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Abstract We construct and investigate an infrared-
improved soft-wall AdS/QCD model for mesons. Both lin-
ear confinement and chiral symmetry breaking of low energy
QCD are well characterized in such an infrared-improved
soft-wall AdS/QCD model. The model enables us to obtain
a more consistent numerical prediction for the mass spectra
of resonance scalar, pseudoscalar, vector, and axial-vector
mesons. In particular, the predicted mass for the lightest
ground state scalar meson shows good agreement with the
experimental data. The model also provides a remarkable
check for the Gell-Mann–Oakes–Renner relation and a sen-
sible result for the space-like pion form factor.

1 Introduction

The property of asymptotic freedom of quantum chromo-
dynamics (QCD) [1,2] at short distances or high energies
enables us to make perturbative treatment successfully on
QCD at ultraviolet (UV) region. At low energies, the QCD
perturbative method is no longer applicable due to strong
interactions at infrared (IR) region. So far we are still unable
to solve from first principles the low energy dynamics of
QCD, while the chiral symmetry breaking and linear con-
finement are known to be two important features of non-
perturbative QCD at the low energies. Many theoretical
approaches have been developed to describe these two inter-
esting properties of non-perturbative QCD. Such as the lat-
tice QCD and effective quantum field theories. One often
adopts effective quantum field theories to describe the low
energy dynamics of QCD based on the approximate global
chiral symmetry and dynamical chiral symmetry breaking
[3]. It has been shown explicitly in Ref. [4] how to derive the
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spontaneous chiral symmetry breaking via the dynamically
generated effective Higgs-like potential and obtain a consis-
tent prediction for the mass spectra of the lowest lying nonet
pseudoscalar and scalar mesons, where the scalars can be
regarded as the composite Higgs-like bosons. While it is not
manifest in such a chiral effective field theory to make pre-
dictions for the mass spectra of high resonance meson states.

The idea of large Nc expansion [5] and holographic
QCD which has been explicitly realized via the anti-de Sit-
ter/conformal field theory correspondence (AdS/CFT) [6–
8] supply a new point of view for solving the challenging
problem of strong interaction of QCD at low energies. The
AdS/CFT establishes the duality between the weakly cou-
pled supergravity in AdS5 and the strongly coupled N = 4
super Yang–Mills gauge theory, which makes the calcula-
tions in strongly coupled theory feasible [9]. The so-called
top-down and bottom-up approaches are two complementary
methods in the way of pursuing the gravity/gauge duality of
QCD. The former starts from some brane configurations in
string theory to reproduce some basic features of QCD [11–
13]. The latter, which is known as AdS/QCD, consists of
bulk fields in a curved space to reproduce some experimen-
tal phenomena in QCD [14–17,22–24]. It was also noticed
in Ref. [25–28] that there exists a correspondence of matrix
elements obtained in AdS/CFT with the corresponding for-
mula by using the light-front representation. In this paper we
will focus on the bottom-up approach.

There are the so-called hard-wall and soft-wall AdS/QCD
models. The hard-wall AdS/QCD model was developed in
[14,15]. The pattern of chiral symmetry breaking can be
realized in the hard-wall AdS/QCD models; however, the
mass spectra for the excited mesons cannot match up with
the experimental data well. In the simple soft-wall AdS/QCD
model [16], a dilaton background field with quadratic growth
in the deep infrared (IR) region has been introduced to
show the Regge behavior for the higher excited vector
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meson spectra. However, the chiral symmetry breaking phe-
nomenon cannot consistently be realized in the simple soft-
wall AdS/QCD model. This is because only introducing dila-
ton background field with quadratic growth at the IR region
does not satisfy the equation of motion of the bulk field
if other terms are not considered to be modified at the IR
region. To incorporate the linear trajectories of QCD con-
finement and chiral symmetry breaking, nonlinear interac-
tions of the bulk scalar have been considered in the previ-
ous studies [18–22]. In [20], the meson spectrum was also
studied phenomenologically, and a generalized model with
back-reaction and finite number of flavors was considered
in [21]. In [22], a quartic interaction term was introduced to
incorporate chiral symmetry breaking in the soft-wall model.
However, the sign of quartic term leads to an unstable vacuum
and results in a ghost ground state. To remedy this problem,
in [23] the IR-deformed AdS5 metric has been motivated
to yield a consistent solution for the dilaton field from the
equation of motion of the bulk field, which allows one to
introduce the quartic term with a correct sign for stabilizing
the vacuum. The IR-deformed AdS/CFT metric structure is
taken as follows:

ds2 = a2(z)
(
ημνdxμdxν − dz2

)
;

with a2(z) = (1 + μ2
gz

2)/z2 (1)

where μg characterizes the confinement scale of low energy
QCD. In the UV region z → 0, the IR-deformed metric
recovers conformal symmetry. It is interesting to observe that
such a simply modified soft-wall AdS/QCD model [23] can
lead to a consistent solution for the dilaton background field
from the equation of motion of the bulk field and meanwhile
incorporate simultaneously both chiral symmetry breaking
and linear confinement. In particular, the simple soft-wall
AdS/QCD model with IR-deformed metric [23] can provide a
consistent prediction for the mass spectra of resonance states
for all the light scalar, pseudoscalar,vector, and axial-vector
mesons, except for the lightest ground state scalar meson
which gets a much smaller mass in comparison with exper-
imental data. In [29], such a model has been extended to
include three light flavor quarks.

As the IR-deformed metric does not satisfy Einstein equa-
tion, it causes inconvenience for considering the finite tem-
perature effects [33–36] as the infalling boundary condition
at the horizon of black hole cannot be satisfied directly. In
the present paper, we are going to consider an alternative
scheme to overcome such a shortage. Similar to considera-
tions in Refs. [16,30], for simplicity, we do not consider the
back-reaction of dilaton field to the gravity equation and take
the dilaton field as a pure background field. Indeed, there are
a number of works [31,32] in which the dilaton field and
the gravitational field have been solved simultaneously from
the background equations of motion so as to characterize the

color effects of QCD. It is noticed that the IR-deformed met-
ric may be converted into the original pure AdS5 metric by a
scaling transformation of metric and bulk field redefinitions.
As a consequence, the mass term of bulk scalar field has to
be modified at the IR region, and the quartic interaction of
bulk scalar field is necessary with a correct sign. Therefore,
instead of taking IR-deformed metric, we are going to con-
struct in the present paper an IR-improved AdS/QCD model
for mesons. The z-dependence of the bulk mass term was
suggested in [37] from the running of operators, and it was
studied in [38,39] to be an alternative for incorporating chiral
symmetry breaking. It was shown in [38] that an unreason-
able large quark mass is required to obtain the sensible mass
spectra of mesons. In Ref. [39], the scalar interaction was
considered with a constant coupling. The mesons and nucle-
ons mass spectra were calculated in [40] with the consider-
ation of both modified metric and bulk mass. However, in
all considerations for the scalar meson part, the scalar states
f0(980±10), f0(1505±6), f0(2103±8), and f0(2314±25)

are incorrectly classified into the SU(3) singlet resonance
scalar states, they should belong to the isosinglet resonance
scalar states of SU(3) octet mesons. In this paper, we will
introduce both the IR-modified bulk mass and the bulk cou-
pling of quartic scalar interaction to improve the situation
and obtain a more consistent prediction for the mass spectra
of resonance mesons.

The remaining parts of this paper are organized as follows.
In Sect. 2, a general IR-improved soft-wall AdS/QCD model
is built. In Sect. 3, we provide a numerical prediction for the
mass spectra of the ground states and resonance states of all
the light scalar, pseudoscalar, vector and axial-vector mesons
with five appropriate model parameters. A discussion of the
pion form factor is also presented. In Sect. 4, we will present
a detailed discussion of the possible influences and effects
caused by the input parameters, such as the quark mass, quark
condensate, the scale μg , parametrization of the coefficient
of quartic interaction λX . The conclusions and remarks are
presented in Sect. 5.

2 IR-improved AdS/QCD model for mesons

In the AdS/QCD models, all fields are defined in a five-
dimensional Anti-De Sitter space with the metric

ds2 = a2(z)
(
ημνdxμdxν − dz2

)
; a2(z) = 1

z2 . (2)

The 5D action with quartic interaction term can be written as

S =
∫

d5x
√
ge−�(z) Tr

[
|DX |2 − m2

X |X |2

− λX |X |4 − 1

4g2
5

(
F2
L + F2

R

) ]
, (3)
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with DMX = ∂M X − i AM
L X + i X AM

R , AM
L ,R = AM a

L ,R t
a and

Tr[tatb] = δab/2. The gauge coupling g5 is fixed to be g2
5 =

12π2/Nc with Nc the color number [14]. The complex bulk
field X will be decomposed into the scalar and pseudoscalar
mesons, the chiral gauge fields AL and AR will be identified
to the vector and axial-vector mesons.

�(z) is the background dilaton field and its IR behavior
must be quadratic to produce a linear trajectory of QCD con-
finement for excited meson masses [16]. The introduction of
background dilaton field destroys conformal symmetry and
its asymptotic UV behavior must approach zero to recover
the conformal symmetry, i.e.,

�(z → 0) ∼ μ2
gz

2 ∼ 0; �(z → ∞) ∼ μ2
gz

2. (4)

For simplicity, we choose a simple parametrization for the
dilaton field to satisfy the required IR and UV asymptotic
behavior, namely,

�(z) = μ2
gz

2 − λ4
gμ

4
gz

4

(1 + μ2
gz

2)3 . (5)

with a constant parameter λg , which will be shown to cause
the mass splitting between the ground state and the first
excited meson state.

The quartic interaction of bulk scalar field also breaks
the conformal symmetry, its coupling λX is taken to be a
z-dependent coupling, λX = λX (z), and to satisfy the fol-
lowing boundary conditions:

λX (z → 0) ∼ μ2
gz

2 � 0; λX (z → ∞) = λ. (6)

Here the vanishing UV behavior is chosen to keep the con-
formal symmetry of the Lagrangian at UV limit, while the
choice of IR behavior can in general be arbitrary. In the pre-
vious papers [22,23,29] the coupling of quartic interaction
term was taken to be a constant, here we only choose the IR
behavior of λX to be a constant for a simple consideration
and also for comparison with previous models. In fact, in
the chiral effective field theory of low energy QCD in four-
dimensional space-time, the coupling of quartic interaction
term is a dimensionless constant. Thus we introduce the fol-
lowing parameterization for λX (z):

λX (z) = μ2
gz

2

1 + μ2
gz

2 λ. (7)

where λ is a constant parameter. It will be shown in Sect.
4 that the resulting predictions for the mass spectra of reso-
nance mesons are not sensitive to the specific forms of param-
eterization λX (z).

Based on the AdS/CFT duality, the 5D conformal mass
is given by m2

X = −3 from the mass-dimension relation.
The introduction of the background dilaton field and quar-
tic interaction term causes the breakdown of the conformal
symmetry in the IR region. As a consequence, when taking

5D AdS/CFT metric as a background, the mass term must get
a corresponding modification in the IR region to yield a con-
sistent solution for the equation of motion of the bulk scalar
field X . The IR-improved 5D conformal mass is expected
to have the following boundary conditions for the leading
terms:

m2
X (z → 0) ∼ −3 − O(μ2

gz
2) � −3;

m2
X (z → ∞) ∼ −μ2

mz
2 − λm, (8)

with the constant parameters μm and λm . The UV behav-
ior of m2

X (z) is chosen to recover the 5D conformal mass.
While the IR behavior is considered to deviate from the
5D conformal mass m2

X = −3 with both the quadratic and
the constant corrections. These two terms are regarded as
the leading order contributions indicated from the sponta-
neous chiral symmetry breaking via the dynamically gener-
ated effective composite Higgs-like potential [4], where the
mass term receives quadratic contributions with power-law
running from the quark loops. With these considerations, we
parameterize the IR-improved 5D conformal mass to have
the following general form:

m2
X (z) = −3 − λ2

1μ
2
gz

2 + λ4
2μ

4
gz

4

1 + μ2
gz

2 + m̃2
X (z) , (9)

with the constant parameters λ1 and λ2 as well as the z-
dependent function m̃2

X (z). Here m̃2
X (z) represents the next-

to-leading order contributions in both UV and IR sides. The
above IR-improved 5D conformal mass will be determined
by the equation of motion.

The expectation value of bulk scalar field X is assumed to
have a z-dependent form for two flavor case

〈X〉 = 1

2
v(z)

(
1 0
0 1

)
. (10)

From the AdS/CFT duality, the bulk vacuum expectation
value (bVEV) v(z) has the following behavior at the UV
boundary z → 0:

v(z → 0) = mq ζ z + σ z3

ζ
, (11)

where mq and σ are interpreted from the AdS/CFT duality
and low energy QCD as the quark mass and quark condensate,
respectively. The normalization factor ζ is fixed by QCD with
ζ = √

3/(2π) [37,41].
To have the reasonable IR boundary condition for bVEV

v(z), it is interesting to notice the fact that the highly excited
mesons exhibit parallel Regge trajectories as shown in [42],
which indicates that the chiral symmetry is not restored with
increasing excitation number. To incorporate the mass differ-
ence between vector and axial-vector resonances approach-
ing a constant as z → ∞, the IR boundary condition for the
bVEV v(z) is expected to be linear,
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v(z → ∞) = vq z, (12)

with vq the constant parameter which characterizes the
energy scale of dynamically generated spontaneous chiral
symmetry breaking caused by the quark condensate [4]. To
realize the above UV and IR behaviors, we simply parame-
terize the bVEV of bulk scalar field as follows:

v(z) = Az + Bz3

1 + Cz2 , (13)

with

A = mqζ, B = σ

ζ
+mqζC, C = μ2

c/ζ, vq = B/C,

(14)

where the constant parameter μc characterizes the QCD con-
finement scale.

Actually, the IR behavior of bVEV v(z) in the boundary
z → ∞ is correlated to the behavior of the background dila-
ton field given in Eq. (4) and the quartic interaction term
given in Eq. (6) as well as the IR-improved 5D conformal
mass given in Eq. (8). To see that, let us analyze from the
bulk action the equation of motion of the bVEV v(z), which
correlates the background dilaton �(z), the IR-improved 5D
conformal massm2

X (z) and the quartic interaction term λX (z)
of bulk scalar field

∂z

(
a(z)3e−�(z)∂zv(z)

)
− a(z)5e−�(z)

×
(
m2

X (z) + 1

2
λX (z)v(z)2

)
v(z) = 0. (15)

Its general solution for the IR-improved 5D conformal mass
is given by

m2
X (z) = −1

2
λX (z)v(z)2 − �′(z)v′(z)

a(z)2v(z)

+ 3a′(z)v′(z)
a(z)3v(z)

+ v′′(z)
a(z)2v(z)

. (16)

From the parametrization given in Eqs. (5, 7, 13), the UV
behavior of IR-improved 5D conformal mass is obtained to
be

m2
X (z → 0) → −3 − 2μ2

gz
2 � −3 , (17)

which leads to the UV limit m2
X = −3 given by the mass-

dimension relation �(� − 4) = m2
X . The IR behavior is

found to have the following general form:

m2
X (z → ∞)

� −
(
B2λ

2C2 + 2μ2
g

)
z2

+
(

−3 + B2λ

2C2μ2
g

+ (B − AC)

C

(
Bλ

C2 − 4μ2
g

B

))
. (18)

After matching the leading order terms to the IR-improved
5D conformal mass formalism given in Eq. (9), the two con-
stant parameters λ1 and λ2 are completely determined to be

λ1 = λ2 = √
2, or μm = 2μg, λm = 1 (19)

and the VEV vq due to quark condensate is given via the
following relation:

vq = B

C
= σ

μ2
c

+ mqζ =
√

(2μg)2

λ
=

√
μ2
m

λ
, (20)

which shows the familiar formalism of VEV in the Higgs-like
mechanism. Such a result is consistent with the minimal con-
dition of dynamically generated composite Higgs-like poten-
tial in the chiral dynamical model when the chiral symmetry
is broken down spontaneously [4]. The IR behavior of 5D
conformal mass is found to be

m2
X (z → ∞) � −(2μg)

2z2 − 1 . (21)

So far we have described the IR-improved soft-wall
AdS/QCD for mesons with appropriate modifications in the
IR region for the background dilaton field and the 5D con-
formal mass and quartic interaction coupling of bulk scalar
fields.

3 Numerical predictions

With the above analyses on the IR-improved AdS/QCD
model for mesons, we are now in the position to make
a numerical predication for the mass spectra of resonance
mesons. For that purpose, we shall first determine the five
free parameters involved in the model, they are mq , σ , μc,
μg , and λg .

3.1 Input parameters

The three parameters mq , σ , and λg are directly fixed by
the well-known experimental values of the π meson mass
mπ = 139.6 MeV and the π meson decay constant fπ =
92.4 MeV as well as the ρ meson mass mρ = 775.5 MeV.
The energy scale parameters μg and μc are determined by
taking a global fitting of the slopes for the resonance vector
and pseudoscalar mesons. The pion decay constant is given
by the axial-vector equation of motion with the pole in the
propagator set to zero as showed in [14].

f 2
π = − 1

g2
5

∂z A(0, z)

z

∣∣∣∣∣
z→0

(22)

A(0, z) is the axial-vector bulk-to-boundary propagator
which satisfies the boundary conditions A(0, 0) = 1 and
∂z A(0, z → ∞) = 0. The values of four fitting parameters
are presented in Table 1, it shows that the three scales are
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Table 1 The values of five parameters

λg mq (MeV) σ
1
3 (MeV) μg (MeV) μc (MeV)

1.7 3.52 290 473 375

at the range 300–500 MeV which is around the QCD scale
QCD .

3.2 Pseudoscalar mesons

The bulk scalar field can be written in the form of fluctuation
fields X (x, z) ≡ (v(z)/2 + S(x, z))e2iπ(x,z), with S(x, z)
being the scalar meson field and π(x, z) = πa(x, z)ta

being the pseudoscalar meson field. Kaluza–Klein decom-
position is preferred to find mass eigenvalues π(x, z) =∑

n ϕn(x)πn(z). In order to cancel the cross term of axial-
vector and pseudoscalar fields, we decompose the axial
field in terms of its transverse and longitudinal components,
Aa

μ = Aa
μ⊥ + ∂μφa . By choosing the axial gauge Az = 0,

we then obtain the following equation of motion in the 4D
momentum space from the action (3).

∂z
(
a(z)e−�∂zφ

a)+g2
5 a

3(z) v2(z)e−� (πa−φa)=0 (23)

q2∂zφ
a − g2

5 a
2(z) v2(z)∂zπ

a = 0 (24)

The bound state modes in the bulk correspond to the hadrons
of QCD. The eigenvalue of pseudoscalar meson mass can
be found by using the boundary conditions π(z → 0) =
0, ∂zπ(z → ∞) = 0. After eliminating the longitudinal
component, and by adopting the shooting method, we arrive
at the numerical predictions for the resonance pseudoscalar
mesons given in Table 2. The results show a good agreement
between theoretical predictions and experimental data.

3.3 Scalar mesons

By expanding the 5D scalar field as S(x, z) = ∑
n ψn(x)

Sn(z), we obtain from the equation of motion of the bulk

scalar the following eigenvalue equation for the resonance
scalar mesons:

∂z

(
a3(z)e−�∂z Sn(z)

)
−a5(z)e−�

(
m2

X + 3

2
λXv2(z)

)
Sn(z)

= −a3(z)e−�m2
Sn Sn(z) (25)

Here we only consider the SU (3) singlet scalar mesons. It
has been discussed in [23] that the scalar states f0(980±10),
f0(1505±6), f0(2103±8), and f0(2314±25) should be clas-
sified into the isosinglet resonance scalar states of SU(3) octet
mesons, rather than the SU(3) singlet resonance states. Under
the boundary conditions Sn(z → 0) = 0, and ∂z Sn(z →
∞) = 0, by applying the shooting method to solve Eq. (25),
we can obtain the numerical predictions for the mass spec-
tra of SU(3) singlet resonance scalar mesons, the results are
presented in Table 3. It is seen that the theoretical predictions
agree remarkably with the experimental data. Note that our
input parameters do not use any data involving scalar mesons.

3.4 Vector mesons

The equation of motion for the vector part can be derived
from the action (3) by choosing the axial gauge V5 = 0

∂z(e
−�a(z)∂zVn(z)) + m2

Vne−�a(z)Vn(z) = 0, (26)

which can also be solved by using the shooting method. With
the boundary conditions Vn(z → 0) = 0, and ∂zVn(z →
∞) = 0, we easily obtain the solutions for the above vector
meson eigenvalue equation and arrive at the numerical pre-
dictions for the mass spectra of resonance vector mesons. The
results are presented in Table 4, which shows good agreement
in comparison with the experimental data.

3.5 Axial-vector mesons

Minimizing the action (3) with the axial gauge A5 = 0, we
derive the axial meson field equation of motion for its perpen-
dicular component Aa

μ⊥, which is abbreviated as An below.

Table 2 The experimental and predicted mass spectra for pseudoscalar mesons

π 0 1 2 3 4 5 6

Exp. (MeV) 139.6 1300 ± 100 1812 ± 12 2070 ± 35† 2360 ± 25† – –

Theory (MeV) 139.6∗ 1465 1813 2068 2287 2482 2662

† Appears strictly in the further states of [10]

Table 3 The experimental and predicted mass spectra for scalar mesons

f0 0 1 2 3 4 5 6

Exp. (MeV) 400–550 1200–1500 1720 ± 6 1992 ± 16 2189 ± 13 – –

Theory (MeV) 460 1359 1723 1989 2216 2417 2602
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Table 4 The experimental and predicted mass spectra for vector mesons

ρ 0 1 2 3 4 5 6

Exp. (MeV) 775.5 ± 0.34 1460 ± 25 1720 ± 20 1909 ± 30 2149 ± 17 2265 ± 40 –

Theory (MeV) 775.5* 1354 1667 1919 2140 2339 2523

Table 5 The experimental and predicted mass spectra for axial-vector mesons

a1 0 1 2 3 4 5 6

Exp. (MeV) 1230 ± 40 1647 ± 22 1930+30
−70 2096 ± 122 2270+55

−40 – –

Theory (MeV) 1095 1626 1913 2145 2350 2537 2709

e�∂z(a(z)e−�∂z An) + a(z)m2
Aa

An−a3(z)g2
5v2(z)An = 0

(27)

Again, with the boundary conditions An(z → 0) = 0, and
∂z An(z → ∞) = 0, we can solve the above eigenvalue equa-
tion by using the shooting method and yield the numerical
predictions for the mass spectra of resonance axial-vector
mesons. The results are shown in Table 5; a good global fit-
ting with experimental data is also obtained, except for the
ground state meson mass which is slightly smaller than the
experimental result.

3.6 Pion form factor

It has been shown that the above IR-improved soft-wall
AdS/QCD model with IR-modified 5D conformal mass and
quartic interaction can provide a remarkable prediction for
the mass spectra of all light resonance mesons. Here we shall
calculate the pion form factor Fπ (q2) for a further consistent
check on such an IR-improved soft-wall AdS/QCD model.
The space-like pion form factor can be determined from the
sum over vector meson poles

Fπ (q2) = −
∞∑
n=1

fngρnππ

q2 − m2
Vn

(28)

where fn is the decay constants of the vector mesons. For a
practical calculation, we adopt the expression in terms of the
vector and axial-vector bulk-to-boundary propagators [43],

Fπ (q2) = g5

N

∫
dz V (q, z) e−�(z)

×
(
a(z)(∂zϕ(z))2

g2
5

+v2(z)a3(z)(π(z)−ϕ(z))2

)

(29)

where V (q, z) is the vector bulk-to-boundary propagator
with the boundary conditions V (q, z → 0) = 1 and
V (0, z) = 1. The functions π(z) and ϕ(z) are the solutions
of Eq. (23) with the normalization

Fig. 1 The solid line shows the space-like behavior of pion form factor
Fπ (q2) predicted in the IR-improved AdS/QCD model for mesons,
which is compared with the experimental data analyzed in [43]. The
triangles are data from DESY, reanalyzed in [44]. The diamonds are
data from Jefferson Lab [45]. The circles [46] and the stars [47] are
data obtained from DESY

N =
∫

dz e−�(z)

×
(
a(z)(∂zϕ(z))2

g2
5

+ v2(z)a3(z)(π(z) − ϕ(z))2

)

(30)

The integration region is the whole range of z ∈ (0,∞).
While in the numerical calculation the upper limit is chosen
to obtain a near zero integrand due to the suppressed factor
e−�(z), the lower limit should be assigned a value as small
as possible to obtain a stable result.

The numerical result is plotted in Fig. 1, which shows that
the IR-improved AdS/QCD model for mesons can provide a
quite well description on the pion form factor.

4 Influences of input parameters

From the above analyses and numerical results, we see a good
agreement between theoretical predictions and experimental
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data with five input parameters. It is then intriguing to ask
how the input parameters influence the predictions.

4.1 Effects of different IR behavior and parameterization of
λX (z)

We now discuss the possible effects caused from differ-
ent parameterizations of the coupling of quartic interaction
λX (z). In general, there are various parameterizations for the
z-dependent function to fit the required UV and IR boundary
conditions. For the coupling of the quartic interaction λX (z),
we have made a simple parametrization given in Eq. (7).
Here we shall consider other typical parameterizations with
the same IR behavior to see the possible influences. Three
other parametrization forms for λX (z) and their IR behavior
are showed in Table 6.

In cases A and B, the UV behaviors are the same as
λX (z → 0) ∼ 0, so as to recover the conformal symmetry
at UV limit. The IR behavior of cases A and B is consis-
tent with Eq. (6). In case C we take a constant coupling λX

for comparison as has been considered in all previous works.
The corresponding numerical results for these three cases are
presented in Table 7. Note that the quartic interaction of bulk
scalar field can only affect the mass spectra of scalar mesons.

From Table 7, one can see that the resulting predictions
for the mass spectra of resonance scalar mesons are not sen-
sitive to the specific forms of parametrization. In all cases A,
B, and C, the appropriate IR behavior leads to a consistent
prediction for the scalar mesons. Note that the sign of the
quartic interaction is crucial to obtain a stable vacuum. An
opposite sign of quartic term was taken in Ref. [22], which
yielded an unstable vacuum and resulted in a ghost ground
state.

Fig. 2 The mq–m2
π relation as a consistent check of the GOR relation

4.2 Influences of parameters mq , μg , and λg

Let us now consider how the variation of parameters (mq ,
μg and λg) influences the theoretical predictions for the
mass spectra of resonance mesons. The extracted quark
mass mq = 3.52 MeV from the IR-improved AdS/QCD
model for mesons agrees remarkably with the one mq =
mud = (3.50+0.7

−0.2) MeV cited in [10] as the mean value of u-
quark and d-quark for the two flavor case. It can be shown that
the quark mass has a very little influence on the mass spectra
except for π mass. We plot the mq–m2

π relation below, see
Fig. 2, which shows a perfect linear relation and provides
a consistent check on the Gell-Mann–Oakes–Renner (GOR)
relation f 2

πm
2
π = 2mqσ . Actually, it is interesting to note

that one can derive the GOR relation from the present model
just following the procedure of [14].

The influences arising from the model parameters μg and
λg have been studied and plotted in Figs. 3 and 4. One can
see that the scale parameter μg mainly governs the average
slope of mass spectra, while the parameter λg appearing in

Table 6 Different parameterizations of λX (z) and their IR behaviors

Three cases Parametrization forms of λX (z) IR behavior of λX (z)

A λX (z) = (
√

1 + λ2
gz

2 − 1)/
√

1 + μ2
gz

2 λX (z → ∞) ∼ constant

B λX (z) = λ4
gz

4/(1 + μ2
gz

2)2 λX (z → ∞) ∼ constant

C λX (z) = constant λX (z → ∞) ∼ constant

In cases A and B, the UV behaviors are the same λX (z → 0) ∼ 0. In case C, a constant coupling λX is taken for comparison

Table 7 Mass spectra of scalar mesons with different parametrization for λX (z)

f0 0 1 2 3 4 5 6

Exp. (MeV) 400–550 1200–1500 1720 ± 6 1992 ± 16 2189 ± 13 – –

Case A (MeV) 495 1363 1720 1984 2209 2410 2594

Case B (MeV) 446 1397 1786 2060 2289 2490 2674

Case C (MeV) 443 1305 1655 1919 2146 2348 2534
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Fig. 3 The influences of scale μg in pseudoscalar mesons (top, left), scalar mesons (top right), vector mesons (bottom, left) and axial-vector
(bottom, right)

the next-to-leading term of background dilaton field plays
a very important role in manifesting the large gap between
the ground state and the first excited state. Meanwhile, the
parameter λg also brings about a significant effect in a global
lifting of the highly excited meson masses.

5 Conclusions and remarks

The soft-wall AdS/QCD with IR-deformed 5D metric was
shown to provide a consistent prediction for the mass spec-
tra of all light resonance mesons [23] except for the lightest
ground state scalar meson, while it is very crucial to under-
stand the property of the lightest ground state scalar meson
as it codes the information of dynamically spontaneous chi-
ral symmetry breaking mechanism [4]. This comes to our
main motivation to explore an alternative IR-improved soft-
wall AdS/QCD model in the present paper. Also as the IR-
deformed 5D metric causes an inconvenience for studying the
finite temperature effects due to a complicated dilaton solu-
tion [33–36], it motivates us to make a scaling transformation
to convert the IR-deformed 5D metric back to the original
5D AdS/CFT metric, and attribute its effects into the IR-

improved soft-wall AdS/QCD model with the IR-modified
5D conformal mass and IR-modified quartic interaction.

In the IR-improved soft-wall AdS/QCD model con-
structed in this paper, the UV asymptotic behavior of all the
IR-modified quantities has been set to maintain the confor-
mal symmetry, which is the required feature of QCD at short
distance or high energy. The background dilaton field has
been parameterized to characterize the linear confinement
of QCD by a simple IR-modified form with two parame-
ters, both IR and UV asymptotic behaviors have been cho-
sen to be quadratic and keep the same asymptotic form as
suggested in [23] for the better fitting reason. The bVEV
of bulk scalar field has the well-known UV behavior due to
AdS/CFT duality, while the IR behavior of the bVEV is not
manifest, we have taken a linear form as indicated from the
dynamically generated spontaneous chiral symmetry break-
ing due to the quark condensate [4]. Since the quartic inter-
action of bulk scalar field spoils the conformal symmetry,
so that the UV behavior of its coupling has been set to van-
ish λX (z → 0) = 0, and the IR behavior is assumed to
approach a constant λX (z → ∞) = λ. The UV asymptotic
behavior of the IR-modified 5D conformal mass is given to
be m2

X (z → 0) = −3 via the mass-dimension relation due to
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Fig. 4 The influences of parameter λg in pseudoscalar mesons (top, left), scalar mesons (top right), vector mesons (bottom, left) and axial-vector
(bottom, right)

AdS/CFT duality, the leading IR behavior of 5D conformal
mass has been taken to be similar to the one of background
dilaton and grow in a quadratic form as indicated from the
dynamically generated composite Higgs-like potential in the
chiral dynamical model [4]. It has been shown that the IR-
modified quantities in the action are actually correlated via
the equation of motion of bulk scalar field, the leading IR
and UV asymptotic behaviors of all the IR-modified quanti-
ties must be matched consistently. In the practical construc-
tion of the model, we have parameterized the IR-modified
forms for the background dilaton, the coupling of quartic
interaction, the bVEV of bulk scalar field and the leading 5D
conformal mass. The general solution for the IR-modified 5D
conformal mass is considered to be determined by solving
the equation of motion of bulk scalar field.

We have demonstrated that such an IR-improved soft-wall
AdS/QCD model for mesons can well describe the main fea-
tures of QCD with linear confinement and chiral symmetry
breaking. The model containing five parameters has been
shown to provide a consistent prediction for the mass spectra
of resonance scalar, pseudoscalar, vector, and axial-vector
mesons. The agreement between the theoretical predictions
and experimental data can remarkably be obtained, and the

deviations have been shown to be with a few percent. In par-
ticular, the ground state mass of the lightest scalar meson has
been raised to reach good agreement with the experimental
data. The model has led to a perfect GOR relation and a sen-
sible space-like pion form factor Fπ (q2). We have also ana-
lyzed the effects of input parameters on the numerical predic-
tions for the mass spectra of mesons, and shown how the input
parameters influence the slope of linear trajectories of mass
spectra and the large gap between the ground state and the first
excited resonance state. It has been demonstrated that the five
parameters in the model can well be extracted from the five
precisely measured experimental inputs. Finally, we would
like to point out that the gravity is treated as the background,
the back reacted effect is not included, as it is expected to be
insignificant [48,49].
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