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ABSTRACT
Great organizations collect open-ended and time-changing
data received at a high speed. The possibility of extracting
useful knowledge from these potentially infinite databases is
a new challenge in Data Mining. In this paper we propose an
anytime incremental learning algorithm for mining numeric
data streams. Within Supervised Learning, our approach is
based on prototypes and hypercubic decision rules, concern-
ing with the simplicity of the model provided and the time
complexity as primary goals. Experimental results with syn-
thetic databases of 100 gigabytes show a good performance
from streams of data in continuous transformation.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining ; I.2.6 [Artificial Intelligence]: Learning—
concept learning ; I.5.2 [Pattern Recognition]: Design Me-
thodology—classifier design and evaluation

General Terms
Incremental induction, on-line learning, data streams

1. INTRODUCTION
Astronomy, meteorology, satellite environmental assess-

ment, telecommunications, ATM transactions, retail chains,
scientific projects, etc. All of them are some examples of
different fields for which gigabytes of data are daily gen-
erated and stored and where each new record arrives at a
rapid rate. Due to these records are usually on permanent
traffic, they are oversensitive to noise, missing, and inconsis-
tent values. This situation has brought a defining challenge
for KDD research community: designing near-linear1 time

∗The research was supported by the Spanish CICYT under
grant TIC2001-1143-C03-02.
1At the most in the order of O(e3/2) where e is the number
of examples processed [7].
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complexity learning-algorithms to mine open-ended, high-
speed and time-changing data streams so that requirements
in time and memory compel to give an approximate answer
which is not adversely affect by the ordering of the arriving
records [4, 8].

When distribution of input examples is dynamic in time,
algorithms based on data partitioning techniques [11] (in-
stance sampling and feature sampling) are oversensitive to
underfitting (important patterns either are passed over or
are not weighed up so important) and overfitting (impor-
tant patterns in some subsets may not be it in the global
set). Apart several incremental learners build a decision
tree based predictive model concerning with increasing ac-
curacy and not allowing for its understanding on the part of
the business analyst. Mining high-speed and time-changing
data streams with this approach, updating frequently the
model when subtrees become obsolete may made it difficult
to keep a near-linear time complexity.

In this work we describe and evaluate SCARP (Scalable
Classifying Algorithm based on Relevant Prototypes), an al-
gorithm to mine numeric data streams based on hypercubes
with an associated representative synthetic vector. These
hypercubes are decision rules which SCARP removes when
they have become obsolete while new examples are still to be
read. This reduction of the model does not affect adversely
the computational cost but quite the opposite speeds up its
subsequent updating. With the usefulness of the knowledge
provided (few rules of small disjuncts) as primary goal, we
introduce an algorithm that updates the model with each
novel case. To do this, SCARP does not process the whole
search space but those regions with highest influence, i.e.,
the most representative patterns. Since time is a princi-
pal requirement, we must to limit the maximum number of
rules of the model giving an approximate answer. This ap-
proach is different from several scalable algorithms, which
need to read a block of δ new registers for going forward
where δ will change according to the input data. The main
shortcomings of SCARP are two: it is a distance-based algo-
rithm and it can not process nominal values. Our approach
bases the built model on the Euclidean distance among the
new record and the rules obtained. Since attributes with
large ranges outweigh attributes with smaller ranges, nor-
malization is necessary to make equal the influence of all
attributes. Therefore, SCARP needs to know the ranges of
every feature before starting, so that each example is firstly
normalized and then taken to update the model. In the next
sections we explain the algorithm and its performance on six
synthetic databases with different degree of complexity.
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Procedure buildModel(Stream sequence, int α
double β, int γ, int δ, int θ, double κ, double µ)

<i, ruleSets>:=<0, EMPTY>
while(sequence.hasMoreElements())

<e, i>:=<sequence.nextElement(), i+1>
updateModel(normalize(e), α, β, ruleSets)

if(refineFrequency(i, δ))
refineModel(γ, i-θ, κ, ruleSets)

assembleModel(µ, ruleSets)
return(ruleSets)

Figure 1: The SCARP algorithm.

2. THE SCARP ALGORITHM

2.1 Building the model
Figure 1 shows in pseudo-code the SCARP’s main proce-

dure which takes six user parameters (α, β, γ, δ, θ, κ). The
algorithm builds an output model made up of several sets of
rules, one set for each label. The maximum size (number of
rules) for every set is given by α. Each rule R, for its part,
comprises six elements: R={I,C,N,F,s,e,u}. I={I1, . . . ,Im}
is a set of m closed intervals, one for each relevant attribute.
The lower and upper bounds (Iil, Iiu) of each interval Ii are
the vertexes of an axis-parallel hypercube that define the in-
fluence region of R. C is a prototype in Rm called centroid
and generated as weight average of the same label examples
covered by R. N and F are the vectors of two of those read
examples covered by R until the current time: the nearest
and the most distant example to C, respectively. s is the
number of same label examples covered by R (the support)
and is used as weight to classify a new query. u stores the
number of the last example that updated to R. e is the num-
ber of different label examples covered by R whose maximum
value is given by β (the confidence) so that: s

s+e
≥ β. The

rules with a support smaller than γ per cent of the number
of read examples are removed from each set. This pruning
is run every δ read examples by the procedure refineModel
which also removes those rules that had not undergone be-
fore the last θ read examples. Only rules belonging to the
same set can make non-empty intersections among them un-
til the last example arrives. When the last example is read,
the procedure assembleModel simplifies the model allowing
non-empty intersections among different label rules whose
maximum volume is given by µ.

Every time a new example x=(q,l) is read and q is nor-
malized (q is a vector in Rm and l is a nominal value), the
procedure updateModel looks for rules that cover it. If there
is any rule that covers x, the updating varies according to
the label l. If x is covered by rules for the same label l, each
one is undergone with two simple operations: the increase
in one unit of the associated support and the calculation of
the new centroid.

When q is covered by rules generated for a different label
l’ 6=l, the rule Ri with the nearest centroid to q is founded.
If the confidence of Ri is still greater or equal than the mini-
mum given by the user (ei+1≤si(1/β-1)) then ei is increased
in one unit; else Ri is split into two new rules Ri1 and Ri2

in which Ci1 and Ci2 are Ni and Fi, respectively. Both rules
have volume 0 so that Iij , Nij and Fij are null (j∈ {1, 2}).
The support sij associated to each new rule is inversely pro-
portional to the Euclidean distance from Ni and Fi to Ci,
respectively. It is possible that both new rules can be joined

without causing a non-empty intersection with another la-
bel rule. In this case Ri is reduced according to Ni and Fi.
It is possible too that either one or both new rules Rij are
covered by previous rules generated for the same label l’. In
this second case each new covered rule Rij is not added in
the model and only the covering rule Rk whose centroid is
the nearest to such covered rule is updated as the preced-
ing case (its new centroid Ck is calculated from Cij and its
support sk is increased with the value of sij). Finally, if the
number of rules generated for the label l is smaller than α, a
new point-rule Ri3 for the new splitter example is generated
(with si3 = 1).

Figure 2 shows the situation described above. Let’s take,
for example, R1 and R2 as two rules for the label A with

s
s+e

= β and which have covered 1000 and 2000 examples
until the current time, respectively. A new example x =
(q, B) arrives and it is located inside the region shared by
both rules. As the rule with the nearest centroid to q is
R2, it may be split. Let N2 and F2 be distant 2 and 9
units from C2, respectively. Then three new point-rules are
initially generated: one rule R21 for N2, another rule R22 for
F2, and a third rule R23 for q. The support s23 is equal to1

and the supports s21 and s22 are d 2000/2
1/2+1/9

e and d 2000/9
1/2+1/9

e,
respectively. But R21 is covered by R1, so this latter rule is
updated with R21 which is not added in the model.

Although the new example may be covered by several rules
generated for a different label, only the rule with the near-
est centroid is split. We have decided on this criterion under
the next hypothesis: “if the new example belongs to a pat-
tern, then a near example with the same label will be read
and wrong rules will be split”. When noise is read, dividing
each rule that covers it may involve an unnecessary compu-
tational effort. In addition, errors due to overfitting may be
made. Our primary goal is to extract a reduced set of de-
cision rules with a good accuracy rate. In this sense, if the
support of a rule is proportionally small in regards to the to-
tal number of examples already read, SCARP will remove it
because it does not contribute as reliable or significant pat-
tern. Subsequently the rules affected by that noisy example
can be generalized in one rule. With a similar criterion, we
could update only the nearest rule that covers a new exam-
ple instead of each rule for the same label. Nevertheless we
decided on the second option due to two reasons. The first
is that the computational cost is not harmed. The second
is that the centroid associated to each rule will tend to the
centroid of an equal solid hypercube with the same space
location and with uniform mass density.

When there is not any rule that covers the new example
read, the nearest expandable rule for the same label to such
example is looked for. An hypercube can extend to cover an
example with equal label if it does not make a non-empty
intersection with other rule generated for a different label.
If this rule is found, it is updated moving its centroid, ex-
tending its edges, and increasing one unit its support. But,
what is the used distance between an example and a rule?.
We have applied as such distance the increase of volume of a
rule R when such rule extends (R’ ) to cover a new example
x=(q,l) so that the rule finally expanded will be that whose
growth is the minor according to the next formula:

REDist(R, q) = Vol(R′)− Vol(R); R′ = R ∪ q;

Vol(R) =

mY
i=1

(10φ(Iiu − Iil)) | Iiu > Iil, φ ∈ N ;
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Figure 2: A new unseen example splits a rule generated for a different label.

Let’s take, for example, φ = 1, x=({4,5,6},A) as an ex-
ample in R3, and Rj as a rule in R3 for the label A with
intervals I j ={[2,4],[1,3],[6,6]} (volume 4). Then R’j , would
have the intervals I’ j ={[2,4],[1,5],[6,6]} (volume 8). There-
fore the growth of Rj to cover the example x would be of 4
units. As the volume of a rule consider only those dimen-
sions where the lower bound is strictly smallest than the
upper bound, the term 10φ is used to do that rules without
expansion in a certain dimension k (Ikl = Iku) have smaller
volume than rules with expansion in such dimension k and
the same intervals in the rest of dimensions m 6= k. Since
SCARP normalizes each example before process it, the range
for an interval is at the most 1. Without the term 10φ, a rule
without expansion in a dimension k would have higher vol-
ume than a rule with expansion in k and the same intervals
in the rest. We have used φ = 3 in our experiments.

In a first version of SCARP we used the Euclidean dis-
tance between an example and the centroid of a rule to de-
cide which the most suitable rule for a new example was.
With this approach we benefit apparently to keep in the
model the smaller number of rules as far as possible be-
cause these rules try to cover greater regions. And this
would be a good decision knowing that noise is not present
in data. However, this situation seems unlikely for data
streams, where permanent traffic, the high numerosity and
dimensionality of data, and many times a high cardinality
in the values make errors appear easy. With the introduced
distance, the model will have a greater number of rules and
these rules will have smaller volume. Therefore, if our ini-
tial aim was to generate a set of rules as reduced as possible,
are not we going in the opposite way?. Since data streams
present a high sensitivity to noise and we don’t know when
noisy values will be read, we must try to avoid splitting valid
rules. Generating reduced hypercubes, the likelihood that
noisy examples are located inside rules for a different label
will be smaller than if we try to generalize rules as large
as possible. So, after reading the last example, the number
of rules will be rather greater than the optimal. To reduce
the model size and to make easy the classification task, the
procedure assembleModel is called as final stage.

When it is not possible to generalize any rule, a new point–
rule for the given example is generated provided the number
of rules in the model for the label of the example is smaller
than α. It happens when all expansions cause a non-empty
intersection between two rules for different labels. When
all the examples are read, through the procedure assem-
bleModel intersections between rules for different labels are

allowed. But only when such intersections cover an insignif-
icant percentage of examples with respect to the support of
each involved rule.

2.2 Pruning rules
Every δ examples the pruning method refineModel is called

to remove irrelevant attributes and invalid rules that stem
for noise. When original attributes are dropped, the rules
gain simplicity and thereby the algorithm gains speed for
the subsequent updates. First refineModel removes the rules
don’t updated with the last θ read examples and those one
whose support is smaller than γ per cent of the total num-
ber of read examples at that time. If noise is present in
data, those noisy rules must have a low support and a low
updating rate. Later SCARP tries to reject irrelevant at-
tributes as long as there is at least one rule per label. If all
the rules at least range µ per cent of an attribute’s domain,
it is signed as irrelevant and is dropped. In this manner, if
it has not been read any example for a certain label yet, all
the attributes are kept. Herein it is important to point out
two questions:

• Can a dropped attribute be relevant again?.

• If a particular region’s examples arrive with a fre-
quency lower than the model refining frequency, will
the algorithm be able to model this region?, i.e., will
the algorithm pass out important patterns?.

With regard to the first question, for a future work we are
evaluating an extended version of SCARP that takes into
account for each dropped attribute the interval of new val-
ues read after its dropping. If one of these intervals has size
smaller than κ% then the associated attribute can be rele-
vant again. In relation to the second question, reducing the
update frequency can solve the problem.

When the the last example is read, the procedure assem-
bleModel is called to try joining rules generated for the same
label. When it is not possible any union the procedure ends.
In every iteration the two nearest rules for each label whose
union is possible are looked for. The two nearest rules are
those whose union has the smallest volume in relation to the
volume of the rest of possible unions. The union between
two rules Ri and Rj is possible if either the intersection with
any different label rule Rk does not cover a number of ex-
amples greater than µ% of the support of Rk or the space
shared by Ri and Rj is greater than (100−µ)% of the space
of each rule.



Procedure refineModel (int γ, int ϑ, double κ,
ArraySet ruleSets)

for each label L in labelSet
for each rule R in ruleSets[L]

if(R.s< γ OR R.u< ϑ)
ruleSets[L].remove(R)

removeAttributes(κ,ruleSets)
end procedure

Figure 3: Pseudo-code of the procedure to refine the
model.

2.3 Classifying new queries
To classify a new query q SCARP looks for the hypercubes

that cover it. If only one hypercube covers q then its label
associated is assigned to q. When several rules cover the new
query, that rule with higher influence on the region where q
is located decides the label to be assigned. The influence of
a rule Ri on a new query is given by the formula:

IF(Ri, q) =
10√
m
· EucliDist(Ci, q)−1 +

Si

T
; T =

nX
j=1

Sj;

With the above heuristic measure we try to take into ac-
count, in the next priority order, the distance to the centroid
Ci, and the percentage of examples covered by the rule Ri

with respect to the total number T of examples covered by
the rules finally retained. If some rules were pruned in the
previous phase then T may be different to the total number
of read examples. The term 10√

m
normalizes the distance

in the interval [0,10] so that m is the number of relevant
attributes (the dimensions used in the model).

When no rule cover the new query, in a similar form to
the anterior situation, the aim is to take into account, in
the next priority order, the volume increase after cover the
new query, the distance to the centroid, and the support
of each rule. Only the rules that does not make a non-
empty intersection with another label rules are used in order
to label the new query. Further, we think that when the
number of examples to be read tends to infinity then the
centroid associated to each rule tends to be that of an equal
hypercube with uniform mass. Therefore, the rule with the
nearest centroid will be that with the smallest growth. In
this sense to use either the distance to the centroid or the
increase of volume must result equal. Thus, the query is
labelled with the label associated to that rule whose InfF is
the maximum.

3. EMPIRICAL EVALUATION
We ran all our experiments on a AMD x86/1.4Ghz and

256Mb DDR RAM PC running Windows XP. SCARP was
tested with five synthetic databases whose static distribu-
tion was determined a priori (Figure 4) and one database
whose distribution was changing in time every 10 millions
of examples according to the five previous domains. In every
database the attribute values were generated with a simple
uniform number generator as a stream of pseudo–random
numbers in the real interval [0,1]. Using a 48-bit (sixteen-
figure decimal number) seed with the actual system time
as initial value, each new value was obtained according to
the linear congruential formula defined by Lehmer in 1951:

Table 1: Evaluation of SCARP with synthetic
databases (500 millions of examples and 25 real at-
tributes).

SDB T NR NS NA NC PA CT
S1 462 9 240 16 2.2 99.9 39
S2 660 14 217 16 3.1 87.3 35.5
S3 650 33 2343 18 3.3 91.5 83.5
S4 637 30 408 11 2.7 84.9 70
S5 988 17 602 13 2.4 77.7 32.5
S6 923 12 1722 20 3.8 64.1 31

Xi+1 =A·Xi(mod M). For every distribution only the two
first attributes discriminate the label of an example. When
the example was located in plane, the label was assigned as
a function of its position. We carried out all tests without
ever writing the training examples to disk (i.e., generating
them on the fly and passing them directly to SCARP). We
defined the regions for each label with similar area due to
it is mathematically valid to assume that the example la-
bels will be uniformly distributed when, in the course of
time, millions of examples have been processed. For the
six databases we evaluated three issues: the model size, the
computational cost, and the prediction accuracy. These as-
pects were measured for 500 millions of examples with 25
attributes (using 8 bytes to store a double value it involves
a database of 100 gigabytes), and 5% of class noise in data
(i.e., 25 millions of examples with a wrong label). For each
database, 50 millions of examples were used for testing.

The used values for the parameters of the algorithm were:
α = 50 (a maximum of 50 rules for each label), β = 0.9 (a
maximum of 10% of examples with different label covered
by each rule until the assembleModel procedure is called),
γ = 0.1 (for each rule, every δ read examples it was called
for a minimum support of 1% regarding to the total number
of read examples at that time), δ = 106, θ = 105 (every
106 examples, SCARP removed those rules that were not
updated with some of the last 105 examples), κ = 0.96, and
µ = 0.05. SCARP was implemented in JAVA so CPU time
taken to build the model is not a very precise measure.

Table 1 shows the results obtained. Column T shows
the CPU time in minutes. The final number of rules re-
tained and the total times the rules were split are showed
in Columns NR and NS, respectively. Column NA shows
the number of attributes retained and Column NC gives the
average number of conjunctions for all the rules. The predic-
tion accuracy is showed in Column PA and the time taken to
classify the 50 millions of test examples is given in minutes
in Column CT. It’s significant the performance obtained by
SCARP with the databases S1 and S3 (with parallel and
non-parallel axes regions for each label) where the average
complexity of a rule and the average size of the model are
2.5 and 17, respectively.

4. RELATED WORK
Approaches based on subsampling methods for mining

large databases are proposed by Catlett in [3]. Gehrke et
al. obtain in [5] an approximate tree through a subsample
of fixed size. In contrast, SLIQ [10] and SPRINT [13] do
not learn with data load in memory but they are disk-based
learners that use all the examples and focus on optimizing
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sequential access to disk. Model pruning and updating al-
gorithms are in [2, 12]. There is also a large literature on
incremental clustering algorithms [6, 14], association rules
[1], and classification techniques built through the union of
several disciplines [9] with the accuracy as the main goal.
However, not many of them are in particular addressed to
usefulness and reduced complexity of the model generated.

5. CONCLUSIONS AND FUTURE WORK
An incremental learner based on hypercubes and proto-

types has been introduced in this paper. With the simplicity
of the model and its usefulness for the business analyst as
primary goal, we have developed a classifier for mining nu-
meric data streams with each novel case that is different
from the most of approaches in literature. With an inter-
mediate pruning method as part of the algorithm, SCARP
is able to remove obsolete rules and wrong rules caused by
noise without additional computational effort. To achieve
it, SCARP does not mine all the search space but only the
most representative patterns.

For a future work, we are studying several heuristics to
recover dropped attributes turned relevant again and to im-
prove classification accuracy and the capacity for mining
nominal attributes in order to compare SCARP with an-
other scalable classifiers as CVFDT [8] and SPRINT [13].

6. ADDITIONAL AUTHORS
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