deformed), the rate of energy conversion in the iono-
sphere is equal in magnitude (and opposite in sign) to that in
the magnetosphere.

4 Implications of amplified Lorentz force

Given the result (Sect.2) that the total Lorentz force within
a volume must be matched by an equal and opposite Lorentz
force somewhere outside the volume, where is this recipro-
cal force in the case of the Lorentz force on the ionospheric
segment of the magnetosphere-ionosphere current system?
It cannot be the magnetospheric segment, the Lorentz force
on which is smaller by the amplification factor (Sect.3) and
thus cannot be equal (not to mention the possibility that it
may even not be opposite, one counterexample being the re-
gion 2 current system). A related question is: given the result
(Sect.3) that the linear momentum being imparted to the neu-
tral atmosphere is much larger than that being extracted from
the solar wind, where does the additional linear momentum
come from?

To the two questions there is a single answer: wherever the
reciprocal Lorentz force is located, it extracts linear momen-
tum from the surrounding medium. In terms of the mechani-
cal analog in Fig.2, this location corresponds to the fulcrum
(support) of the lever, the force through the fulcrum being
what maintains overall balance with both the direct and the
amplified applied force. In the present case, the location evi-
dently must be inward of the ionosphere and hence within the
conducting regions of the Earth’s interior; furthermore, the
existence of the Lorentz force there must be connected with
electromagnetic effects of currents in the ionosphere (this is
the only way the ionosphere can act across the intervening
poorly conducting atmosphere to influence the Earth’s inte-
rior).

It might be argued that, since the excess Lorentz force is
exerted by the Earth’s dipole field acting on currents in the
ionosphere, it must therefore be balanced by an equal and
opposite Lorentz force exerted by the magnetic perturbation
fields from the ionosphere acting on the dynamo currents that
produce the Earth’s dipole. However, since the Lorentz force
has a direction fixed relative to the Sun-Earth line, the mag-
netic perturbation fields from the associated currents nec-
essarily vary with local time; in a frame of reference fixed
to the rotating Earth, they appear as time-varying perturba-
tions at the diurnal period and therefore can penetrate into
the conducting interior to a depth of no more than about 0.1
or at most 0.2RE (e.g.Price, 1967; Carovillano and Siscoe,
1973), well outside the presumed dynamo region.

The effect of the amplified Lorentz force in the ionosphere
on the Earth’s interior is thus more complicated than the sim-
ple interaction with dynamo currents sketched above; it must
involve in an essential way the interior currents that shield
out the time-varying external disturbance fields. A proper
description requires following the global transfer of linear
momentum from the solar wind inward all the way to the
center of the Earth.
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5 Linear momentum transfer from the solar wind

The total force exerted on the magnetosphere-ionosphere-
atmosphere-Earth system as the result of interaction with the
solar wind can be calculated by integrating the divergence
term in Eq. (1) over the volume of the entire system and thus
can be expressed as the surface integral of the stress tensor
over the outer boundary of the volume. (This surface integral
is also, by definition, equal to the rate of linear momentum
transfer across the surface.) By separating out the Maxwell
stress, the total force can be written as the sum of electro-
magnetic and mechanical contributions:

FEM =

∫
dS ·

[
BB/4π − I

(
B2/8π

)]
(8)

Fmech = −

∫
dS · (ρV V + P) . (9)

Gravity is represented by a term in the total stress tensorT
(e.g., Siscoe, 1970, 1983) but may alternatively and more
conveniently be taken into account by adding the termρg

to the right-hand side of Eq. (1), whereg is the gravitational
acceleration. Conservation of linear momentum gives

F mech+ FEM +Mg = (d/dt)

∫
d3rρ V (10)

where

M =

∫
d3rρ (11)

is the total mass contained within the volume, andg here
is only theexternalgravitational acceleration, due predomi-
nantly to the gravity of the Sun (henceg is, to a very good
approximation, constant over the volume) – there cannot be
any net force or acceleration of the entire Earth system by the
gravity of its own internal mass.

As shown in AppendixA, the right-hand side of Eq. (10)
can be written as simplyM times the acceleration of the cen-
ter of massR, plus a small correction term. Equation (10)
now becomes

F mech+ FEM − δFm = M
(
d2R/dt2 − g

)
(12)

where

δFm = 2(dM/dt) (dR/dt)+

∫
dS · (∂ρV /∂t) (r − R)

=

∫
dS · [(∂ρV /∂t) (r − R)− 2ρV (dM/dt)] (13)

is a surface integral involving plasma flow and hence can be
treated as a correction term to the mechanical force. Note
thatδFm is zero if there is no mass flow across the boundary
and also vanishes in a steady state or upon time averaging.

Equation (12) can be applied to any chosen volume, and it
is instructive to consider a family of volumes obtained by se-
quentially displacing the boundary inward: first, the bound-
ary outside the magnetopause, enclosing the entire system;

Table 1. Masses in the Earth-ionosphere-magnetosphere system.

Earth 6×1027g 1 ME
Above surface of Eartha 5.2×1021g 1×10−6 ME

Above altitude 100 kma 1.6×1015g 3×10−13ME

Within magnetosphereb <2×107 g <3×10−21ME

aComputed from atmospheric pressure' weight of overlying mass
per unit area.
bRough upper limit, estimated as mass of solar wind plasma (pro-
ton concentrationnsw=10 cm−3) contained within sphere of radius
10RE .

then the boundary just inside the magnetopause; then just
above the ionosphere; then just below the ionosphere; then
moving by steps into the interior of the Earth, finally con-
verging on the center. For each one of the volumes, the total
force on it is determined entirely by quantities on the bound-
ary surface only (left-hand side of the equation) and is equal
to the net acceleration – inertial minus gravitational – of the
total massM contained within the entire volume (right-hand
side). Since the masses in the atmosphere, ionosphere, and
magnetosphere are completely negligible in comparison to
the mass of the EarthME (Table1), to an extremely good
approximationM is equal toME for all those volumes that
include the entire Earth, and the center of massR coincides
with the center of the Earth for all the volumes. The net
acceleration (d2R/dt2−g) has for all practical purposes the
same value for all the volumes under consideration; Eq. (12)
then implies that the total force on any one volume varies
only in proportion to the total mass enclosed.

The total force on the magnetosphere alone (the volume
between the magnetopause and the ionosphere) can be calcu-
lated by subtracting the forces on two volumes, with bound-
aries just inside the magnetopause and just above the iono-
sphere, respectively. The ratio of the resulting net force on
the magnetosphere to the (solar-wind-related) force on the
Earth is equal to the ratio of the mass in the magnetosphere
to the mass of the Earth and hence is extremely small; this
is the quantitative reason for the statement (previously de-
rived only qualitatively,Siscoe, 1966; Carovillano and Sis-
coe, 1973) that the entire force from the solar wind interac-
tion must be transferred to the solid Earth, with negligible
net force on the magnetosphere. By the same argument, this
holds for other regions (e.g., the ionosphere or even the entire
atmosphere), as long as the mass there is much smaller than
ME .

In Fig.3, the force (represented by the length of a horizon-
tal arrow) on a particular volume is plotted against a measure
of the distance (represented qualitatively by the vertical dis-
placement) between the boundary surface of the volume and
the center of the Earth. The horizontal distance between the
thin vertical line (zero force) and the dotted line represents
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Fig. 3. Total force, calculated from integral of stress tensor over
surfaces enclosing varying subvolumes of the Earth-magnetosphere
system, separated into mechanical (solid line) and electromagnetic
(dashed line) contributions. Arrow to the left (right): force sun-
ward (antisunward). The force at each location acts on the enclosed
volume, from the location shown down to the center of Earth.

interaction region just outside and at the magnetopause, the
mechanical antisunward force from the flowing solar wind is
transformed, by the action of Lorentz force balanced every-
where by appropriate mechanical stresses, into an equal elec-
tromagnetic antisunward force just inside the magnetopause;
the process is particularly transparent at the boundary of the
magnetotail lobes, where antisunward plasma flow is decel-
erated by sunward tension of open magnetic field lines, lead-
ing (as a result of the sharp kink of these field lines) to an-
tisunward tension in the interior region. It is convenient to
decompose the force exerted by the solar wind on the entire
system into two terms: Fsw = Fsw0 + Fsw1, where Fsw0 is
associated with currents confined to the magnetopause and
Fsw1 with currents coupled to the ionosphere (Chapman-
Ferraro and region 1 currents, respectively; cf. Siscoe et al.,
2002; Siscoe and Siebert, 2006; Siscoe, 2006).

5.2 Linear momentum transfer through the ionosphere

For simplicity, I neglect the Lorentz forces within the inte-
rior of the magnetosphere compared to those at the magne-
topause and in the ionosphere. Then, as illustrated in Fig.
3, the linear momentum transfer across a surface just above
the ionosphere is predominantly electromagnetic and its total
rate is equal to that across the magnetopause, giving a total
force on the enclosed volume that is antisunward and equal
to Fsw. Within the ionosphere itself, however, the Lorentz
force exceeds by an amplification factor A ∼ at least an or-
der of magnitude (Sect. 3) its counterpart at the nightside
interaction region with the solar wind. This implies that the
rate of linear momentum transfer across a surface just below
the ionosphere must be as shown in Fig. 3: a large sunward

Table 2. Pressures in the Earth-ionosphere-magnetosphere system

Solar wind dynamic pressurea 2.6× 10−9 Pab

Solar radiation pressure at Earth 4.7× 10−6 Pa

Atmospheric pressure at altitude 100 km 3.0× 10−2 Pa

Atmospheric pressure at surface of Earth 1.0× 105 Pa

aFor nsw = 10 cm−3, Vsw = 400 km s−1

b1 Pa = 1 Nm−2 = 10 dyne cm−2

electromagnetic force (magnitude [A− 1]Fsw1) balanced by
a slightly larger antisunward mechanical force (magnitude
AFsw1), the small difference giving, together with the anti-
sunward electromagnetic force Fsw0 unaffected by the iono-
sphere, a net antisunward force on the enclosed volume equal
to the force Fsw exerted by solar wind, as required.

An equivalent description is that, below the ionosphere,
antisunward linear momentum is transported upward by elec-
tromagnetic stress and downward by mechanical stress. This
arises because the antisunward Lorentz force within the iono-
sphere (created by the solar-wind interaction but amplified by
the mechanical advantage of the magnetosphere) is balanced
by collisional friction between plasma and neutral particles;
the antisunward linear momentum transferred thereby to the
atmosphere is being supplied by an electromagnetic stress
and must therefore come from below since there is no ad-
equate source above. At the same time, since there is no
net force on the ionosphere-atmosphere system (nor on the
magnetosphere above it), the antisunward linear momentum
being supplied must be transported downward again by a me-
chanical stress.

The nature of the mechanical stress that must exist below
the ionosphere is not specified by this argument; a day-night
pressure gradient as well as a shear stress, e.g., from eddy
viscosity, are possibilities. Its magnitude is in any case neg-
ligibly small in relation to atmospheric dynamics, as can be
seen from Table 2 (noting that in order of magnitude Fsw

should not exceed solar wind dynamic pressure multiplied
by the projected cross-section of the magnetosphere).

Ionospheric currents have a horizontal extent that is in
general large compared to their vertical extent, and hence
they may be treated as thin current sheets, applying meth-
ods developed primarily in magnetospheric contexts (e.g. Va-
syliūnas, 1983, and references therein). The magnetic distur-
bance fields on the two sides of a thin current sheet are usu-
ally taken to be equal and opposite, so how can the Maxwell
stress tensor integrated over a surface just below the iono-
sphere be larger by an order of magnitude in comparison
to that integrated over a surface just above, as required by
the preceding discussion? To resolve this apparent puzzle,
note that the magnetic field of a thin current sheet can be ex-
pressed quite generally as the sum of two terms: the “pla-
nar” field, equal and opposite on the two sides, plus the
“curvature” field, the same on both sides (terminology in-
troduced by Mead and Beard, 1964). The Maxwell stress
tensor is quadratic in the magnetic field, and the only sig-

Fig. 3. Total force, calculated from integral of stress tensor over
surfaces enclosing varying subvolumes of the Earth-magnetosphere
system, separated into mechanical (solid line) and electromagnetic
(dashed line) contributions. Arrow to the left (right): force sun-
ward (antisunward). The force at each location acts on the enclosed
volume, from the location shown down to the center of Earth.

the total force, without distinction between mechanical and
electromagnetic; as discussed above, this force remains con-
stant when the boundary surface is displaced inward from
the magnetopause, beginning to decrease (in proportion to
the enclosed mass) only when the boundary has been taken
below the surface of the Earth.

5.1 Linear momentum transfer across the magnetopause

For each assumed boundary surface, mechanical and elec-
tromagnetic contributions to the integrated force (or, equiv-
alently, the integrated rate of linear momentum transfer) can
be calculated separately, as illustrated in Fig.3. The stress
tensor on the surface just outside the magnetopause is pre-
dominantly mechanical, containing both a pressure contri-
bution (magnetosheath plasma pressure, proportional to dy-
namic pressure of the solar wind), important primarily on the
dayside, and a tangential drag contribution (usually ascribed
to magnetic tension inside the magnetopause but, as dis-
cussed byVasyliūnas, 1987, describable equally well as flow
deceleration stress outside the magnetopause), important pri-
marily in the magnetotail. The stress tensor on the surface
just inside the magnetopause is predominantly electromag-
netic, magnetic pressure being most important on the day-
side and magnetic tension in the magnetotail (Siscoe, 1966;
Siscoe and Siebert, 2006; Siscoe, 2006). The total rate of lin-
ear momentum transfer is the same on both sides. Within the
interaction region just outside and at the magnetopause, the
mechanical antisunward force from the flowing solar wind is

transformed, by the action of Lorentz force balanced every-
where by appropriate mechanical stresses, into an equal elec-
tromagnetic antisunward force just inside the magnetopause;
the process is particularly transparent at the boundary of the
magnetotail lobes, where antisunward plasma flow is decel-
erated by sunward tension of open magnetic field lines, lead-
ing (as a result of the sharp kink of these field lines) to anti-
sunward tension in the interior region. It is convenient to de-
compose the force exerted by the solar wind on the entire sys-
tem into two terms:Fsw=Fsw0+Fsw1, whereFsw0 is asso-
ciated with currents confined to the magnetopause andFsw1
with currents coupled to the ionosphere (Chapman-Ferraro
and region 1 currents, respectively; cf.Siscoe et al., 2002;
Siscoe and Siebert, 2006; Siscoe, 2006).

5.2 Linear momentum transfer through the ionosphere

For simplicity, I neglect the Lorentz forces within the inte-
rior of the magnetosphere compared to those at the magne-
topause and in the ionosphere. Then, as illustrated in Fig.3,
the linear momentum transfer across a surface just above
the ionosphere is predominantly electromagnetic and its total
rate is equal to that across the magnetopause, giving a total
force on the enclosed volume that is antisunward and equal
to Fsw. Within the ionosphere itself, however, the Lorentz
force exceeds by an amplification factorA∼ at least an or-
der of magnitude (Sect.3) its counterpart at the nightside in-
teraction region with the solar wind. This implies that the
rate of linear momentum transfer across a surface justbelow
the ionosphere must be as shown in Fig.3: a large sunward
electromagnetic force (magnitude[A−1]Fsw1) balanced by
a slightly larger antisunward mechanical force (magnitude
AFsw1), the small difference giving, together with the anti-
sunward electromagnetic forceFsw0 unaffected by the iono-
sphere, a net antisunward force on the enclosed volume equal
to the forceFsw exerted by solar wind, as required.

An equivalent description is that, below the ionosphere,
antisunward linear momentum is transported upward by elec-
tromagnetic stress and downward by mechanical stress. This
arises because the antisunward Lorentz force within the iono-
sphere (created by the solar-wind interaction but amplified by
the mechanical advantage of the magnetosphere) is balanced
by collisional friction between plasma and neutral particles;
the antisunward linear momentum transferred thereby to the
atmosphere is being supplied by an electromagnetic stress
and must therefore come from below since there is no ad-
equate source above. At the same time, since there is no
net force on the ionosphere-atmosphere system (nor on the
magnetosphere above it), the antisunward linear momentum
being supplied must be transported downward again by a me-
chanical stress.

The nature of the mechanical stress that must exist be-
low the ionosphere is not specified by this argument; a day-
night pressure gradient as well as a shear stress, e.g., from
eddy viscosity, are possibilities. Its magnitude is in any case
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V. M. Vasyliūnas: Forces in the magnetosphere-ionosphere-Earth system 261

negligibly small in relation to atmospheric dynamics, as can
be seen from Table2 (noting that in order of magnitudeFsw
should not exceed solar wind dynamic pressure multiplied by
the projected cross-section of the magnetosphere).

Ionospheric currents have a horizontal extent that is in
general large compared to their vertical extent, and hence
they may be treated as thin current sheets, applying meth-
ods developed primarily in magnetospheric contexts (e.g.Va-
syliūnas, 1983, and references therein). The magnetic distur-
bance fields on the two sides of a thin current sheet are usu-
ally taken to be equal and opposite, so how can the Maxwell
stress tensor integrated over a surface just below the iono-
sphere be larger by an order of magnitude in comparison
to that integrated over a surface just above, as required by
the preceding discussion? To resolve this apparent puzzle,
note that the magnetic field of a thin current sheet can be ex-
pressed quite generally as the sum of two terms: the “pla-
nar” field, equal and opposite on the two sides, plus the
“curvature” field, the same on both sides (terminology in-
troduced byMead and Beard, 1964). The Maxwell stress
tensor is quadratic in the magnetic field, and the only sig-
nificant contribution to the integral over a closed surface
above or below the ionosphere comes from the cross terms,
{dipole× disturbance field}. (The {dipole× dipole} terms
obviously integrate to zero because the dipole cannot exert
a net force on itself;{disturbance× disturbance} could in
principle give a nonzero integral when the currents do not
close within the ionosphere, but it is of second order in the
disturbance field amplitude.) Correspondingly, the electro-
magnetic force can be expressed as the sum of two sets of
terms,{dipole× planar} and{dipole× curvature}, giving for
the surfaces above and below the ionosphere

FEM (above) = +FEM (planar)+ FEM (curvature) (14)

FEM (below) = −FEM (planar)+ FEM (curvature) ;

the requirements

FEM (above) = F sw1 (15)

FEM (below) = (−A+ 1)F sw1

are then satisfied if

FEM (planar) = A F sw1/2 (16)

FEM (curvature) = (−A+ 2)F sw1/2 .

The large difference between|FEM (above)| and
|FEM (below)| arises because the planar and the curva-
ture contributions are of comparable magnitude and thus
nearly cancel on one side. The Lorentz force on the
ionosphere itself, given by

FEM (above)− FEM (below) = 2 FEM (planar)

= A F sw1 , (17)

has the expected (amplified) value and antisunward direction.

Table 2. Pressures in the Earth-ionosphere-magnetosphere system.

Solar wind dynamic pressurea 2.6×10−9 Pab

Solar radiation pressure at Earth 4.7×10−6 Pa

Atmospheric pressure at altitude 100 km 3.0×10−2 Pa

Atmospheric pressure at surface of Earth 1.0×105 Pa

aFornsw=10 cm−3, Vsw=400 km s−1

b1 Pa=1 N m−2
=10 dyne cm−2

5.3 Linear momentum transfer within the Earth’s interior

As long as no non-negligible electric current is crossed while
the bounding surface is displaced through the atmosphere
and into the Earth’s interior, the total electromagnetic force
on the enclosed volume remains unchanged: sunward, equal
to [A−1]Fsw1−Fsw0, and balanced by an antisunward me-
chanical force that slightly exceeds it in magnitude; the total,
net antisunward force no longer equalsFsw, however, but
continually decreases as the enclosed mass becomes signifi-
cantly less thanME . Within the electrically conducting inte-
rior, the diurnally varying perturbations of the external mag-
netic field induce currents that shield out the external field;
once the bounding surface has been displaced inward of the
layer that contains the shielding currents, there is of course
no electromagnetic force of external origin, and the mechani-
cal force is simply equal to the net acceleration multiplied by
the remaining enclosed mass. The integrated Lorentz force
on the shielding currents, directed sunward, is the equal and
opposite reciprocal force (in the sense discussed in Sects.2
and4) to the Lorentz force in the ionosphere; it is opposed
by an antisunward mechanical stress, of which a small part
is associated with the acceleration of the entire Earth system
by the net force exerted on it by the solar wind, and the rest
– in balance with the Lorentz force – is the source of the
additional linear momentum transported to the ionosphere.

It has been tacitly assumed in the preceding discussion
as well as in Fig.3 that Fsw0 is small in comparison to
[A−1]Fsw1, i.e., the electromagnetic force (amplified in the
ionosphere) of the region 1 currents greatly exceeds that of
the Chapman-Ferraro currents (in the terminology ofSiscoe
and Siebert, 2006, the thermospheric drag mode dominates
over the dipole interaction mode). It is of interest to also con-
sider briefly the opposite limit, the predominantly Chapman-
Ferraro case (originally described bySiscoe, 1966) with neg-
ligible effect of region 1 currents. As illustrated in Fig.4,
the electromagnetic transfer of linear momentum inside the
magnetosphere, at the rate corresponding to an antisunward
forceFsw0 on the enclosed volume, continues essentially un-
changed through the ionosphere and into the Earth’s interior,
until the region of the shielding currents is reached. The inte-
grated Lorentz force on the shielding currents is now directed
antisunward (it constitutes the requisite equal and opposite
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nificant contribution to the integral over a closed surface
above or below the ionosphere comes from the cross terms,
{dipole × disturbance field}. (The {dipole × dipole} terms
obviously integrate to zero because the dipole cannot exert
a net force on itself; {disturbance × disturbance} could in
principle give a nonzero integral when the currents do not
close within the ionosphere, but it is of second order in the
disturbance field amplitude.) Correspondingly, the electro-
magnetic force can be expressed as the sum of two sets of
terms, {dipole × planar} and {dipole × curvature}, giving
for the surfaces above and below the ionosphere

F EM (above) = +F EM (planar) + F EM (curvature) (14)
F EM (below) = −F EM (planar) + F EM (curvature) ;

the requirements

F EM (above) = F sw1 (15)
F EM (below) = (−A+ 1)F sw1

are then satisfied if

F EM (planar) = A F sw1/2 (16)
F EM (curvature) = (−A+ 2)F sw1/2 .

The large difference between |F EM (above)| and
|F EM (below)| arises because the planar and the curva-
ture contributions are of comparable magnitude and thus
nearly cancel on one side. The Lorentz force on the
ionosphere itself, given by

F EM (above)− F EM (below) = 2 F EM (planar)
= A F sw1 , (17)

has the expected (amplified) value and antisunward direction.

5.3 Linear momentum transfer within the Earth’s interior

As long as no non-negligible electric current is crossed while
the bounding surface is displaced through the atmosphere
and into the Earth’s interior, the total electromagnetic force
on the enclosed volume remains unchanged: sunward, equal
to [A− 1]Fsw1 − Fsw0, and balanced by an antisunward me-
chanical force that slightly exceeds it in magnitude; the total,
net antisunward force no longer equals Fsw, however, but
continually decreases as the enclosed mass becomes signifi-
cantly less than ME . Within the electrically conducting inte-
rior, the diurnally varying perturbations of the external mag-
netic field induce currents that shield out the external field;
once the bounding surface has been displaced inward of the
layer that contains the shielding currents, there is of course
no electromagnetic force of external origin, and the mechani-
cal force is simply equal to the net acceleration multiplied by
the remaining enclosed mass. The integrated Lorentz force
on the shielding currents, directed sunward, is the equal and
opposite reciprocal force (in the sense discussed in Sects. 2
and 4) to the Lorentz force in the ionosphere; it is opposed
by an antisunward mechanical stress, of which a small part is
associated with the acceleration of the entire Earth system by
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Fig. 4. Same as Fig. 3 but for the case of negligible Lorentz force
in the ionosphere.

the net force exerted on it by the solar wind, and the rest—
in balance with the Lorentz force — is the source of the ad-
ditional linear momentum transported to the ionosphere.

It has been tacitly assumed in the preceding discussion
as well as in Fig. 3 that Fsw0 is small in comparison to
[A− 1]Fsw1, i.e., the electromagnetic force (amplified in the
ionosphere) of the region 1 currents greatly exceeds that of
the Chapman-Ferraro currents (in the terminology of Siscoe
and Siebert, 2006, the thermospheric drag mode dominates
over the dipole interaction mode). It is of interest to also con-
sider briefly the opposite limit, the predominantly Chapman-
Ferraro case (originally described by Siscoe, 1966) with neg-
ligible effect of region 1 currents. As illustrated in Fig. 4,
the electromagnetic transfer of linear momentum inside the
magnetosphere, at the rate corresponding to an antisunward
force Fsw0 on the enclosed volume, continues essentially un-
changed through the ionosphere and into the Earth’s interior,
until the region of the shielding currents is reached. The inte-
grated Lorentz force on the shielding currents is now directed
antisunward (it constitutes the requisite equal and opposite
reciprocal force to the Lorentz force on the Chapman-Ferraro
currents), transferring linear momentum to accelerate the en-
closed mass. In the region between the shielding currents
and the surface of the Earth, where the electromagnetic trans-
port of linear momentum does not change appreciably while
the enclosed mass decreases with decreasing radial distance,
there is a sunward mechanical force [NB sunward when de-
fined as force on enclosed volume], corresponding to upward
transport of antisunward linear momentum in order to en-
force the uniform acceleration of the entire Earth.

5.4 Magnetic gradient force

The electromagnetic force on the Earth arising from all forms
of the interaction with the solar wind has in previous discus-
sions (Siscoe, 1966; Carovillano and Siscoe, 1973; Siscoe

Fig. 4. Same as Fig.3 but for the case of negligible Lorentz force
in the ionosphere.

reciprocal force to the Lorentz force on the Chapman-Ferraro
currents), transferring linear momentum to accelerate the en-
closed mass. In the region between the shielding currents
and the surface of the Earth, where the electromagnetic trans-
port of linear momentum does not change appreciably while
the enclosed mass decreases with decreasing radial distance,
there is a sunward mechanical force (NB sunward when de-
fined as force on enclosed volume), corresponding to upward
transport of antisunward linear momentum in order to en-
force the uniform acceleration of the entire Earth.

5.4 Magnetic gradient force

The electromagnetic force on the Earth arising from all forms
of the interaction with the solar wind has in previous dis-
cussions (Siscoe, 1966, 2006; Carovillano and Siscoe, 1973;
Siscoe and Siebert, 2006) been described as a force on the
Earth’s dipole and calculated accordingly from the gradient
of the external field at the location of the dipole. In reality,
the force is exerted on the shielding currents, the magnetic
field of which cancels the external field within the deep inte-
rior (including the location of the dipole). The total Lorentz
force on the shielding current region can be calculated, analo-
gously to the Lorentz force on the ionosphere (Sect.5.2), by
exploiting again the quadratic nature of the Maxwell stress
tensor to write the force as the surface integral of the cross
terms{dipole× disturbance field}, with the disturbance field
now expressed as the sum of the external field and the field
of the shielding currents. Hence

FEM (above) = FEM (external)+ F>
EM (shielding) (18)

FEM (below) = FEM (external)+ F<
EM (shielding) ,

where “above” or “below” now refers to the bounding sur-
face of a volume that includes or does not include, respec-
tively, the shielding current region. Since the external field,
by definition, is unaffected by the shielding currents, the term
FEM (external) has the same value above or below, given by
the standard expression for the force on the dipole exerted by
the external field:

FEM (external) = (µ · ∇)Bext (0) (19)

(µ= dipole moment, r=0 location of dipole). The
{dipole× shielding-field} terms above and below are

F>
EM (shielding) = 0 (20)

F<
EM (shielding) = −FEM (external) .

The first line of Eq. (20) can be deduced by noting that the
termF>

EM (shielding), combined with the{dipole× dipole}
and{shielding× shielding} terms (both=0), represents the
total Lorentz force on the combined system of dipole (dy-
namo) and shielding currents, which vanishes by the corol-
lary at the end of Sect.2; the second line follows, by virtue
of Eq. (18), simply from FEM (below)=0, the absence of
the electromagnetic force when the external field has been
shielded out. The Lorentz force on the shielding current re-
gion itself is then given by

FEM (above) − FEM (below) (21)

= F>
EM (shielding)− F<

EM (shielding)

= (µ · ∇)Bext (0)

and is precisely equal to the force that the external field
alone, in the absence of shielding currents, would exert on
the dipole. The total force is thus unaffected by the pres-
ence of shielding (a result that, depending on one’s degree
of insight, may or may not be considered obvious), and the
answer obtained in previous calculations is correct.

6 Limits to Fukushima’s theorem

A necessary condition for global force balance as described
in Sects.4 and5 is the penetration of magnetic disturbance
fields associated with region 1 currents into the Earth’s in-
terior, down to depths where the diurnally varying exter-
nal fields are shielded out. This poses a problem because
the penetration of these fields below the ionosphere is gen-
erally thought to be severely limited by a famous theorem
proved byFukushima(1969), following earlier suggestions
by Bostr̈om(1964) andKern (1966) (for a historical account
of the origin of the theorem, seeFukushima, 1985a, part I,
Sect. 4).

The theorem in its original form, applicable in the approxi-
mation of planar ionosphere and vertical magnetic field lines,
is illustrated in Fig.5: a system of Birkeland currents clos-
ing through a general configuration of horizontal currents in
the ionosphere (A) can be decomposed into a superposition
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of Birkeland currents closing via potential (zero-curl) iono-
spheric currents (B) plus source-free (zero-divergence) cur-
rents confined to the ionosphere (C); the theorem then states
that the magnetic disturbance fields of (B) are identically
zero below the ionosphere, the contributions from the Birke-
land currents being cancelled by those from the potential
currents in the ionosphere. The theorem also applies in the
case of spherical ionosphere and radial magnetic field lines;
this was first mentioned byFukushima(1971), citing a 1970
conference presentation by Vasyliūnas (which, however, re-
mained unpublished), and was later derived byFukushima
(1985b).

The method used byFukushima(1969, 1971, 1985b) to
derive the theorem is in essence a clever deconstruction into
geometrical elements sufficiently simple that the result for
each one is evident by symmetry. In AppendixB, I present a
purely formal mathematical proof, for both planar and spher-
ical geometries. The decomposition, indispensable to the
theorem, of the height-integrated horizontal ionospheric cur-
rent I into potential and source-free components, proposed
by Kern (1966) and extensively used byVasyliūnas(1970),
can be expressed mathematically as

I = ∇τ + r̂ × ∇ψ (22)

whereτ(θ, φ) andψ(θ, φ) are scalar functions; by continuity
of current,

∇
2τ = −J · r̂ ≡ −Jr = −J‖ B̂ · r̂ (23)

whereJ‖ is the Birkeland current density at the top of the
ionosphere. In the case of nearly vertical magnetic field at
low altitudes and of ionospheric conductances independent
of latitude and longitude, the potential and the source-free
currents are the height-integrated Pedersen and the height-
integrated Hall current, respectively, withτ andψ both pro-
portional to the electric potential multiplied by the appropri-
ate conductance.

Although the Fukushima theorem does allow penetration
of some external disturbance fields below the ionosphere,
the fields are those from the source-free (Hall) component
of ionospheric currents – from precisely the ionospheric cur-
rents that donot couple to the magnetosphere and thus do
not constitute the ionospheric segment of the region 1 cur-
rent system. The penetrating disturbance fields allowed by
the theorem induce their own Lorentz force in the shield-
ing current region, equal and opposite to the Lorentz force
on the source-free currents in the ionosphere; there is no
net force on the Earth system, and no direct connection to
force balance from solar-wind interaction. Thus, the prob-
lem posed by the Fukushima theorem still remains: how is
the Lorentz force on the potential (Pedersen) component of
the ionospheric currents – the currents that directly couple to
the magnetosphere, that according to the theorem produce no
ground-level magnetic disturbance – to be matched with the
necessary reciprocal Lorentz force?
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and Siebert, 2006; Siscoe, 2006) been described as a force
on the Earth’s dipole and calculated accordingly from the
gradient of the external field at the location of the dipole.
In reality, the force is exerted on the shielding currents, the
magnetic field of which cancels the external field within the
deep interior (including the location of the dipole). The to-
tal Lorentz force on the shielding current region can be cal-
culated, analogously to the Lorentz force on the ionosphere
(Sect. 5.2), by exploiting again the quadratic nature of the
Maxwell stress tensor to write the force as the surface inte-
gral of the cross terms {dipole × disturbance field}, with the
disturbance field now expressed as the sum of the external
field and the field of the shielding currents. Hence

F EM (above) = F EM (external) + F >
EM (shielding) (18)

F EM (below) = F EM (external) + F <
EM (shielding) ,

where “above” or “below” now refers to the bounding sur-
face of a volume that includes or does not include, respec-
tively, the shielding current region. Since the external field,
by definition, is unaffected by the shielding currents, the term
F EM (external) has the same value above or below, given by
the standard expression for the force on the dipole exerted by
the external field:

F EM (external) = (µ ·∇)Bext(0) (19)

(µ = dipole moment, r = 0 location of dipole). The
{dipole × shielding-field} terms above and below are

F >
EM (shielding) = 0 (20)

F <
EM (shielding) = −F EM (external) .

The first line of Eq. (20) can be deduced by noting that the
term F >

EM (shielding), combined with the {dipole × dipole}
and {shielding × shielding} terms (both = 0), represents the
total Lorentz force on the combined system of dipole (dy-
namo) and shielding currents, which vanishes by the corol-
lary at the end of Sect. 2; the second line follows, by virtue
of Eq. (18), simply from F EM (below)= 0, the absence of
the electromagnetic force when the external field has been
shielded out. The Lorentz force on the shielding current re-
gion itself is then given by

F EM (above) − F EM (below) (21)
= F >

EM (shielding)− F <
EM (shielding)

= (µ ·∇)Bext(0)

and is precisely equal to the force that the external field
alone, in the absence of shielding currents, would exert on
the dipole. The total force is thus unaffected by the pres-
ence of shielding (a result that, depending on one’s degree
of insight, may or may not be considered obvious), and the
answer obtained in previous calculations is correct.

6 Limits to Fukushima’s theorem

A necessary condition for global force balance as described
in Sects. 4 and 5 is the penetration of magnetic disturbance
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Fig. 5. Simple illustration of Fukushima’s theorem (after
Fukushima, 1969, 1985b).

fields associated with region 1 currents into the Earth’s in-
terior, down to depths where the diurnally varying exter-
nal fields are shielded out. This poses a problem because
the penetration of these fields below the ionosphere is gen-
erally thought to be severely limited by a famous theorem
proved by Fukushima (1969), following earlier suggestions
by Boström (1964) and Kern (1966) (for a historical account
of the origin of the theorem, see Fukushima, 1985a, part I,
section 4).

The theorem in its original form, applicable in the approxi-
mation of planar ionosphere and vertical magnetic field lines,
is illustrated in Fig. 5: a system of Birkeland currents clos-
ing through a general configuration of horizontal currents in
the ionosphere (A) can be decomposed into a superposition
of Birkeland currents closing via potential (zero-curl) iono-
spheric currents (B) plus source-free (zero-divergence) cur-
rents confined to the ionosphere (C); the theorem then states
that the magnetic disturbance fields of (B) are identically
zero below the ionosphere, the contributions from the Birke-
land currents being cancelled by those from the potential
currents in the ionosphere. The theorem also applies in the
case of spherical ionosphere and radial magnetic field lines;
this was first mentioned by Fukushima (1971), citing a 1970
conference presentation by Vasyliūnas (which, however, re-
mained unpublished), and was later derived by Fukushima
(1985b).

The method used by Fukushima (1969, 1971, 1985b) to
derive the theorem is in essence a clever deconstruction into
geometrical elements sufficiently simple that the result for
each one is evident by symmetry. In Appendix B, I present a
purely formal mathematical proof, for both planar and spher-
ical geometries. The decomposition, indispensable to the
theorem, of the height-integrated horizontal ionospheric cur-
rent I into potential and source-free components, proposed
by Kern (1966) and extensively used by Vasyliūnas (1970),
can be expressed mathematically as

I = ∇τ + r̂ ×∇ψ (22)

where τ(θ, φ) and ψ(θ, φ) are scalar functions; by continuity
of current,

∇2τ = −J · r̂ ≡ −Jr = −J‖ B̂ · r̂ (23)

where J‖ is the Birkeland current density at the top of the
ionosphere. In the case of nearly vertical magnetic field at

Fig. 5. Simple illustration of Fukushima’s theorem (after
Fukushima, 1969, 1985b).

As a first step, I calculate the integrated Lorentz force on
just the potential part of the ionospheric currents (first term
on the right-hand side in Eq.22), both to verify that it is
indeed non-zero and as input to subsequent force balance ar-
guments. The force in thêx direction is given by the global
integral over the ionosphere

Fx=RE
2
∫
d� x̂·I×Bd/c=RE

2
∫
d� ∇τ ·Bd×x̂/c (24)

where∫
d�≡

∫
sinθdθ

∫
dφ

andBd is the dipole field. Withτ(θ, φ) related by Eq. (23)
to the radial (Birkeland) currentsJr(θ, φ), Eq. (24) can be
transformed into an integral overJr ; the calculation is given
in AppendixC, with the result

Fx = −

(
BERE

3/2c
) ∫

d� Jr sinθ sinφ (25)

(θ , φ in geomagnetic coordinates, with signs appropriate for
Earth;BE is the surface field strength at the equator). A sim-
ple model for region 1 Birkeland currents (basis for many
analytical calculations of magnetospheric convection, e.g.,
Vasyliūnas, 1970, 1972) is

Jr = J0 sinφ
[
δ
(
θ − θpc

)
+ δ

(
θ − π + θpc

)]
(26)

whereθpc is the colatitude of the polar cap, and the parameter
J0 is related to the total currentIo of the region 1 system by

I0 = 4J0RE
2 sinθpc . (27)

Inserting Eq. (26) into Eq. (25) gives the force at once as

Fx = − (πBEI0RE/4c) sinθpc ≡ −FT , (28)

the minus sign indicating that the force is antisunward.
Equation (28) is the total Lorentz force, integrated over

the entire ionosphere. It is also possible to calculate partial
Lorentz forces, specifically the force on the polar caps only
and the complementary force on the low-latitude region (ex-
cluding the polar caps). This calculation (AppendixC) re-
quires the explicit solution of Eq. (23) for τ , givenJr ; with
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Jr assumed specified by Eq. (26), the results are

Fx(polar cap) = FT

{
−2 +

[
sinθpc/

(
1 + cosθpc

)]2
}

(29)

Fx(low-lat) = FT

{
+1 −

[
sinθpc/

(
1 + cosθpc

)]2
}

(30)

the sum of the two giving, as expected,Fx=−FT in agree-
ment with Eq. (28).

The results in Eqs. (28), (29), and (30) differ from those of
Siscoe(2006), who also assumed the Birkeland current con-
figuration of Eq. (26) but treated the ionosphere in the planar
approximation (formally, the limit sin2 θpc�1), obtaining (in
my notation):Fx(polar cap)=−2FT , Fx(low-lat)=0, hence
Fx(total)=−2FT . In AppendixD, I show that the flat-Earth
approximation is the reason for these discrepancies as well
as some other paradoxical features.

6.1 Force balance in the idealized geometries

There are two idealized geometries for which Fukushimas’s
theorem holds exactly: planar (straight field lines), and
spherical (radial field lines). Although these geometries are
of course quite inadequate as models for any known exist-
ing magnetosphere, situations can be envisaged where they
might constitute a reasonable approximation; the radial-field
case in particular has been discussed as the extreme limit
of a plasma-dominated magnetosphere (Parker and Stewart,
1967). It is instructive to consider how Fukushima’s theorem
can be reconciled with force balance in such a case.

In the planar case there is no problem at all: the magnetic
field has the same magnitude in the ionosphere as in the mag-
netosphere, hence there is no amplification of the Lorentz
force — the linear momentum being imparted to the neutral
atmosphere is equal to that being extracted from the solar
wind.

In the radial-field case, the integrated Lorentz force on the
ionosphere is given (AppendixC) by

Fx = −

(
BERE

3/c
) ∫

d� Jr sinθ sinφ/ (1 + | cosθ |) ,(31)

different slightly but not significantly from Fx in
Eq. (25), and of course greatly amplified relative to the
magnetospheric/solar-wind value. An additional Lorentz
force exists, however, in this case: the force exerted by the
region 1 disturbance fieldsδB acting on the current sheet in
the equatorial plane (separating the oppositely directed radial
fields of the two hemispheres). With the radial magnetic
field of Eq. (C18), the current density isJ=Iδ(z) where

(4π/c) I = −2BEφ̂ (RE/r)
2 , (32)

and the Lorentz force is given by the integral over the current
sheet in the equatorial plane

Fx(eq) =

∮
dφ

∫
RE

r dr x̂ · I × δB/c . (33)

From Eqs. (B1) and (B13),

δB = ∇α × r̂ , (34)

comparison of Eq. (B14) at r=RE with Eq. (22) establishing
thatα=(4π/c)τ ; then

Fx(eq)= (2BE/c)
∮
dφ

∫
RE

(RE/r)
2 dr x̂·r̂ ∂τ/∂φ |θ= π

2
(35)

which can be rewritten, by carrying out the integration over
r and integrating by parts overφ, as

Fx(eq) = + (2BERE/c)
∮
dφ τ

(
θ =

π

2
, φ

)
sinφ (36)

(the upper limit of ther-integration has been taken nominally
as∞). Equation (36) for the Lorentz force integrated over
the equatorial current sheet is identical, except for the op-
posite sign, with Eq. (C22) for the Lorentz force integrated
over the ionosphere (for the case of radial field lines); note
that this result is completely general and doesnot depend on
any particular choice (e.g., Eq.26) of the Birkeland current
configuration.

The absence of magnetic perturbations below the iono-
sphere in the radial-field-line magnetosphere, implied by the
exact validity of Fukushima’s theorem, is thus possible be-
cause the Lorentz force reciprocal to that in the ionosphere
is here to be found in the equatorial current sheet; the lin-
ear momentum being imparted to the neutral atmosphere is
extracted from plasma at the reversal of the radial magnetic
field. Antisunward linear momentum is predominantly trans-
ported downward, from the current sheet to the ionosphere,
by electromagnetic stress, with balancing upward transport
by mechanical stress; below the ionosphere there is only a
small, purely mechanical stress, needed to exert the force
Fsw on the Earth.

6.2 Fukushima’s theorem in a realistic geometry

The pattern of momentum tranfer described in the preced-
ing paragraph, demanded by the assumption of no pertur-
bation fields below the ionosphere, is manifestly implausi-
ble for any magnetosphere not dominated by the enormous
plasma stresses that would be needed to maintain the limiting
radial-field-line configuration ofParker and Stewart(1967).
Systematic deviations from Fukushima’s theorem are there-
fore of fundamental importance. They were identified al-
ready byFukushima(1985b) as due to a curvature effect: the
theorem holds if currents in and out of the ionosphere flow
along radial lines, but the real Birkeland currents flow along
the (curved) dipolar field lines. As illustrated in Fig.6, the
real current pattern (F) can be represented as a superposition
of currents flowing along dipole field lines but closing radi-
ally (F1), plus radial currents closing through the ionosphere
(F2). Below the ionosphere, the perturbation field of (F2)
vanishes by Fukushima’s theorem; the perturbation field of
the real system (F) must therefore be equal to that of (F1).
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It remains only to verify that system (F1) has the appro-
priate value of the Lorentz force. The contributions from the
dipole segments are zero becauseJ×B=0. To evaluate the
contributions from the radial segments, note that on them

Jr = −Jr (RE, θ, φ) (RE/r)
2 (37)

where Jr(RE, θ, φ) is the current flowing into the iono-
sphere, and the minus sign appears because the current on
the radial segment is opposite to the Birkeland current. Then
the integrated Lorentz force is

Fx(r) = −

∫
d�

∫
RE

r2dr Jr x̂ · r̂ × θ̂ Bθ/c . (38)

With Bθ=−BE(RE
3/r3) sinθ and x̂ · r̂×θ̂=− sinφ, carry-

ing out the integration overr gives

Fx(r) = −

(
BERE

3/2c
) ∫

d� Jr sinθ sinφ (39)

which is identical with Eq. (25), including the sign; this again
is a general result, independent of any specific model for the
Birkeland current configuration. The Lorentz force in the
interior is the result of shielding out the perturbation fields
which are identical with those of (F1); it can thus be viewed
indifferently as the reciprocal force either to the Lorentz
force of (F1) or to the real Lorentz force on the ionosphere.

7 Conclusions

As a consequence of the strongly converging geometry of
the geomagnetic field lines combined with the condition of
current continuity, the Lorentz force on the ionospheric seg-
ment of any current system flowing between the ionoasphere
and the magnetosphere is greatly amplified relative to the
Lorentz force on the magnetospheric or solar-wind segment;
the magnetosphere may be said to possess a mechanical ad-
vantage over the ionosphere. The forces arising out of the in-
teraction with the solar wind are thus much larger within the
ionosphere-atmosphere-Earth system than within the magne-
tosphere. The total force on the entire system, however, is
limited by the rate of extraction of linear momentum from
the flow of the solar wind. The large amplified forces must
therefore be primarily internal forces between one part of the
system and another. Specifically, the antisunward Lorentz
force of the region 1 currents in the ionosphere is balanced
by a sunward mechanical reaction force of the thermosphere,
which is transferred downward through the atmosphere into
the Earth’s interior, where it is matched by an antisunward
mechanical force balanced by the sunward Lorentz force of
the electrical currents that shield out the time-varying exter-
nal magnetic fields.

The following are some of the principal implications:

1. The mechanical stresses on the neutral medium that re-
sult from the interaction of the magnetosphere with the
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and the Lorentz force is given by the integral over the current
sheet in the equatorial plane

Fx(eq) =
∮
dφ

∫
RE

r dr x̂ · I × δB/c . (33)

From Eqs. (B1) and (B13),

δB = ∇α× r̂ , (34)

comparison of Eq. (B14) at r = RE with Eq. (22) establish-
ing that α = (4π/c)τ ; then

Fx(eq) = (2BE/c)
∮
dφ

∫
RE

(RE/r)
2
dr x̂ · r̂ ∂τ/∂φ |θ= π

2

(35)
which can be rewritten, by carrying out the integration over
r and integrating by parts over φ, as

Fx(eq) = +(2BERE/c)
∮
dφ τ

(
θ =

π

2
, φ

)
sinφ (36)

(the upper limit of the r-integration has been taken nominally
as ∞). Equation (36) for the Lorentz force integrated over
the equatorial current sheet is identical, except for the op-
posite sign, with Eq. (C22) for the Lorentz force integrated
over the ionosphere (for the case of radial field lines); note
that this result is completely general and does not depend on
any particular choice (e.g., Eq. (26)) of the Birkeland current
configuration.

The absence of magnetic perturbations below the iono-
sphere in the radial-field-line magnetosphere, implied by the
exact validity of Fukushima’s theorem, is thus possible be-
cause the Lorentz force reciprocal to that in the ionosphere
is here to be found in the equatorial current sheet; the lin-
ear momentum being imparted to the neutral atmosphere is
extracted from plasma at the reversal of the radial magnetic
field. Antisunward linear momentum is predominantly trans-
ported downward, from the current sheet to the ionosphere,
by electromagnetic stress, with balancing upward transport
by mechanical stress; below the ionosphere there is only a
small, purely mechanical stress, needed to exert the force
Fsw on the Earth.

6.2 Fukushima’s theorem in a realistic geometry

The pattern of momentum tranfer described in the preceding
paragraph, demanded by the assumption of no perturbation
fields below the ionosphere, is manifestly implausible for
any magnetosphere not dominated by the enormous plasma
stresses that would be needed to maintain the limiting radial-
field-line configuration of Parker and Stewart (1967). Sys-
tematic deviations from Fukushima’s theorem are therefore
of fundamental importance. They were identified already by
Fukushima (1985b) as due to a curvature effect: the theo-
rem holds if currents in and out of the ionosphere flow along
radial lines, but the real Birkeland currents flow along the
(curved) dipolar field lines. As illustrated in Fig. 6, the
real current pattern (F) can be represented as a superposi-
tion of currents flowing along dipole field lines but closing
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Fig. 6. Curvature effect in Fukushima’s theorem (after Fukushima,
1985b).

radially (F1), plus radial currents closing through the iono-
sphere (F2). Below the ionosphere, the perturbation field of
(F2) vanishes by Fukushima’s theorem; the perturbation field
of the real system (F) must therefore be equal to that of (F1).

It remains only to verify that system (F1) has the appro-
priate value of the Lorentz force. The contributions from the
dipole segments are zero because J ×B = 0. To evaluate
the contributions from the radial segments, note that on them

Jr = −Jr (RE , θ, φ) (RE/r)
2 (37)

where Jr(RE , θ, φ) is the current flowing into the iono-
sphere, and the minus sign appears because the current on
the radial segment is opposite to the Birkeland current. Then
the integrated Lorentz force is

Fx(r) = −
∫
dΩ

∫
RE

r2dr Jr x̂ · r̂ × θ̂ Bθ/c . (38)

With Bθ = −BE(RE
3/r3) sin θ and x̂ · r̂ × θ̂ = − sinφ,

carrying out the integration over r gives

Fx(r) = −
(
BERE

3/2c
) ∫

dΩ Jr sin θ sinφ (39)

which is identical with Eq. (25), including the sign; this
again is a general result, independent of any specific model
for the Birkeland current configuration. The Lorentz force
in the interior is the result of shielding out the perturbation
fields which are identical with those of (F1); it can thus
be viewed indifferently as the reciprocal force either to the
Lorentz force of (F1) or to the real Lorentz force on the iono-
sphere.

7 Conclusions

As a consequence of the strongly converging geometry of
the geomagnetic field lines combined with the condition of
current continuity, the Lorentz force on the ionospheric seg-
ment of any current system flowing between the ionoasphere
and the magnetosphere is greatly amplified relative to the
Lorentz force on the magnetospheric or solar-wind segment;
the magnetosphere may be said to possess a mechanical ad-
vantage over the ionosphere. The forces arising out of the in-
teraction with the solar wind are thus much larger within the

Fig. 6. Curvature effect in Fukushima’s theorem (afterFukushima,
1985b).

solar wind are not confined to the thermosphere but ex-
tend also into the atmosphere and into that part of the
Earth’s interior into which any diurnally varying mag-
netic disturbances can penetrate.

2. The forces involved can be much larger than the net
force exerted by the solar wind on the entire Earth sys-
tem (although they still are utterly negligible compared
to with forces involved in dynamics of the atmosphere,
let alone of the solid Earth).

3. Except in the case of very weak region 1 currents (in
the quantitative sense discussed bySiscoe and Siebert,
2006), the total magnetic force on the Earth’s interior is
sunward; it is slightly overbalanced by an antisunward
mechanical force, the difference being equal to the net
force exerted by the solar wind.

4. The magnetic disturbance fields in the Earth’s inte-
rior that result from the region 1 currents play an es-
sential role in maintain stress balance; hence limits
on them imposed by Fukushima’s theorem necessarily
are of restricted applicability (the requisite deviations
from the ideal theorem have been identified already by
Fukushima, 1985b).

Appendix A

Acceleration of center of mass

Introduce the center of massR through the definitions

MR ≡

∫
d3r ρ r M ≡

∫
d3r ρ (A1)

Noting thatr andt are independent variables, we have

dM/dt =

∫
d3r ∂ρ/∂t = −

∫
dS · ρ V (A2)

and

d (MR) /dt=

∫
d3r r ∂ρ/∂t=

∫
d3r ρ V −

∫
dS·ρ V r (A3)
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where in both equations the second expression follows from
the mass continuity equation, plus an integration by parts in
Eq. (A3). Differentiating once more with respect tot and
rearranging, we have

(d/dt)

∫
d3rρ V =d2 (MR) /dt2+

∫
dS· (∂ρV /∂t) r (A4)

which can be manipulated into the form

(d/dt)

∫
d3rρ V = M d2R/dt2 (A5)

+ 2(dM/dt) (dR/dt)+

∫
dS · (∂ρV /∂t) (r − R)

from which Eq. (12) follows.

Appendix B

Formal derivation of Fukushima’s theorem

Represent the disturbance magnetic field (not the total field)
by Euler potentials

B = ∇α × ∇β ; (B1)

then the current density is given by (ignoring the factor 4π/c

in Gausian orµ0 in SI units)

∇×B=∇α∇
2β+ (∇β·∇)∇α−∇β∇

2α− (∇α·∇)∇β (B2)

For the planar case as in Fig.5 (vertical direction taken aŝz),
choose

α = α(x, y) β = β(z) (B3)

which simplifies Eq. (B2) to

∇ × B = ∇α∇
2β − ∇β ∇

2α . (B4)

Now require

∇
2β = d2β/dz2

= δ(z) (B5)

β = 0 for z < 0 (B6)

where δ(z) is merely an idealization of a sharply peaked
function; Eqs. (B5) and (B6) are satisfied if

∇β = ẑH(z) (B7)

with H the function defined byH (z) = 1 x > 0

H (z) = 0 x < 0

(Heaviside unit function). From Eq. (B4), the current density
is then given by

∇ × B = δ(z)∇α − ẑH(z)∇2α , (B8)

which describes a system identical with (B) in Fig.5: vertical
currents in the spacez>0 (magnetosphere), closed by a curl-
free current atz=0 (ionosphere). Condition (B6) together

with (B1) implies that the disturbance magnetic field of this
system vanishes in the spacez<0 (below the ionosphere),
which is Fukushima’s theorem.

An analogous calculation can be carried out for the spher-
ical case by choosingα=α(θ, φ), β=β(r). The cross-
gradient terms in Eq. (B2) are now, unlike the planar case,
no longer zero; they can, however, be written as

(∇β · ∇)∇α = − (1/r) (dβ/dr)∇α = − (∇α · ∇)∇β (B9)

which simplifies Eq. (B2) to

∇ × B = ∇α
[
∇

2β − (2/r) (dβ/dr)
]

− ∇β ∇
2α . (B10)

With the requirements

∇
2β − (2/r) (dβ/dr) = d2β/dr2

= δ(r − RE) (B11)

β = 0 for r < RE (B12)

satisfied if

∇β = r̂H(r − RE) , (B13)

the current density is given by

∇ × B = δ(r − RE)∇α − r̂ H(r − RE)∇
2α , (B14)

the spherical counterpart of (B) in Fig.5: a system of radial
currents atr>RE closed by a curl-free current atr=RE , with
vanishing disturbance magnetic field forr<RE . (Note: gen-
eralizing the theorem even further is not possible, apparently,
as the method used here does not seem to work when applied
to any other

Appendix C

Calculation of ionospheric Lorentz force

Equation (24) may be written as

Fx = RE
2
∫
d� Q · ∇τ (C1)

where

Q ≡ Bd × x̂/c . (C2)

Only theθ̂ andφ̂ components ofQ appear in Eq. (C1); they
may be separated into curl-free and divergence-free parts by
writing

Q − r̂Qr =
(
∇G + r̂ × ∇H

)
/r2 (C3)

(Qr≡Q · r̂), whereG(θ, φ) andH(θ, φ) are scalar functions;
r=RE throughout this calculation. Integrating by parts now
transforms Eq. (C1) into

Fx =

∫
d�

[
∇ ·

(
G ∇τ + τ r̂ × ∇H

)
− G ∇

2τ
]

; (C4)
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noting that the integral of the divergence over the entire
sphere vanishes, we have

Fx = −

∫
d� G ∇

2τ =

∫
d� G Jr . (C5)

To derive the functionG, take the divergence of Eq. (C3):(
1/r2

)
∇

2G = ∇ ·
(
Q − r̂Qr

)
. (C6)

Noting that from Eq. (C2)

∇ · Q = x̂ · ∇ × Bd/c = 0 (C7)

andQr∼1/r3, we have

∇
2
�G = rQr = r · Bd × x̂/c = x̂ × µ · r/r3c ≡ U . (C8)

The Laplacian has been written as∇
2
� to emphasize thatG is

a function ofθ , φ only. The direct solution of Eq. (C8) for
G, straightforward but tedious, can be avoided by noting that
the expressionU is the scalar potential of a dipole field (with
momentx̂×µ/c), hence its (3-D) Laplacian is zero, which
implies that

∇
2
�U = −

(
1/r2

)
(∂/∂r) r2 (∂U/∂r) = −2U/r2 . (C9)

Comparing Eq. (C9) with Eq. (C8), we have

G = −RE
2U/2 = −x̂ × µ · r̂/2 (C10)

= −

(
BERE

3/2c
)

sinθ sinφ ,

which inserted into Eq. (C5) gives Eq. (28) of the main text.
To calculate the force integrated over only a portion of the

entire sphere, the boundary contribution from the divergence
term in Eq. (C4) must be included. Specifically, under the
assumption (Eq.26) of Birkeland currents non-zero only at
the polar cap boundaries, the forces on the polar-cap and the
non-polar-cap regions are given by

Fx(polar cap) =

(
2/RE

2
) ∮

dφ K
(
θ−
pc, φ

)
(C11)

Fx(low-lat) = −

(
2/RE

2
) ∮

dφ K
(
θ+
pc, φ

)
(C12)

K ≡ G sinθ (∂τ/∂θ)− τ (∂H/∂φ)

(the factor 2 comes from including both hemispheres). The
function H can be derived from Eqs. (C3) and (C10),
with use of the relations∇(a·r)=a for any constanta and
Q−r̂Qr=r̂×(Q×r̂):

H= (3/2)µ·r̂ x̂·r̂=−3
(
BERE

3/2c
)

sinθ cosθ cosφ .(C13)

Solving Eq. (23) for τ , with Jr given by Eq. (26), we have

τ = RE
2J0 sinφ sinθ/ (1 + | cosθ |)

θ < θpc π − θpc < θ

= RE
2J0 sinφ

(
1 − | cosθpc|

)
/ sinθ

θpc < θ < π − θpc . (C14)

Equations (C11–C12) then give

Fx(polar cap) = −FT
(
1 + 3 cosθpc

)
/
(
1 + cosθpc

)
(C15)

Fx(low-lat) = −FT
(
−2 cosθpc

)
/
(
1 + cosθpc

)
(C16)

FT =

(
πBERE

3J0/c
)

sin2 θpc ,

equivalent to Eqs. (29–30) of the main text by virtue of
Eq. (27) and the identity

(1 − cosθ) / (1 + cosθ) = [sinθ/ (1 + cosθ)]2 . (C17)

For the case of radial field lines discussed in Sect.6.1, Bd in
Eq. (C2) is replaced by

B = −r̂BE sign(cosθ) (C18)

(the magnetic flux through a hemisphere is the same as for
the dipole field with equatorial field strengthBE). Then
Qr=0 everywhere, but∇×B and hence also∇·Q are non-
zero at the singular pointθ=π/2 (field reversal), with the
result that in place of Eq. (C8) we have

∇
2
�G = (2BERE/c) sinφ δ (cosθ) (C19)

which has the solution

G = −

(
BERE

3/c
)

sinθ sinφ/ (1 + | cosθ |) , (C20)

the only change from Eq. (C10) being the replacement of a
factor 2 in the denominator by(1+| cosθ |). Instead of insert-
ing thisG into Eq. (C5), however, it is simpler in this case to
derive an alternative expression forFx , by using a different
integration by parts to transform Eq. (C1) into

Fx = −

∫
d� τ ∇

2G (C21)

and then substituting from Eq. (C19) to obtain

Fx = − (2BERE/c)
∮
dφ τ

(
θ =

π

2
, φ

)
sinφ (C22)

which can be compared directly with the force calculated in
Sect.6.1.

Appendix D

The paradoxes of flatland

The ionospheric region of primary interest in many discus-
sions of the interaction of the solar wind with the magne-
tosphere is the high-latitude ionosphere. Relatively small in
extent when compared to the entire terrestrial globe, and with
the geomagnetic field lines within it inclined only slightly
from the vertical, this region is often (particularly for the
purpose of calculating simple analytical models) treated in
the “flat-Earth” approximation – the ionosphere represented
as a plane, with the geomagnetic field perpendicular to it.
There exists in fact an exact mapping from a sphere to a
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plane which preserves the form of some of the key equa-
tions of magnetosphere-ionosphere coupling theory: the (po-
lar) stereographic projection, in which any point P on the
surface of the sphere is projected onto the plane tangent to
the north pole by drawing a straight line from the south pole
through P. The coordinates (θ , φ) on the surface of the sphere
are mapped to cylindrical coordinates (R, φ) on the plane,
with φ unchanged andR related toθ by

R/RE = 2 sinθ/ (1 + cosθ) . (D1)

Th equator maps toR=2RE and the south pole toR → ∞;
the flat-Earth approximation near the north pole is obtained
in the limitR�RE (or equivalently sinθ�1).

The 2-D Laplacian∇2
� in (θ , φ) coordinates transforms

into the 2-D Laplacian in (R, φ) coordinates, multiplied by
the factor[2/(1+ cosθ)]2=[1+(R/2RE)2]2. The current
continuity Eq. (23) is thus unchanged in form, as is Eq. (22).
By direct transformation it can be shown that Eqs. (C1–C5)
and (C11–C12) remain valid when expressed in (R, φ) coor-
dinates. The functionsG,H become in these coordinates

G = −

(
BERE

2/2c
)
R sinφ {1/ (1 +X)} (D2)

H = −3
(
BERE

2/2c
)
R cosφ

{
(1 −X) / (1 +X)2

}
(D3)

X ≡ (R/2RE)
2

;

the factors enclosed in{ } reduce to±1 in the flat-Earth ap-
proximation. It is now apparent why calculating a global
force correctly is intrinsically impossible in this approxima-
tion: to obtain a global force, the integrals must be taken over
the entire plane, but as long as the factors in{ } remain ap-
proximated by±1, G andH both diverge for largeR/RE .
(By contrast, for calculations relating the ionospheric elec-
tric potential to the Birkeland current distribution, departures
from the flat-Earth approximation involve changes only of
field magnitude and inclination, which remain bounded over
the entire plane.)

As noted already in Sect.6, calculations bySiscoe(2006)
in the flat-Earth approximation give the correct value−2FT
(in the limit sin2 θpc�1) for the integrated Lorentz force on
the polar cap, but not on the low-latitude region; the correct
value for the latter is+FT , whereasSiscoe(2006) obtains
zero, finding that the sunward Lorentz force on the Peder-
sen currents just equatorward of the polar cap is balanced by
the force on the return currents farther away. The physical
reason for the discrepancy is that the return currents on the
sphere occupy a smaller effective area than on the plane and
are also subject to a smaller vertical geomagnetic field. The
zero value for the flat-Earth calculation is in fact unique to
the boundary condition implicitly assumed bySiscoe(2006),
τ→0 atR→∞. If one takes instead as the boundary condi-
tion ∂τ/∂R=0 at some fixed (large)R=R1, which is physi-
cally more realistic (it corresponds to the assumption of zero
current acrossR=R1, e.g., the equator), one obtains the inte-
grated Lorentz force on the low-latitude region=−2FT for

any value ofR1 (the physical reason is that the return cur-
rents have been enhanced even further by their confinement
toR≤R1).
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V. M. Vasyliūnas: Forces in the magnetosphere-ionosphere-Earth system 269

Siscoe, G. L.: Solar system magnetohydrodynamics, in: Solar-
Terrestrial Physics, edited by: Carovillano, R. L. and Forbes,
J. M., 11–100, D. Reidel Publishing Co., Dordrecht–Holland,
1983.

Siscoe, G. L.: Global force balance of region 1 cur-
rent system, J. Atmos. Solar-Terr. Phys., 68, 2119–2126,
doi:10.1016/j.jastp.2006.09.001, 2006.

Siscoe, G. L., Crooker, N. U., and Siebert, K. D.: Transpo-
lar potential saturation: Roles of region 1 current system and
solar wind ram pressure, J. Geophys. Res., 107(A10), 1321,
doi:10.1029/2001JA009176, 2002.

Siscoe, G. L. and Siebert, K. D.: Bimodal nature of solar wind-
magnetosphere-ionosphere-thermosphere coupling, J. Atmos.
Solar-Terr. Phys., 68, 911–920, doi:10.1016/j.jastp.2005.11.012,
2006.

Vasyliūnas, V. M.: Mathematical models of magnetospheric con-
vection and its coupling to the ionosphere, in: Particles and
Fields in the Magnetosphere, edited by: McCormack, B. M., 60–
71, D. Reidel Publishing Co., Dordrecht–Holland, 1970.
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