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An analytic construction of compact Calabi-Yau manifolds with del Pezzo singularities is found.
We present complete intersection CY manifolds for all del Pezzo singularities and study the
complex deformations of these singularities. An example of the quintic CY manifold with del
Pezzo 6 singularity and some number of conifold singularities is studied in detail. The possibilities
for the “geometric” and ISS mechanisms of dynamical SUSY breaking are discussed. As an
example, we construct the ISS vacuum for the del Pezzo 6 singularity.

1. Motivation

Recently, there has been a substantial progress in Model building involving the D-branes
at the singularities of noncompact Calabi-Yau manifolds. On the one hand, the singularities
provide enough flexibility to find phenomenologically acceptable extensions of the Standard
Model [1, 2] and solve some problems such as finding metastable susy breaking vacua [3, 4].
On the other hand, the presence of the singularity eliminates certain massless moduli, such
as the adjoint fields on the branes wrapping rigid cycles [1, 5].

The main purpose of this paper is to study the del Pezzo and conifold singularities
on compact CY manifolds that may be useful for the compactifications of dynamical SUSY
breakingmechanisms. The stringy reallizations of metastable SUSYbreaking vacua have been
known for some time [6, 7]. We will focus on the two recent approaches to the dynamical
SUSY breaking: on the “geometrical” approach of [8, 9] and on the ISS construction [10]. One
of the main goals will be to study the topological conditions for the compactification of the
above constructions.

An important topological property of “geometrical” mechanism is the presence of
several homologous rigid two-cycles. This is not difficult to achieve in the case of conifold
singularities. For example, in the geometric transitions on compact CY manifolds [11, 12],
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several conifolds may be resolved by a single Kahler modulus, that is, the two-cycles at the
tip of these conifolds are homologous to each other. However, this is not always true for the
del Pezzo singularities, that is, the two-cycles in the resolution of del Pezzo singularity may
have no homologous rigid two-cycles on the compact CY. In the paper, we explicitly construct
a compact CY manifold with del Pezzo 6 singularity and a number of conifolds such that
some two-cycles on the del Pezzo are homologous to the two-cycles of the conifolds. This
construction opens up the road for the generalization of geometrical SUSY breaking in the
case of del Pezzo singularities, where one may hope to use the richness of deformations of
these singularity for phenomenological applications.

A more direct way towards phenomenology is provided by the ISS mechanism. The
realization of ISS construction for del Pezzo 5 and 8 singularities was considered in [4]. As
an example, we find an ISS vacuum for the del Pezzo 6 singularity. The del Pezzo 6 surface
can be embedded in �3 by a degree 3 polynomial. This is one of the most simple analytical
representations of del Pezzo surfaces, which enables us to find an analytical embedding of
the corresponding del Pezzo 6 singularity in a compact Calabi Yau manifold, the quintic CY
embedded in �4 by a degree 5 polynomial.

A nice feature of the del Pezzo singularities is that they are isolated. Thus, the fractional
branes, that one typically introduces in these models, are naturally stabilized against moving
away from the singularity. But, for example, in the models involving quotients of conifolds
[3, 13], the singularities are not isolated and one needs to pay special attention to stabilize the
fractional branes against moving along the singular curves.

Apart from the application to SUSY breaking, the construction of compact CY man-
ifolds with del Pezzo singularities may be useful for the study of deformations of these
singularities. In particular, we will be interested in the D-brane interpretation of defor-
mations.

In general, a singularity can be smoothed out in two different ways, it can be either
deformed or resolved (blown up). The former corresponds to the deformations of the
complex structure, described by the elements of H2,1; the latter corresponds to Kähler
deformations given by the elements of H1,1 [14–16]. In terms of the cycles, the resolution
corresponds to blowing up some two-cycles (four-cycles), while the complex deformations
correspond to the deformations of the three-cycles. For example, the conifold can be either
deformed by placing an S3 at the tip of the conifold or resolved by placing an S2 [17]. The
process where some three-cycles shrink to form a singularity and after that the singularity is
blown up is called the geometric transition [11, 12]. For the conifold, the geometric transition
has a nice interpretation in terms of the branes. The deformation of the conifold is induced
by wrapping the D5-branes around the vanishing S2 at the tip [18]. The resolution of the
conifold corresponds to giving a vev to a baryonic operator, that can be interpreted in terms
of the D3-branes wrapping the vanishing S3 at the tip of the conifold [19].

The example of the conifold encourages to conjecture that any geometric transition
can be interpreted in terms of the branes. The nonanomalous (fractional) branes produce the
fluxes that deform the three-cycles. The massless/tensionless branes correspond to baryonic
operators whose vevs are interpreted as the blow-up modes.

However, there are a few puzzles with the above interpretation. In some cases, there
are less deformations than nonanomalous fractional branes; in the other cases there are
deformations but no fractional branes, The quiver gauge theory on the del Pezzo 1 singularity
has a nonanomalous fractional brane; moreover, it has a cascading behavior [20] similar to
the conifold cascade. But it is known that there are no complex deformations of the cone over
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dP1 [21–23]. The relevant observation [24] is that there are no geometric transitions for the
cone over dP1. From the point of view of gauge theory, there is a runaway behavior at the
bottom of the cascade and no finite vacuum [25].

On the other side of the puzzle, there are more complex deformations of higher del
Pezzo singularities, than there are possible fractional branes. It is known that the cone over del
Pezzo n surface has c∨(En) − 1 complex deformations [24], where c∨(En) is the dual Coxeter
number of the corresponding Lie group. For instance, the cone over dP8 has 29 deformations.
But there are only 8 nonanomalous combinations of fractional branes [1].

We believe that these puzzles can be managed more effectively if there were more
examples of compact CY manifolds with local del Pezzo singularities. The advantage of
working with compact manifolds is that they have finite a number of deformations and well-
defined cohomology (there are no noncompact cycles).

The organization of the paper is as follows. In Section 2, we study the singularities
on compact CY manifolds using the quintic CY manifold as an example. We restrict our
attention to isolated singularities that admit crepant resolution, that is, their resolution does
not affect the CY condition. There are two types of primitive isolated singularities on CY 3-
folds: small contractions or conifold singularities, and del Pezzo singularities [26, 27]. We
will study the example of del Pezzo 6 singularity and some number of conifolds on the
quintic. The presence of conifold singularities is important if we want to put fractional branes
at the del Pezzo singularity. Without conifolds, the nonanomalous two-cycles on del Pezzo
(i.e., the ones that do not intersect the canonical class) are trivial within the CY manifold.
It is impossible to put the fractional branes on such “cycles”, because the corresponding RR
fluxes have “nowhere to go.” In the presence of conifolds, some of the two-cycles on del
Pezzo may become homologous to the two-cycles of the conifolds (this will be the case in
our example). Then we can put some number of D5-branes on the two-cycles of del Pezzo
and some number of anti-D5-branes on the two-cycles of the conifolds. Such configuration
of branes and antibranes is a first step in the geometrical SUSY breaking [8, 28]. Also the
possibility to introduce the fractional branes will be crucial for the D-brane realizations of ISS
construction.

In Section 3, we discuss the compactification of the geometrical SUSY breaking and
the ISS model and find an ISS SUSY breaking vacuum in a quiver gauge theory for the dP6

singularity.
In Section 4, we formulate the general construction of compact CY manifolds with del

Pezzo singularities and discuss the complex deformations of these singularities. We observe
that the number of deformations depends on the global properties of the two-cycles on
del Pezzo that do not intersect the canonical class and have self-intersection (−2). Suppose
all such cycles are trivial within the CY, then the singularity has the maximal number of
deformations. This will be the case for our embeddings of del Pezzo 5, 6, 7, and 8 singularities
and for the cone over �1×�1. In the case of dP0 = �2 and dP1 singularities, we do not expect to
find any deformations. In the case of del Pezzo 2, 3, and 4, our embedding leaves some of the
(−2) two-cycles nontrivial within the CY; accordingly, we find less complex deformations.
This result can be expected, since it is known that the del Pezzo singularities for n ≤ 4
in general cannot be represented as complete intersections [27, 29]. In our case, the del
Pezzo singularities are complete intersections but they are not generic. Specific equations
for embedding of del Pezzo singularities and their deformations are provided in the
appendix.

Section 5 contains discussion and conclusions.
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2. Del Pezzo 6 and Conifold Singularities on the Quintic CY

The CY manifolds can have two types of primitive isolated singularities: conifold singu-
larities and del Pezzo singularities [26, 27]. Correspondingly, we will have two types of
geometric transitions.

(1) Type I, or conifold transitions: several �1’s shrink to form conifold singularities and
then these singularities are deformed.

(2) Type II, or del Pezzo transition: a del Pezzo shrinks to a point and the corresponding
singularity is deformed.

In order to illustrate the geometric transitions, we will study a particular example of
transitions on the quintic CY. The example is summarized in the diagram in Figure 1. The type
I transitions are horizontal, whereas the type II transitions are vertical. It is known [24] that
the maximal number of deformations of a cone over dP6 is c∨(E6) − 1 = 11, where c∨(E6) = 12
is the dual Coxeter number of E6. Going along the left vertical arrow we recover all complex
deformations of the cone over dP6. In this case, all the two-cycles that do not intersect the
canonical class on dP6 are trivial within the CY.

For the CY with both del Pezzo and conifold singularities, the deformation of the del
Pezzo singularity has only 7 parameters (right vertical arrow). The del Pezzo surface is not
generic in this case. It has a two-cycle that is nontrivial within the full CY and does not
intersect the canonical class inside del Pezzo. As a general rule, the existence of nontrivial
two-cycles reduces the number of possible complex deformations.

The horizontal arrows represent the conifold transitions. In our example, we have 36
conifold singularities on the quintic CY. These singularities have 35 complex deformations.
In the presence of dP6 singularity, there will be only 32 conifolds that have, respectively,
31 complex deformations. (It may seem puzzling that we need exactly 36 or 32 conifolds.
One can easily find the examples of quintic CY with fewer conifold singularities. But it is
impossible to blow up these singularities unless we have a specific number of them at specific
locations. In the example considered in [11, 12], the quintic CY has 16 conifolds placed at a
�
2 inside the CY.)

In general, the del Pezzo singularity and the conifold singularities are away from
each other but they still affect the number of complex deformations, that is, the presence
of conifolds reduces the number of deformations of del Pezzo singularity and vice versa. The
diagram in Figure 1 is commutative, and the total number of complex deformations of the
CY with the del Pezzo singularity and 32 conifold singularities is 42. But the interpretation
of these deformations changes whether we first deform the del Pezzo singularity or we first
deform the conifold singularities.

Before we go to the calculations, let us clarify what we mean by the deformations of
the del Pezzo singularity. We will distinguish three kinds of deformations. The deformations
of the shape of the cone, the deformations of the blown up del Pezzo with fixed canonical
class and deformations that smooth out the singularity.

The first kind of deformations corresponds to the general deformations of del Pezzo
surface at the base of the cone. Recall that the dPn surface for n > 4 has 2n − 8 deformations
that parameterize the superpotential of the corresponding quiver gauge theory [5].

The second kind of deformations is obtained by blowing up the singularity and fixing
the canonical class on the del Pezzo. In this case, the deformations of del Pezzo n surface can
be described as the deformations of En singularity on the del Pezzo [30]. The deformations
of this singularity have n parameters, corresponding to the n two-cycles that do not intersect
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Smooth quintic CY Y3 (1, 101)

Y3 (2, 90)with dP6 singularity

∆h2,1 = 11 ∆h2,1 = 7

∆h2,1 = 31

∆h2,1 = 35
Y3 (2, 66)with 36 conifolds

Y3 (3, 59)with dP6 singularity
and 32 conifolds

Figure 1: Possible geometric transitions of quintic CY. The numbers in parentheses denote the dimensions
(h1,1, h2,1).

the canonical class. Note that the intersection matrix of these two-cycles is (minus) the Cartan
matrix of En. The En singularity on the del Pezzo is an example of du Val surface singularity
[31] (also known as an ADE singularity or a Kleinian singularity). A three-dimensional
singularity that has a du Val singularity in a hyperplane section is called compound du Val
(cDV) [26, 31]. The conifold is an example of cDV singularity since it has the A1 singularity
in a hyperplane section. The generalized conifolds [32, 33] also have an ADE singularity
in a hyperplane section, that is, from the 3-dimensional point of view they correspond to
some cDV singularities. In terms of the large N gauge/string duality, the deformation of the
En generalized conifold singularity corresponds to putting some combination of fractional
branes on the zero size two-cycles at the singularity. Hence, the deformtion of cDV singularity
that restricts to En singularity on the del Pezzo can be considered as a generalized type I
transition.

We will be mainly interested in the the third type of deformations that correspond
to smoothing of del Pezzo singularities. These deformations make the canonical class of del
Pezzo surface trivial within the CY. If we put some number of nonanomalous fractional D-
branes at the singularity, then the corresponding geometric transition smooths the singularity
[24]. But not all the deformations can be described in this way.

In order to get some intuition about possible interpretations of these deformations,
we will consider the del Pezzo 6 singularity. It is known that the dP6 singularity has 11
complex deformations [21, 34] but there are only 6 nonanomalous fractional branes in the
corresponding quiver gauge theory and there are only 6 two-cycles that do not intersect the
canonical class [24]. It will prove helpful to start with a quintic CY that has 36 conifold
singularities. The del Pezzo 6 singularity can be obtained by merging four conifolds at
one point. There are 7 deformations of del Pezzo 6 singularity that separate these four
conifolds (right vertical arrow). The remaining 4 deformations of dP6 cone correspond to
4 deformations of the four “hidden” conifolds at the singularity. Note that the total number
of deformations is 11 (left vertical arrow).

2.1. Quintic CY

The description of the quintic CY is well known [16]. Here, we repeat it in order to recall the
methods [16] of finding the topology and deformations that we use later in more difficult
situations.
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The quintic CY manifold Y3 is given by a degree five equation in �4

Q5(zi) = 0, (2.1)

where (z0, z1, z2, z3, z4) ∈ �4. The total Chern class of this manifold is

c(Y3) =
(1 +H)5

1 + 5H
= 1 + 10H2 − 40H3 (2.2)

and the first Chern class c1(Y3) = 0.
Let us calculate the number of complex deformations. The complex structures are

parameterized by the coefficients in (2.1) up to the change of coordinates in �
4. The number

of coefficients in a homogeneous polynomial of degree n in k variables is

(
n + k − 1

n

)
=

(n + k − 1)!
n!(k − 1)!

. (2.3)

In the case of the quintic in �4, the number of coefficients is

(
9
5

)
=

9!
5!4!

= 126. (2.4)

The number of reparametrizations of �4 is equal to dimGl(5) = 25. Thus, the dimension of
the space of complex deformations is 101.

The number of complex deformations of CY threefolds is equal to the dimension of
H2,1 cohomology group

h2,1 = h1,1 − χ

2
, (2.5)

where h1,1 can be found via the Lefschetz hyperplane theorem [16, 35]

h1,1(Y3) = h1,1
(
�
4
)
= 1 (2.6)

and the Euler characteristic is given by the integral of the highest Chern class over Y3

χ =
∫
Y3

c3 =
∫
�4
−40H3 ∧ 5H = −200, (2.7)

here, we have used that 5H is the Poincare dual class to Y3 inside �4. Consequently, h2,1 = 101
which is consistent with the number of complex deformations found before.
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2.2. Quintic CY with dP6 Singularity

Suppose that the quintic equation is not generic but has a degree three zero at the point
(w0, w1, w2, w3, w4) = (0, 0, 0, 0, 1),

P3(w0, . . . , w3)w2
4 + P4(w0, . . . , w3)w4 + P5(w0, . . . , w3) = 0, (2.8)

where Pn’s denote degree n polynomials. The shape of the singularity is determined by
P3(w0, . . . , w3) (we will see that this polynomial defines the del Pezzo at the tip of the cone).
The deformations that smooth out the singularity correspond to adding less singular terms
to (2.8), that is, the terms that have bigger powers of w4.

The resolution of the singularity in (2.8) can be obtained by blowing up the point
(0, 0, 0, 0, 1) ∈ �4. Away from the blowup, we can use the following coordinates on �4:

(w0, . . . , w3, w4) = (tz0, . . . , tz3, s), (2.9)

where (s, t) ∈ �1 and (z0, . . . , z3) ∈ �3. The blowup of the point at t = 0 corresponds to
inserting the �3 instead of this point. Hence, the points on the blown up �4 can be
parameterized globally by (z0, . . . , z3) ∈ �3 and (s, t) ∈ �1. The projective invariance (s, t) ∼
(λs, λt) corresponds to the projective invariance in the original �4. In order to compensate for
the projective invariance of �3, we need to assume that locally the coordinates on �1 belong
to the following line bundles over �3, s ∈ O and t ∈ O(−H). Thus, the blowup of �4 at a point
is a �1 bundle over �3 obtained by projectivization of the direct sum of O�3 and O�3(−H)
bundles, �̃4 = P(O�3 ⊕O�3(−H)) (for more details on projective bundles see, e.g., [36, 37]). In
working with projective bundles, we will use the technics similar to [37].

Using parametrization (2.9), we can write the equation on the blown up �4 as

P3(z0, . . . , z3)s2 + P4(z0, . . . , z3)st + P5(z0, . . . , z3)t2 = 0. (2.10)

This equation is homogeneous of degree two in the coordinates on �1 and degree three in the
zi’s. Note that t ∈ O(−H), that is, it has degree (−1) in the zi’s and s ∈ O has degree zero.

Let us prove that the manifold defined by (2.10) has vanishing first Chern class, that
is, it is a CY manifold. LetH be the hyperplane class in �3 and G the hyperplane class on the
�
1 fibers. Let M = P(O�3 ⊕ O�3(−H)) denote the �1 bundle over �3. The total Chern class of

M is

c(M) = (1 +H)4(1 +G)(1 +G −H), (2.11)

where (1 +H)4 is the total Chern class of �3, (1 +G) corresponds to s ∈ O�3, and (1 +G −H)
corresponds to t ∈ O�3(−H). Note that G(G −H) = 0 on this �1 bundle and, as usual, H4 = 0
on the �3.

Let Y3 denote the surface embedded inM by (2.10). Since the equation has degree 3 in
zi and degree two in (s, t), the class Poincare dual to Y3 ⊂ M is 3H + 2G and the total Chern
class is

c(Y3) =
(1 +H)4(1 +G)(1 +G −H)

1 + 3H + 2G
. (2.12)

Expanding c(Y3), it is easy to check that c1(Y3) = 0.
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The intersection of Y3 with the blown up �3 at t = 0 is given by the degree three
equation P3(z0, . . . , z3) = 0 in �3. The surface B defined by this equation is the del Pezzo 6
surface [16, 35]. The total Chern class and the Euler character of B

c(B) =
(1 +H)4

1 + 3H
= 1 +H + 3H2, (2.13)

χ(B) =
∫
B

c2(B) =
∫
�3
3H2 ∧ 3H = 9. (2.14)

In the calculation of χ(B), we have used that 3H is the Poincare dual class to B inside �3.
It is known that the normal bundle to contractable del Pezzo in a CY manifold is

the canonical bundle on del Pezzo [38]. Let us check this statement in our example. The
canonical class is minus the first Chern class that can be found from (2.13) (Slightly abusing
the notations, we denote by H both the class of �3 and the restriction of this class to B ∈ �3.)

K(B) = −H. (2.15)

The coordinate t describes the normal direction to B inside Y3. Since t ∈ O�3(−H), restricting
to B we find that t belongs to the canonical bundle over B. Hence locally, near t = 0, the CY
threefold Y3 has the structure of the CY cone over the del Pezzo 6 surface.

The smoothing of the singularity corresponds to adding less singular terms in (2.8).
These terms have 15 parameters, but also we get back 4 reparametrizations (now, we can
add w4 to the other coordinates). Hence, smoothing of the singularity corresponds to 11
complex structure deformations that is the maximal expected number of deformations of dP6

singularity.
In view of applications in Section 4, let us describe the geometric transition between

the CYwith the resolved dP6 singularity and a smooth quintic CY inmore details. As we have
shown above, the CY with the blown up dP6 singularity can be described by the following
equation in the �1 bundle over �3:

P3(z0, . . . , z3)s2 + P4(z0, . . . , z3)st + P5(z0, . . . , z3)t2 = 0. (2.16)

This equation can be rewritten as

P3(tz0, . . . , tz3)s2 + P4(tz0, . . . , tz3)s + P5(tz0, . . . , tz3) = 0. (2.17)

Next, we note that, being a projective bundle, M is equivalent [35, 36] to P(O�3(H) ⊕ O�3),
where locally s and t are sections of O�3(H) and O�3, respectively. We further observe that
tzi, i = 0 · · ·3 are also sections of O�3(H) and the equivalence (t, s) ∼ (λt, λs) induces the
equivalence (tz0, . . . , tzi, s) ∼ (λtz0, . . . , λtzi, λs). Consequently, if we blow down the section
t = 0 of M, then (tz0, . . . , tzi, s) ∈ �

4. Now, we define (w0, . . . , w3, w4) = (tz0, . . . , tz3, s) and
rewrite (2.17) as

P3(w0, . . . , w3)w2
4 + P4(w0, . . . , w3)w4 + P5(w0, . . . , w3) = 0. (2.18)

Not surprisingly, we get back (2.8).
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Above we have found that there are 11 complex deformations of the dP6 singularity
embedded in the quintic CY manifold. In the view of further applications, let us rederive the
number of complex deformations by calculating the dimension of H2,1.

Expanding (2.12), we get the third Chern class

c3(Y3) = −2G3 − 13HG2 − 17H2G − 8H3. (2.19)

The Poincare dual class to Y3 ∈ M is 3H + 2G and

χ(Y3) =
∫
Y3

c3(Y3) =
∫
M

c3(Y3) ∧ (3H + 2G). (2.20)

In calculating this integral, one needs to take into account that G(G −H) = 0 on M. Finally,
we get

χ(Y3) = −176,

h2,1 = h1,1 − χ

2
= 90.

(2.21)

The number of complex deformations of the del Pezzo singularity is 101 − 90 = 11, which is
consistent with the number found above.

2.3. Quintic CY with 36 Conifold Singularities

In this subsection, we use the methods of geometric transitions [11, 12, 16] to find the quintic
CY with conifold singularities, that is, we describe the upper horizontal arrow in Figure 1.
Consider the system of two equations in �4 × �1

P3u + R3v = 0,

P2u + R2v = 0,
(2.22)

where (u, v) ∈ �1 and Pn, Rn denote polynomials of degree n in �4.
Suppose that at least one of the polynomials P3, R3, P2, and R2 is nonzero, then we can

solve for u, v and substitute in the second equation, where we get

P3R2 − R3P2 = 0, (2.23)

a nongeneric quintic in �4. The points where P3 = R3 = P2 = R2 = 0 (but otherwise generic)
have conifold singularities. There are 3·3·2·2 = 36 such points. The system (2.22) describes the
blowup of the singularities, since every singular point is replaced by the �1 and the resulting
manifold is non singular.
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LetH be the hyperplane class of �4 and G by the hyperplane class of �1, then the total
Chern class of Y3 is

c =
(1 +H)5(1 +G)2

(1 + 3H +G)(1 + 2H +G)
, (2.24)

since c1 = 0, Y3 is a CY.
By Lefschetz hyperplane theorem h1,1(Y3) = h1,1(�4 × �1) = 2, there are only two

independent Kahler deformations in Y3. One of them is the overall size of Y3 and the other is
the size of the blown up �1’s. Thus, the 36 �1’s are not independent but homologous to each
other and represent only one class in H2(Y3). If we shrink the size of blown up �1’s to zero,
then we can deform the singularities of (2.23) to get a generic quintic CY. In this case, the 35
three chains that where connecting the 36 �

1’s become independent three cycles. Thus, we
expect the general quintic CY to have 35 more complex deformations than the quintic with
36 conifold singularities.

Calculating the Euler character similarly to the previous subsections, we find

h2,1 = 66. (2.25)

Recall that the smooth quintic has 101 complex deformations. Thus, the quintic with 36
conifold singularities has 101 − 66 = 35 less complex deformations than the generic one.

2.4. Quintic CY with dP6 Singularity and 32 Conifold Singularities

The equation for the quintic CY manifold with the blown up dP6 singularity was found in
(2.10). Here, we reproduce it for convenience

P3(zi)s2 + P4(zi)st + P5(zi)t2 = 0. (2.26)

This equation describes an embedding of the CY manifold in the �1 bundle M = P(O�3 ⊕
O�3(−H)). As before, (z0, . . . , z3) ∈ �3 and (s, t) are the coordinates on the �1 fibers over �3.

In order to have more Kahler deformations, we need to embed (2.26) in a space with
more independent two-cycles. For example, we can consider a system of two equations in the
product (�1 bundle over �3) × �

1

(P1s + P2t)u + (Q1s +Q2t)v = 0,

(R2s + R3t)u + (S2s + S3t)v = 0,
(2.27)

where (u, v) are the coordinates on the additional �1. Let G, H , and K be the hyperplane
classes on the �1 fibers, on the �3, and on the additional �1, respectively. Then, the total Chern
class of Y3 is

c =
(1 +H)4(1 +G)(1 +G −H)(1 +K)2

(1 +H +G +K)(1 + 2H +G +K)
, (2.28)

and it is easy to see that the first Chern class is zero.
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For generic points on the �1 bundle over �3, at least one of the functions in front of u or
v is nonzero. Thus, we can find a point (u, v) and substitute it in the second equation, which
becomes a nongeneric equation similar to (2.26)

(P1S2 −Q1R2)s2 + (P1S3 + P2S2 −Q1R3 −Q2R2)st + (P2S3 −Q2R3)t2 = 0. (2.29)

The CY manifold defined in (2.27) has the following characteristics:

χ =
∫
Y3

c3 = −112,

h1,1 = 3,

h2,1 = h1,1 − χ

2
= 59.

(2.30)

Recall that the number of complex deformations on the quintic with the del Pezzo 6
singularity is 90. Since we lose 31 complex deformations, we expect that the corresponding
three-cycles become the three chains that connect 32 �1’s at the blowups of the singularities
in (2.29). These singularities occur when all four equations in (2.27) vanish

R2s + R3t = 0,

S2s + S3t = 0,

P1s + P2t = 0,

Q1s +Q2t = 0.

(2.31)

The number of solutions equals the number of intersections of the corresponding classes∫
M(2H +G)2(H +G) = 32, whereM is the �1 bundle over �3 and G(G −H) = 0.

The right vertical arrow corresponds to smoothing of del Pezzo singularity in the
presence of conifold singularities. Before the transition, the CY has h2,1 = 59 deformations and
after the transition it has h2,1 = 66 deformations. Hence, the number of complex deformations
of dP6 singularity is 66 − 59 = 7 which is less than c∨(E6) − 1 = 11. This is related to the fact
that the del Pezzo at the tip of the cone is not generic. The equation of the del Pezzo can be
found by restricting (2.27) to t = 0, s = 1 section

P1u +Q1v = 0,

R2u + S2v = 0.
(2.32)

This del Pezzo contains a two-cycle α that is nontrivial within the full CY and does not
intersect the canonical class inside dP6.

In the rest of this subsection, we will argue that α is homologous to four �1’s at the tip
of the conifolds. The heuristic argument is the following. The formation of dP6 singularity on
the CYmanifold with 36 conifolds reduces the number of conifolds to 32. Let us show that the
deformation of the del Pezzo singularity that preserves the conifold singularities corresponds
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to separating 4 conifolds hidden in the del Pezzo singularity. The CY that has a dP6 singularity
and 32 resolved conifolds can be found from (2.27) by the following coordinate redefinition
(w0, . . . , w3, w4) = (tz0, . . . , tz3, s) (compare to the discussion after (2.17)):

(P1w4 + P2)u + (Q1w4 +Q2)v = 0,

(R2w4 + R3)u + (S2w4 + S3)v = 0.
(2.33)

If we blow down the �1, then we get the quintic CY with 32 conifold singularities and a dP6

singularity. For a finite size �1, the conifold singularities and one of the two-cycles in the dP6

are blown up. The deformations of dP6 singularity correspond to adding terms with higher
power of w4. After the deformation, the degree two zeros of R2 and S2 will split into four
degree one zeros that correspond to the four conifolds “hidden” in the dP6 singularity. The
blown up two-cycle of dP6 is homologous to the two-cycles on the four conifolds. (Formally,
we can prove this by calculating the corresponding Poincaré dual classes. The Poincaré dual
of �1 on the blown up conifold is H3G—this is the �1 parameterized by (u, v). The Poincaré
dual of the canonical class on dP6 is (G−H)(H +K)(2H +K)(−H), where (G−H) restricts to
t = 0 section of the �1 bundle, (H +K)(2H +K) restricts to dP6 in (2.32), while the restriction
of (−H) is the canonical class on dP6 (see (2.15)). The class that does not intersect (−H) inside
dP6 is dual to (G −H)(H +K)(2H +K)(2H − 3G) = 4H3G, q.e.d.)

3. SUSY Breaking

In this paper, we compare two mechanisms for dynamical SUSY breaking: the “geometrical”
approach of Aganagic et al. [8] and a more “physical” approach of ISS [10].

In both approaches, there is a confinement in the microscopic gauge theory leading to
the SUSY breaking in the effective theory. But the particular mechanisms and the effective
theories are quite different. In the “geometrical” approach the effective theory is a non-SUSY
analog of Veneziano-Yankielowicz superpotential [39] for the gaugino bilinear field S. This
potential has an interpretation as the GVW superpotential [40] for the complex structure
moduli of the CYmanifold. The original Veneziano-Yankielowicz potential [39] is derived for
the pure YM theory without any flavors. It has a number of isolated vacua and no massless
fields. This is a nice feature for the (meta) stability of the vacuum but, since all the fields are
massive, the applications of this potential in the low-energy effective theories are limited (see,
e.g., the discussion in [41]).

In the ISS construction, the number of flavors is bigger than the number of colors
Nc < Nf < 3/2Nc (and probably Nf = Nc). After the confinement, the low-energy effective
theory contains classically massless fields that get some masses only at 1 loop. Hence, this
theory is a more genuine effective theory but the geometric interpretation is harder to achieve
[3]. Moreover, the geometric constructions similar to [3] generally have D5-branes wrapping
vanishing cycles. In any compactification of these models, one has to put the O-planes or anti
D5-branes somewhere else in the geometry, that is, the analysis of [8, 9] becomes inevitable.

In summary, it seems that the ISS construction is more useful for immediate applica-
tions to SUSY breaking in the low-energy effective theories, whereas more global geometric
analysis of [8, 9] becomes inevitable in the compactifications.

In the previous section, we constructed the compact CY with del Pezzo 6 singularity
and some number of conifold singularities. We have shown that it is possible to make some
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two-cycles on del Pezzo homologous to the two-cycles on the conifolds. This is the first step
in the geometric analysis of [8]. In the next subsection, we show how the ISS story can be
represented in the del Pezzo 6 quiver gauge theories.

3.1. ISS Vacuum for the dP6 Singularity

Consider the quiver gauge theory for the cone over dP6 represented in Figure 2. This quiver
can be found by the standard methods [1] from the three-block exceptional collection of
sheaves [42]. But, in order to prove the existence of this quiver, it is easier to do the Seiberg
dualities on the nodes 4, 5, 6, and 1 and reduce it to the known dP6 quiver [2].

In the compact CY manifold, one can put the D5-branes only on cycles that are
nontrivial globally. A deformation of the dP6 singularity in (2.33) leaves four conifold
singularities. We will assume that after joining the 4 conifolds to form a dP6 singularity the
two-cycles remain nontrivial. We also expect that these two-cycles are represented by the four
two-cycles on del Pezzo that have self-intersection (−2) and do not intersect with each other.
Note that the total number of nonanomalous fractional branes and the number of (−2) two-
cycles is 6, but there are only 4 two-cycles that do not intersect with each other and with the
canonical class. (It is interesting to note the similarity between the branes wrapping the non
intersecting cycles on dP6 and the deformation D-branes in [3, 23].)

Let Ai denote the two-cycle corresponding to the D5-brane charge [1] of the bound
state of branes at the ith node in Figure 2. Then, the four non intersecting (−2) two-cycles
can be chosen as A2-A3, A4-A5, A6-A7, and A8-A9. Now, we would like to add K fractional
branes toA4-A5 andN fractional branes toA6-A7 and toA8-A9. The corresponding quiver is
depicted in Figure 3.

The gauge groups at the nodes 6 and 8 have Nf = Nc. Consider the Seiberg duality
in the strong coupling limit of these gauge groups. The moduli space consists of the mesonic
and the baryonic branches [43, 44]. Suppose we are on the baryonic branch. For the generic
Yukawa couplings, the two mesons Φ = BC couple linearly to the fields A and become
massive together with two of the A fields.

An important question is whether the baryons for the gauge groups in nodes 6 and
8 remain massless. The baryons are charged under the baryonic U(1)B symmetries. In the
noncompact setting, theseU(1)B symmetries are global [45]. If the baryons get vevs, then the
symmetries are broken spontaneously and there are massless goldston bosons. But for the
compact CY manifold the U(1)B symmetries are gauged and the goldstone bosons become
massive [13, 45] through the Higgs mechanism. Integrating out the massive fields, we get the
quiver in Figure 4.

Next, we assume that the strong coupling scale for the gauge group SU(N + K) at
node 4 is bigger than the scale for the SU(2N). This assumption does not include a lot of
tuning especially if K � N. The number of flavors for the gauge group SU(N + K) is Nf =
2N > Nc = N + K. Consequently, we can assume that the mesons do not get VEVs after
the confinement of SU(N +K) and remain massless. The corresponding quiver is shown in
Figure 5. The subscripts of the bifundamental fields denote the gauge groups at the ends of
the corresponding link. The subscript k = 2, 3 labels the two U(N) gauge groups on the left.
For example, Ak1 denotes both the field A21 going from the node 2 to the node 1 and A31

going from 3 to 1.
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B

1

U(2N)

U(2N)

U(2N)

4

2

U(N)
3

U(N)
5

U(N +K)

U(N −K)

A

C

6

8
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Figure 5: Quiver gauge theory for the cone over dP6 after Seiberg duality on node 4.

The superpotential of the quiver gauge theory in Figure 5 has the form

W = Tr(mA21M12 +mA31M13)

+ Tr
(
λM12C̃24B̃41 + λA21B15C52 + λM13C̃34B̃41 + λA31B15C53

)
.

(3.1)

In order to make the notations shorter, we do not write the subscripts of the couplings. (The
couplings are different but have the same order of magnitude.)

If Λ1 for the SU(2N) gauge group at node 1 is close to Λ4 for SU(N + K) at node
4 in Figure 4, then it is natural to assume that for small values of corresponding Yukawa
couplings the mass parameters m satisfy m 	 Λ1. Now, we note that the SU(2N) gauge
group has Nc = 2N and Nf = 3N − K, that is, Nc + 1 ≤ Nf < 3/2Nc. This group is a
good candidate for the the microscopic gauge group in the ISS construction. After the Seiberg
duality, the magnetic gauge group has Ñc = N −K. The superpotential of the dual theory is

W̃ = Tr(mM22 +mM33)

+ Tr
(
λM22M̃21Ã12 + λM33M̃31Ã13

)

+ Tr
(
mM42C̃24 +mM25C52 +mM43C̃34 +mM35C53

)

+ Tr
(
λM42M̃21

˜̃B14 + λM25B̃51Ã12 + λM43M̃31
˜̃B14 + λM35B̃51Ã13

)
.

(3.2)

The indices of the meson fields correspond to the two gauge groups under which they
transform. In our case, this leads to unambiguous identifications, for example,M22 = A21M12,
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M33 = A31M13, M42 = B̃41M12, and so forth. The mesons M22 and M33 are in adjoint
representation of SU(N)2 and SU(N)3, and their F-term equations read

m · 1 + λM̃21Ã12 = 0,

m · 1 + λM̃31Ã13 = 0,
(3.3)

where 1 is the N ×N identity matrix. The Seiberg dual gauge group at node 1 is SU(N −K);
hence the rank of the matrices M̃21 and so forth, is at most N −K and the SUSY is broken by
the rank condition of [10]. Classically, there aremassless excitations around the vacua in (3.3).
In order to prove that the vacuum is metastable, one has to check that these fields acquire a
positive mass at 1 loop. Similarly to [10], we expect this to be true, but a more detailed study
is necessary.

As a summary, in this section we have found an example of dymanical SUSY breaking
in the quiver gauge theory on del Pezzo singularity. An interesting property of this example
is that there are massless chiral fields after the SUSY breaking. This behavoir seems to be
quite generic, and we expect that similar constructions are possible for other del Pezzo
singularities.

4. Compact CY Manifolds with Del Pezzo Singularities

Noncompact CY singularities are useful in constructing local geometries that enable
SUSY breaking configurations of D-branes. However, for a consistent embedding of these
constructions in string theory, one needs to find compact CY manifolds that posses the
corresponding singularities.

The noncompact CY manifolds with del Pezzo singularities are known [27, 29]. The
dPn singularities for 5 ≤ n ≤ 8 and for the cone over �1 × �1 can be represented as complete
intersections. (Note that in the mathematics literature, the del Pezzo surfaces are classified by
their degree k = 9−n, where n is the number of blown up points in �2.) The CY cones over �2

and dPn for 1 ≤ n ≤ 4 are not complete intersections. The compact CYmanifolds for complete
intersection singularities where presented in [34].

Our construction is different from [34]. It enables one to construct the complete
intersection compact CY manifolds for all del Pezzo singularities. This construction does
not contradict the statement that for n ≤ 4 the del Pezzo singularities are not complete
intersections. The price we have to pay is that these singularities will not be generic, that
is, they will not have the maximal number of complex deformations. Whereas for the del
Pezzo singularities with n ≥ 5 and for �1 × �1 we will represent all complex deformations in
our construction.

4.1. General Construction

At first, we present the construction in the case of dP6 singularity and, then, give a more
general formulation.

The input data is the embedding of dP6 surface in �3 via a degree three equation. The
problem is to find a CY threefold such that it has a local dP6 singularity. The solution has
several steps.
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(1) Find the canonical class on B = dP6 in terms of a restriction of a class on �3. Let us
denote this class as K ∈ H1,1(�3). K can be found from expanding the total Chern
class of B

c(B) =
(1 +H)4

1 + 3H
= 1 +H + · · · . (4.1)

Thus, K = −c1(B) = −H .

(2) Construct the �1 fiber bundle over �3 as the projectivisationM = P(O�3 ⊕ O�3(K)).

(3) The Calabi-Yau Y3 is given by an equation of degree 3 in �3 and degree 2 in the
coordinates on the fiber. The total Chern class of Y3 is

c(Y3) =
(1 +H)4(1 +G −H)(1 +G)

1 + 3H + 2G
. (4.2)

This has a vanishing first Chern class. By construction, this Calabi-Yau has a del
Pezzo singularity at t = 0.

This construction has a generalization for the other del Pezzo surfaces. Let B denote
a del Pezzo surface embedded in X as a complete intersection of a system of equations [16].
Assume, for concreteness, that the system contains two equations and denote by L1 and L2 the
classes corresponding to the divisors for these two equations in X. The case of other number
of equations can be obtained as a straightforward generalization.

(1) First, we find the canonical class of surface B ⊂ X, defined in terms of two equations
with the corresponding classes L1, L2 ∈ H1,1(X),

c(B) =
c(X)

(1 + L1)(1 + L2)
= 1 + c1(X) − L1 − L2 + · · · . (4.3)

Thus, the canonical class of X is obtained by the restriction ofK = L1 + L2 − c1(X).

(2) Second, we construct the �1 fiber bundle overX as the projectivisationM = P(OX ⊕
OX(K)).

(3) In the case of two equations, the Calabi-Yau manifold Y3 ⊂ M is not unique. Let G
be the hyperplane class in the fibers, then we can write three different systems of
equations that define a CYmanifold: the classes for the equations in the first system
are L1+2G and L2, the second one has L1+G and L2+G, and the third one has L1 and
L2 + 2G (here L1, L2 ∈ H1,1(M) are defined via the pull back of the corresponding
classes inH1,1(X) with respect to the projection of �1 the fibers π : M → X).

As an example, let us describe the first system. The first equation in this system is
given by L1 in X and has degree 2 in the coordinates on the fibers. The second equation is L2

in X. The total Chern class is

c(Y3) =
c(X)(1 +G +K)(1 +G)
(1 + L1 + 2G)(1 + L2)

. (4.4)
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Since K = L1 + L2 − c1(X), it is straightforward to check that the first Chern class is
trivial.

Let us show how this programworks in an example of a CY cone over B = �1×�1. The
�
1 × �1 surface can be embedded in �

3 by a generic degree two polynomial equation [16, 35]

P2(zi) = 0, (4.5)

where (z0, . . . , z3) ∈ �3. (By coordinate redefinition in �3 one can represent the equation as
z0z3 = z1z2. The solutions of this equation can be parameterized by the points (x1, y1) ×
(x2, y2) ∈ �

1 × �
1 as (z0, z1, z2, z3) = (x1x2, x1y2, y1x2, y1y2). This is the Segre embedding

�1 × �1 ⊂ �3.)
The first step of the program is to find the canonical class of B in terms of a class in �3.

Let H be the hyperplane class of �3. Then, the total Chern class of B is

c(B) =
(1 +H)4

1 + 2H
= 1 + 2H + 2H2. (4.6)

The canonical class is

K(B) = −c1(B) = −2H. (4.7)

Next, we construct the �1 bundle M = P(O�3 ⊕ O�3(K)) with the coordinates (s, t)
along the fibers, where locally s ∈ O�3 and t ∈ O�3(−2H). The equation that describes the
embedding of the CY manifold Y3 inM is

P2(zi)s2 + P4(zi)st + P6(zi)t2 = 0. (4.8)

This equation is homogeneous in zi of degree two, since t has degree −2.
The section of M at t = 0 is contractable, and the intersection with the Y3 is P2(zi) = 0,

that is, Y3 is the CY cone over �1 × �1 near t = 0.
The total Chern class of Y3 is

c(Y3) =
(1 +H)4(1 +G)(1 +G − 2H)

1 + 2H + 2G
. (4.9)

It is easy to check that c1(Y3) = 0.

4.2. A Discussion of Deformations

In this subsection, we will discuss the deformations of the del Pezzo singularities in the
compact CY spaces. The explicit description of the singularities and their deformations can
be found in the appendix.

The procedure is similar to the deformation of the dP6 singularity described in
Section 2. As before, let Y3 ⊂ M be an embedding of the CY threefold Y3 in M, a �1 bundle
over products of (weighted) projective spaces. If we blowdown the section of the �1 bundle
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that contains the del Pezzo, then M becomes a toric variety that we denote by V . After the
blowdown, equation for the CY in M becomes a singular equation for a CY embedded in
V . The last step is to deform the equation in V to get a generic CY. (In the example of dP6

singularity on the quintic, the projective bundle is M = P(O�3 ⊕ O�3(−H)), the manifold V ,
obtained by blowing down the exceptional �3 in M, is �4, and the singular equation is the
singular quintic in �4.)

Let n denote the number of two-cycles on del Pezzo with self-intersection (−2). The
intersection matrix of these cycles isminus the Cartanmatrix of the corresponding Lie algebra
En.

The maximal number of complex deformations of del Pezzo singularity is c∨(En) − 1,
where c∨(En) is the dual Coxeter number of En. These deformations can be performed only if
the del Pezzo has a zero size. As a result of these deformations, the canonical class on the del
Pezzo becomes trivial within the CY and the del Pezzo singularity is partially or completely
smoothed out. In the generic situation, we expect that all (−2) two-cycles on del Pezzo are
trivial within the CY, then the number of complex deformations is maximal (this will be the
case for �1 × �1, dP5, dP6, dP7, dP8). If some of the (−2) two-cycles become nontrivial within
the CY, then the number of complex deformations of the corresponding cone is smaller. We
will observe this for our embedding of dP2, dP3, and dP4. This reduction of the number of
complex deformations depends on the particular embedding of del Pezzo cone. In [8], the
generic deformations of the cones over dP2 and dP3 were constructed (Tables 1 and 2).

5. Conclusions and Outlook

In this paper, we have constructed a class of compact Calabi-Yau manifolds that have del
Pezzo singularities. The construction is analytic, that is, the CY manifolds are described by a
system of equations in the �1 bundles over the projective spaces.

We argue that this construction can be used for the geometrical SUSY breaking [8] as
well as for the compactification of ISS [10]. As an example, we find a compact CY manifold
with del Pezzo 6 singularity and some conifolds such that some 2-cycles on del Pezzo are
homologous to the 2-cycles on the conifolds, that is, this manifold can be used for the
geometrical SUSY breaking. Also we find an ISS vacuum in the quiver gauge theory for dP6

singularity.
In order to have a consistent string theory representation of the SUSY breaking vacua,

one needs to find compact CY manifolds that have the necessary local singularities. In the
last section, we present embedding of del Pezzo singularities in complete intersection CY
manifolds and study the complex deformations of the singularities. The del Pezzo n surface
corresponds to the Lie group En. The expected number of complex deformations for the cone
over del Pezzo is c∨(En) − 1, where c∨ is the dual Coxeter number for the Lie group En. In
the studied examples, the cones over �1 × �1 and over dP5, dP6, dP7, and dP8 have generic
deformations. But the cones over dP2, dP3, and dP4 have less deformations, that is, these cones
do not describe the most generic embedding of the corresponding del Pezzo singularities.
(It is known that the generic embeddings of del Pezzo n singularities for n ≤ 4 (or rank
k = 9 − n ≥ 5) cannot be represented as complete intersections [27, 29], in our construction
the del Pezzo singularities are nongeneric complete intersections.)

We propose that for the generic embedding the two-cycles on del Pezzo with self-
intersection (−2) are trivial within the full Calabi-Yau geometry. The nontrivial two cycles
with self-intersection (−2) impose restrictions on the complex deformations. This proposal
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Table 1: Some characteristics of del Pezzo surfaces.

Del Pezzo No. two-cycles No. (−2) two-cycles Dynkin’s diagram c∨ − 1
�
2 1 0 0 0
�
1 × �1 2 1 A1 1

dP1 2 0 0 0
dP2 3 1 A1 1
dP3 4 3 A2 ×A1 3
dP4 5 4 A4 4
dP5 6 5 D5 7
dP6 7 6 E6 11
dP7 8 7 E7 17
dP8 9 8 E8 29

Table 2: Complex deformations of del Pezzo singularities studied in the paper.

Del Pezzo No. (−2) two-cycles No. trivial (−2) two-cycles c∨ − 1 No. complex deforms
�
2 0 0 0 0
�
1 × �1 1 1 1 1

dP1 0 0 0 0
dP2 1 0 1 0
dP3 3 1 3 1
dP4 4 3 4 3
dP5 5 5 7 7
dP6 6 6 11 11
dP7 7 7 17 17
dP8 8 8 29 29

agrees with the above examples of the embeddings of del Pezzo singularities. Also we get a
similar conclusion when the CY has some number of conifolds in addition to the del Pezzo
singularity. Although the conifolds are away from the del Pezzo and the del Pezzo itself is
not singular, it acquires a nontrivial two-cycle and the number of deformations is reduced.

Sometimes the F-theory/orientifolds point of view has advantages compared to
the type IIB theory. Our construction of CY threefolds can be generalized to find the 3-
dimensional base spaces of elliptic fibrations in F-theory with the necessary del Pezzo
singularities. Also we expect this construction to be useful as a first step in finding the warped
deformations of the del Pezzo singularities and in the studies of the Landscape of string
compactifications.

Appendix

A List of Compact CY with Del Pezzo Singularities

In the appendix, we construct the embeddings of all del Pezzo singularities in compact CY
manifolds and describe the complex deformations of these embeddings. This description
follows the general construction in Section 4.

In the following, B denotes the two-dimensional del Pezzo surface and X denotes the
space where we embed B. The space X will be either a product of projective spaces or a
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weighted projective space. For example, if B ⊂ X = �n × �m × �k, then the coordinates on
the three projective spaces will be denoted as (z0, . . . , zn), (u0, . . . , um), and (v0, . . . , vk),
respectively. The hyperplane classes of the three projective spaces will be denoted by H , K,
R, respectively.

A polynomial of degree q in zi, degree r in uj , and degree s in vl will be denoted by
Pq,r,s(zi;uj ;vl).

If there are only two or one projective space, then we will use the first two or the first
one projective spaces in the above definitions.

For the weighted projective spaces, we will use the notations of [30]. For example,
consider the space W�

3
11pq, where p, q ∈ �. The dimension of this space is 3, the subscripts

(1, 1, p, q) denote the weights of the coordinates with respect to the projective identifications
(z0, z1, z2, z3) ∼ (λz0, λz1, λpz2, λqz3).

The �1 bundles over X will be denoted as M = P(OX ⊕ OX(K)), where K is the class
on X that restricts to the canonical class on B. The coordinates on the fibers will be (s, t) so
that locally s ∈ OX and t ∈ OX(K). The hyperplane class of the fibers will be denoted by G,
it satisfies the property G(G + K) = 0 for M = P(OX ⊕ OX(K)). In the construction of the �1

bundles, we will use the fact that K(B) = −c1(B) and will not calculateK(B) separately.
The deformations of some del Pezzo singularities will be described via embedding in

particular toric varieties. We will call them generalized weighted projective spaces. Consider,
for example, the following notation:

GW�
5

11100002
00011001
00000111

(A.1)

The number 5 is the dimension of the space. This space is obtained from � 8 ∗ by taking the
classes of equivalence with respect to three identifications. The numbers in the three rows
correspond to the charges under these identifications

(z1, z2, z3, z4, z5, z6, z7, z8) ∼
(
λ1z1, λ1z2, λ1z3, z4, z5, z6, z7, λ

2
1z8

)
,

(z1, z2, z3, z4, z5, z6, z7, z8) ∼ (z1, z2, z3, λ2z4, λ2z5, z6, z7, λ2z8),

(z1, z2, z3, z4, z5, z6, z7, z8) ∼ (z1, z2, z3, z4, z5, λ3z6, λ3z7, λ3z8).

(A.2)

(1) B = �2 ⊂ X = �
3.

The equation for B

P1(zi) = 0. (A.3)

The total Chern class of B

c(B) = (1 +H)3 = 1 + 3H + 3H2. (A.4)
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The �1 bundle is M = P(OX ⊕ OX(−3H)). The equation for the Calabi-Yau threefold Y3

P1(zi)s2 + P4(zi)st + P7(zi)t2 = 0. (A.5)

The embedding space V = W�
4
11113 has the coordinates (z0, . . . , z3; w) and the singular CY is

P1(z0, . . . , z3)w2 + P4(z0, . . . , z3)w + P7(z0, . . . , z3) = 0. (A.6)

This is already the most general equation, that is, there are no additional complex deforma-
tions.

(2) B = �1 × �1 ⊂ X = �3.

The equation for B

P2(zi) = 0. (A.7)

The total Chern class of B

c(B) =
(1 +H)4

1 + 2H
= 1 + 2H + 2H2. (A.8)

The �1 bundle is M = P(OX ⊕ OX(−2H)). The equation for the Calabi-Yau threefold Y3

P2(zi)s2 + P4(zi)st + P6(zi)t2 = 0. (A.9)

The embedding space V = W�
4
11112 has the coordinates (z0, . . . , z3; w) and the singular CY is

P2(zi)w2 + P4(zi)w + P6(zi) = 0. (A.10)

This equation has one deformation kw3, and the spaces M and V have the same number of
coordinate redefinitions. Thus, the space of complex deformations is one dimensional.

(3) B = dP1 ⊂ X = �
2 × �1.

The equation defining B has degree one in zi and degree one in uj

P1(zi)u0 +Q1(zi)u1 = 0. (A.11)

The total Chern class of B

c(B) =
(1 +H)3(1 +K)2

1 +H +K
= 1 + 2H +K +H2 + 3HK. (A.12)
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The �1 bundle is M = P(OX ⊕OX(−2H −K)). The equation for the Calabi-Yau threefold Y3 is

P1,1
(
zi;uj

)
s2 + P3,2

(
zi;uj

)
st + P5,3

(
zi;uj

)
t2 = 0. (A.13)

The embedding space V = GW�
4
111002
000111

has the coordinates (z0, z1, z2; u0, u1; w) and the

singular CY is

P1,1
(
zi;uj

)
w2 + P3,2

(
zi;uj

)
w + P5,3

(
zi;uj

)
= 0. (A.14)

There are no complex deformations of this equation.

(4) B = dP2 ⊂ X = �
2 × �1 × �1.

The del Pezzo surface is defined by a system of two equations. The first equation has degree
one in zi and degree one in uk. The second equation has degree one in zi and degree one in
vk

P1(zi)u0 +Q1(zi)u1 = 0,

R1(zi)v0 + S1(zi)v1 = 0.
(A.15)

The total Chern class of B

c(B) =
(1 +H)3(1 +K)2(1 + R)2

(1 +H +K)(1 +H + R)
= 1 + 2H +K + R + 2H(K + R) +KR. (A.16)

The �1 bundle is M = P(OX ⊕OX(−2H −K −R)). The system of equations for the Calabi-Yau
threefold Y3 can be written as

P1,1,0(zi;uk;vk)s2 + P3,2,1(zi;uk;vk)st + P5,3,2(zi;uk;vk)t2 = 0,

Q1,0,1(zi;uk;vk) = 0.
(A.17)

The space V = GW�
5
11100002
00011001
00000111

has the coordinates (z0, z1, z2; u0, u1; v0, v1; w), and the singular

CY is

P1,1,0(zi;uk;vk)w2 + P3,2,1(zi;uk;vk)w + P5,3,2(zi;uk;vk) = 0,

Q1,0,1(zi;uk;vk) = 0.
(A.18)

There are no complex deformations of this equation. This is in contradiction with the general
expectation of one complex deformation, that is, the embedding is not the most general. This
is connected to the fact that all the two-cycles on the del Pezzo are nontrivial within the CY.
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(5) B = dP3 ⊂ X = �
1 × �1 × �1.

The del Pezzo surface is defined by an equation of degree one in zi, degree one in uj and
degree one in vk

P1,1,1
(
zi;uj ;vk

)
= 0. (A.19)

The total Chern class of B

c(B) =
(1 +H)2(1 +K)2(1 + R)2

(1 +H +K + R)
= 1 + (H +K + R) + 2(HK +HR +KR),

(A.20)

whereH ,K, and R are the hyperplane classes on the three �1’s. The �1 bundle isM = P(OX ⊕
OX(−H −K − R)). The equation for the Calabi-Yau threefold Y3 is

P1,1,1
(
zi;uj ;vk

)
s2 + P2,2,2

(
zi;uj ;vk

)
st + P3,3,3

(
zi;uj ;vk

)
t2 = 0. (A.21)

The embedding space V = GW�
4
1100001
0011001
0000111

has the coordinates (z0, z1; u0, u1; v0, v1; w), and the

singular CY is

P1,1,1
(
zi;uj ;vk

)
w2 + P2,2,2

(
zi;uj ;vk

)
w + P3,3,3

(
zi;uj ;vk

)
= 0. (A.22)

This equation has one deformation kw3, and the spaces M and V have the same number
of reparameterizations. Consequently, there is one complex deformation of the cone. This is
related to the fact that 3 out of 4 two-cycles on dP3 are independent within the CY and there
is only one (−2) two-cycle on dP3 that is trivial within the CY.

(6) B = dP4 ⊂ X = �
2 × �1.

Equation defining B has degree two in zi and degree one in uj

P2(zi)u0 +Q2(zi)u1 = 0. (A.23)

The total Chern class of B

c(B) =
(1 +H)3(1 +K)2

1 + 2H +K
= 1 +H +K +H2 + 3HK,

(A.24)

where H and K are the hyperplane classes on �2 and �1, respectively. The �1 bundle is M =
P(OX ⊕ OX(−H −K)). The equation for the Calabi-Yau threefold Y3 is

P2,1
(
zi;uj

)
s2 + P3,2

(
zi;uj

)
st + P4,3

(
zi;uj

)
t2 = 0. (A.25)
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The embedding space V = GW�
4
111001
000111

has the coordinates (z0, z1, z3; u0, u1; w), and the

singular CY is

P2,1
(
zi;uj

)
w2 + P3,2

(
zi;uj

)
w + P4,3

(
zi;uj

)
= 0. (A.26)

The deformations of the singularity have the form of degree one polynomial in z0, z1, z2 times
w3. Consequently, there are three deformation parameters and the spaces V and M have the
same reparameterizations. In this case, we have three complex deformations and three (−2)
two-cycles on dP4 that are trivial within CY.

(7) B = dP5 ⊂ X = �
4.

The del Pezzo surface is defined by a system of two equations. Both equation have degree 2
in zi

P2(zi) = 0,

R2(zi) = 0.
(A.27)

The total Chern class of B

c(B) =
(1 +H)5

(1 + 2H)2
= 1 +H + 2H2.

(A.28)

The �1 bundle isM = P(OX ⊕OX(−H)). The system of equations for the first possible Calabi-
Yau threefold Y3 is

P2(zi)s2 + P3(zi)st + P4(zi)t2 = 0,

R2(zi) = 0.
(A.29)

It has the following characteristics:

χ(Y3) = −160,

h1,1(Y3) = 2,

h2,1 = 82.

(A.30)
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Nowwe find the deformations of this cone over dP5. The �1 bundleM is, in fact, the �5 blown
up at one point. By blowing down the t = 0 section of M, we get �5. The CY three-fold with
the dP5 singularity is embedded in �5 by the system of two equations

P2(zi)w2 + P3(zi)w + P4(zi) = 0,

R2(zi) = 0.
(A.31)

The deformations of the singularity correspond to taking a general degree four polynomial
in the first equation. This general CY has

χ = −176,

h1,1(Y3) = 1,

h2,1 = 89.

(A.32)

Since the system (A.31) has only the dP5 singularity and the general CYmanifold has 89−82 =
7 more complex deformations, we interpret these extra 7 deformations as the deformations of
the cone over dP5. This number is consistent with the general expectation, since c∨(D5)−1 = 7,
where c∨(D5) = 8 is the dual Coxeter number for D5.

The second CY with the dP5 singularity is described by

P2(zi)s + P3(zi)t = 0,

R2(zi)s + R3(zi)t = 0.
(A.33)

Using the same methods as for the first CY, one can show that this singularity also has 7
complex deformations.

(8) B = dP6 ⊂ X = �
3.

The case of dP6 was described in details in Section 2; here we just repeat the general results.
The equation defining dP6 ⊂ �

3

P3(zi) = 0. (A.34)

The �1 bundle is M = P(OX ⊕ OX(−H)).
The equation for the Calabi-Yau threefold Y3

P3(zi)s2 + P4(zi)st + P5(zi)t2 = 0. (A.35)

The total Chern class of Y3

c(Y3) =
(1 +H)4(1 +G)(1 +G −H)

1 + 3H + 2G
. (A.36)
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The Euler number and the cohomologies for the CY with the dP6 singularity are

χ = −176,

h1,1 = 2,

h2,1 = 90.

(A.37)

The deformation of this singularity is a quintic in �4, that has

h2,1 = 101 (A.38)

complex deformations. The difference between the number of complex deformations is 101−
90 = 11, which is consistent with c∨(E6) − 1 = 11.

(9) B = dP7 ⊂ X = W�
3
1112.

The equation defining B is homogeneous of degree four in zi’s

P4(zi) = 0. (A.39)

The �1 bundle is M = P(OX ⊕ OX(−H)). The equation for the Calabi-Yau threefold Y3

P4(zi)s2 + P5(zi)st + P6(zi)t2 = 0. (A.40)

The total Chern class of Y3

c(Y3) =
(1 +H)3(1 + 2H)(1 +G)(1 +G −H)

1 + 4H + 2G
. (A.41)

The Euler number and the cohomologies for the CY with the dP6 singularity are

χ = −168,

h1,1 = 2,

h2,1 = 86.

(A.42)

Blowing down the t = 0 section of M, we get V = W�
4
11112. The general CY is given by the

degree six equation in V . The total Chern class of this CY is

c =
(1 +H)4(1 + 2H)

(1 + 6H)
. (A.43)
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And the number of complex deformations

h2,1 = 103. (A.44)

The difference 103− 86 = 17 is equal to c∨(E7) − 1 = 17, where c∨(E7) = 18 is the dual Coxeter
number of E7. Consequently, we can represent all complex deformations of dP7 singularity
in this embedding.

(10) B = dP8 ⊂ X = W�
3
1123.

The equation defining B has degree six

P6(zi) = 0. (A.45)

The �1 bundle is M = P(OX ⊕ OX(−H)). The equation for the Calabi-Yau threefold Y3

P6(zi)s2 + P7(zi)st + P8(zi)t2 = 0. (A.46)

The total Chern class of Y3

c(Y3) =
(1 +H)2(1 + 2H)(1 + 3H)(1 +G)(1 +G −H)

1 + 6H + 2G
. (A.47)

The problem with this CY is that for any polynomials P6, P7, and P8, it has a singularity at
s = z0 = z1 = z2 = z3 = 0 and z4 = 1. As a consequence, the naive calculation of the Euler
number gives a fractional number

χ = −1502
3
. (A.48)

The good feature of this singularity is that it is away from the del Pezzo; thus one can argue
that, this singularity should not affect the deformation of the dP8 cone. In order to justify
that we will calculate the number of complex deformations of the CY manifold with dP8

singulariy by calculating the number of coefficients in the equation minus the number of
reparamterizations of M. The result is

h2,1 = 77. (A.49)

Blowing down the t = 0 section of M, we get V = W�
4
11123. The general CY is given by the

degree eight equation in V . The number of coefficients minus the number of reparamteriza-
tions of V = W�

4
11123 is

h2,1 = 106. (A.50)
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The difference 106 − 77 = 29 is equal to c∨(E8) − 1 = 29, where c∨(E8) = 30 is the dual
Coxeter number of E8. Thus, all complex deformations of dP8 singularity can be realized in
this embedding.
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