
 

A Faster Distributed Arithmetic Architecture for FPGAs  

Radhika S. Grover, Weijia Shang and Qiang Li 
Department of Computer Engineering, Santa Clara University, CA 

rgrover@scudc.scu.edu  {wshang, qli}@sunrise.scu.edu   
 

ABSTRACT 
Distributed Arithmetic (DA) is an important technique to implement 
digital signal processing (DSP) functions in FPGAs. However, 
traditional lookup table (LUT) based DA architectures contain one 
or more carry propagation chains in the critical path that dictates the 
fastest time at which an entire design can run. In this paper, we 
describe a novel technique that can reduce or eliminate the carry-
propagate chain from the critical path in LUT based DA 
architectures on FPGAs. In the proposed scheme, the individual bits 
of a word do not have to be processed as a unit. Instead, the current 
iteration can start as soon as the least significant bit (LSB) of the 
previous iteration is available, without waiting for the entire word 
from the previous iteration to be fully computed. This technique has 
great potential in speeding up DSP applications based on DA. 
Designs are described for serial and parallel DALUT and 
accumulator structures in which an n-bit carry chain, where n is the 
word length, is broken into smaller r-bit chains, 1 r n≤ < . A cost-
performance analysis of the designs is presented. The analysis 
shows that the designs proposed in this paper have a lower cost-
performance ratio (indicating better performance) than traditional 
DA designs. We also show that the 8-bit (r = 8) designs offer a good 
compromise between cost and performance. The implementation is 
on a Xilinx chip XC4028XL-3-BG256 using Xilinx Foundation 
tools v 3.1i. The results show that the proposed designs can achieve 
speedup by a factor of at least 1.5 over traditional DA designs in 
some cases.  

Keywords 
Distributed arithmetic, DALUT, XC4000, carry propagation, cost-
performance analysis 

1.  INTRODUCTION  
With improvements in capacity and performance and a 

decrease in cost, FPGAs have become a viable solution for making 
custom chips and programmable DSP devices. By mapping 
algorithms to FPGAs significant performance benefits can be 
achieved. Distributed Arithmetic (DA) [1,2] provides an approach 
for multiplier-less implementation of DSP systems. It is an  
algorithm that can perform multiplication with lookup table (LUT) 
based schemes (also called DALUT). DA specifically targets the 
sum of products (also referred to as the vector dot product) 
computation that is found in many of the important DSP filtering 
and frequency transforming functions. Combined with Xilinx 

FPGA lookup table architecture, the DA algorithm was shown to 
produce very efficient filter designs [3]. 

Techniques for speeding up DALUT based applications have 
appeared in several papers, such as using matrix factorization 
methods and exploiting symmetry in matrices to speed up the 
computation procedure by reducing the number of addition and 
subtraction operations required. Image and signal processing 
techniques using DA have been discussed in  [4,5,6,12] and others. 

In this paper we present a novel architecture for speeding up 
DALUT applications. The distinguishing feature of the new design 
is that, unlike in traditional DALUT architectures, the carry chain 
delay is reduced or eliminated from the critical path. In the proposed 
scheme, the individual bits of a word do not have to be processed as 
a unit. Instead, the current iteration can start as soon as the LSB of 
the previous iteration is available, without waiting for the whole 
word from the previous computation. Designs in which an n-bit 
carry chain, where n is the word length, is broken into smaller r-bit 
chains, 1 r n≤ < , are described in this paper. Techniques to 
eliminate carry chain delay have appeared in other papers [7,8,9]. In 
this paper, we apply a similar idea to DALUT-based structures on 
FPGAs to gain performance benefits. New designs for parallel and 
serial DALUT structures are proposed. A cost-performance analysis 
of the designs shows that the proposed designs with no carry chain 
delay have a lower cost-performance ratio than traditional DALUT 
designs as well as designs with r-bit carry chains. Also, it is shown 
that designs with 8-bit carry chains provide a good compromise 
between performance and cost. The designs are implemented on a 
Xilinx XC4028XL-3-BG256 using Xilinx Foundation tools v 3.1i. 
The results show that the new designs achieve speedup by a factor 
of at least 1.5 over traditional designs. The technique is general 
enough to be applicable to other families of chips as well.  

The rest of the paper is organized as follows: In Section 2 a 
brief overview of traditional DA background is presented. Section 3 
describes the new designs for parallel and serial DA and gives a 
cost-performance analysis of these designs. In section 4 the results 
of comparing the traditional and proposed designs are presented. 
Concluding remarks are given in section 5. 
 

2.  TRADITIONAL DALUT 
ARCHITECTURE 

A brief overview of traditional DALUT architecture is 
presented in this section. Let the input data and the transformed data 
be represented by two vectors X  and Y  of size N , respectively. 
Then Y can be written as follows: 

                          
1

0

N

k k
k

Y A x
−

=
= ∑                                   (1) 

where kA  are constant coefficients. kx  is written in weighted 
format as shown in the equation (2).                  

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
FPGA’02, February 24-26, 2002, Monterey, California, USA. 
Copyright 2002 ACM 1-58113-452-5/02/0002…$5.00. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194177826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

  
1

, 1 , 1
1

2
n

m
k k n k n m

m
x x x

−
−

− − −
=

= − + ∑                                   (2) 

where, ,k mx  is the m th bit of kx  (which can be a zero or one),  

, 1k nx −  is the sign bit and n  is the word size. Substituting equation 
(2) in (1), 

1 1

, 1 , 1
0 1

2
N n

m
k k n k n m

k m
Y A x x

− −
−

− − −
= =

 
 
 

= − +∑ ∑  

           =
1 1 1

, 1 , 1
0 1 0

2
N n N

m
k k n k k n m

k m k
A x A x

− − −
−

− − −
= = =

 
 
 

− +∑ ∑ ∑  

Define, 
1

1 , 1
0

( 0)
N

n m k k n m
k

Z A x m
−

− − − −
=

= ≠∑    

and, 
1

1 , 1
0

( 0)
N

n k k n
k

Z A x m
−

− −
=

= − =∑  

The output result is given by, 

         
1

1
0

2
n

m
n m

m
Y Z

−
−

− −
=

= ∑                                (3) 

Let 1c n m= − −  for convenience. Since cZ  is a function of 

,k cx , 0, 1k N= − , it has only 2N  possible 
values which can be precomputed and stored in 
a LUT. Figure 1 shows the traditional LUT-
based serial DA design for a four- product 
( 4)N =  multiplier-accumulator (MAC), which 
multiplies four pairs of numbers and sums the 
results. The LUT data is composed of all partial 
sums of the coefficients ( 0 1 2, ,A A A and 3A ). 
The LSB (output from each parallel to serial 
converter PSC register) of the four data samples 
( 0 1 2, ,x x x and 3x ) addresses the LUT. The 
output of the LUT depends on the address 
formed by the combinations of these input bits. 
For example, if all four data bits are 1, then the 
output from the LUT is the sum of all four 
coefficients. Further details on DA can be found 
in [2,3]. In the next section, new designs for 
serial and parallel DALUT structures are 
presented. 

3. PROPOSED DESIGNS 
       In Figure 1, the carry chain is present in 
the shift- accumulator. Figure 2 shows how the 
carry chain can be removed from the critical 
path in this design. The critical path is the 
delay between points A and B in both designs. 
      The accumulator is composed of a series of 
bit-level processing elements (PEs). Each bit-
level PE takes three input bits that are added to 
produce a sum bit and a carry bit that are 
registered in two flip-flops (FF) at each clock. 

Figure 2 shows a PE configured as a serial adder. The output of the 
LUT is connected to input 1I  of the PEs. The partial sum bit in 

the j th PE is connected to the input 2I  of the ( 1)j − th PE. The 
carry bit C , generated from adding three bits in each PE, is not 
propagated across the PEs; instead, it is registered within the PE at 
each clock, and added to the input bits in the next clock. One bit of 
final product is shifted out serially from the bit-level shift- 
accumulator at each clock into a set of shift registers.  After the n th 
clock, (where n  is the word size), the residual partial sum and 
carry bits are summed in a carry-propagate adder to form the 1n −  
higher-order bits of the final product which has 2 1n −  bits. 

1PE

0PE

jPE

3nSR −

0SR

1jPE −

0Y

3nY −

2nY −

1nY −

nY

(least significant bit
of final product)

3n jY + −

2n jY + −

1n jY + −

Carry propagate
adder adds remaining
partial sums and
carries after last cycle

Shift
registers

IO

2jPE −

2nSR −

Look-up
table

0x

1x

2x

3x

0,cx

1,cx

2,cx

3,cx
,c jZ

, 1c jZ −

, 2c jZ −

,1cZ

,0cZ

INV

1-bit processing element

F
F

F
F

(Input
bit)

2I

(Partial
sum bit)

S

C
1I

(Input
bit)

A

B

PSC

PSC

PSC

  PSC

Figure 2. Proposed (1-bit) serial DA one-LUT design for a  four-product MAC. 

INV

Reg

1/2

Inverter

Shift Accumulator

cZ Y

0x

3x

0,cx

3,cx

1x

1,cx

LUT

2x

2,cx

0

2A
0 1A A+

0A

1A

1 2 3A A A+ +

0 1 2 3A A A A+ + +

PSC

PSC

PSC

PSC
Shift

Register

A

B

 
Figure 1. Traditional LUT-based serial DA for a four-product 

MAC 



 

The residual partial sum and carry bits are the bits left over in 
the PEs after n  clocks, when no new outputs from the LUT are 
required to be added. When the sign bits arrive, a subtraction 
instead of an addition is done in the shift-accumulator. The bits of 

cZ  are inverted in the last cycle by setting INV  to‘1’ 
(corresponding to multiplication by the sign bit); however, the 
addition of a ‘1’ is delayed (in order to move the carry-propagate 
adder out of the critical path), and takes place, after the last clock 
cycle, by setting the IO  bit to a ‘1’. The IO bit is called a 
compensating one, since it adjusts the final result to the correct 
value by compensating for the addition of ‘1’ that was omitted 
earlier in the computation.  The resulting design, in Figure 2, takes 
the same number of clocks as the design in Figure 1, but runs 
much faster because the carry propagate adder has been moved 
out of the critical path. The clock time of design in Figure 1 has to 
be long enough to accommodate the carry chain; the clock time of 

design in Figure 2 is the time needed to generate the partial carry 
and sum. Figure 3 shows how this can be extended to the r-bit 
case by using PEs with carry chain lengths of r-bits. The last cell 
in the r-bit PE sums 4 bits and generates two carries – C (lower 
order carry) and C1 (higher order carry). All the other cells are 
similar to the bit- level PE. The carries, C, between the cells 
inside the r-bit PE are not registered; instead, they propagate  
across the r-bit PE, with the exception of the two carries in the last 
cell. Thus, the carry chain is broken across PEs. Note however, 
that the last PE may have less than r cells, depending on whether 
n is a multiple of r. The above scheme is extended to the multiple-
product case. As the number of coefficients increase, the size of 
the LUT grows exponentially.  

A large LUT is avoided by partitioning the circuit into smaller 
groups and combining the LUT outputs with adders, as shown in 
Figure 4. The adders are less costly than the larger LUT. However,

   

1PE

mPE

1mPE −

Carry propagate
adder adds remaining
partial sums and
carries after last cycle

Shift
registers

IO

2mPE −

r-bit processing element

Input

INV

2I

SC

SC

S

C

r r O utput

Y
Look-

up
table

0x

1x

2x

3x

0,cx

1,cx

2,cx

3 ,cx

1C

      
Figure 3. Proposed (r-bit) serial DA one-LUT design for a four-product MAC.

Inverter

INV

Reg

1-bit Scaling
Accumulator

Y

1/2

LUT 1

LUT 2

0x

1x

2x

3x

4x

5x

6x

7x

Reg
LS

 
Figure 4. Traditional serial DA two LUT-based design for an eight-product MAC. 



 

 

INV

4x

5x

6x

7x

Look-up
table

0x

1x

2x

3x

0,cx

1,cx

2,cx

3,cx
,c jZ

,1cZ

,0cZ

Look-up
table

4,cx

7,cx

6,cx

5,cx

INV

1PE

0PE

jPE

1jPE −

2jPE−

0SR 0Y

1nY −

nY

(least significant bit of
final product)

2n jY + −

1n jY + −

Carry propagate adder adds
remaining partial sums and
carries after last cycle

Shift
registers

IO

1PE

0PE

jPE

1jPE −

2jPE−

Bit-level shift  accumulatorBit-level adder array

,01cZ

,11cZ

,1c jZ

1nSR −

2nSR− 2nY −

n jY +

1nY +

 
Figure 5.  Proposed serial DA two-LUT design for an eight product MAC.

Inverter
Reg

2-bit Scaling
Accumulator

Y

1/4

LUT 1

LS
0x

LUT 2

Bits[(n-1),...,5,3,1]

Bits[(n-2),...,4,2,0]

1x

2x

3x

INV
1x

2x

3x

0x

1/2
LS

Reg

 
Figure 6.  Traditional 2-bit parallel DA for a four product MAC. 

 



 

  

Look-up
table

0x

1x

2x

3x

0,mx

1,mx

2,mx

3,mx ,c jZ

,1cZ
,0cZ

Look-up
table

INV

2PE

1PE

jPE

1jPE −

0Y

1nY −

nY

(least significant bit
of final product)

1n jY + −

n jY +

Carry propagate
adders add remaining
partial sums and
carries and a "1" after
last cycle

IO

jPE

Bit-level  2-
bit scaling
accumulator

Bit-level  2-
bit scaling
adder array

,01cZ

,11cZ

,1c jZ

2nY −

1n jY + +

1nY +

0x

1x

2x

3x

0,mx

1,mx

2,mx

3,mx

m is EVEN

m is ODD

0PE

,2cZ

0

1PE

0PE

1jPE −

1PE

0PE

2nPE −

1nPE −

0

0

0

1Y

1jPE +

FF

2PE

1jPE +

2nY +

 
Figure 7. Proposed 2-bit parallel DA for a four product MAC. 

 
each adder introduces a carry chain delay in the critical path. Figure 
5 shows how to remove the carry chain for an eight-product MAC, 
implemented with two LUTs, by using a simple bit-level adder 
array.  The adder array is composed of bit-level PEs shown in 
Figure 2. The partial sum output bit of each PE in the bit-level adder 
array is connected to a PE input in the bit-level shift-accumulator. 
The partial sums and carries are stored separately in this adder 
array, and the carries are not propagated across the PEs of the adder 
array. When the sign bits are input to the LUT, the outputs of both 
LUTs must be inverted and a ‘1’ added to each of the outputs. 
Instead, as in the one-LUT case, the addition of the two ‘1’s is 
delayed and takes place, after the last clock, in the carry- propagate 
adder. The design in Figure 5 takes one extra clock compared to the 
traditional serial DA for two- LUT case so that the residual carries 
in the bit-level adder array are added in the bit-level shift-
accumulator. After the last clock, the partial sums and carries in the 
shift-accumulator are added in the carry-propagate adder to form the 
final product. Again, the clock cycle time is reduced since the carry 
chains are removed from the critical path, at the cost of a single 
extra clock.  To compensate for the two ‘1’s required to be added 
earlier, a suitably weighted compensating one, (i.e., in this case a 
‘10’ string) is added in the carry-propagate adder at the appropriate 
position (by setting IO  to a ‘1’ after the last clock as in Figure 5). 
The above idea can be extended similarly for serial DA many-
product cases and parallel DA. Figure 6 shows the traditional LUT-
based scheme for 2-bit parallel DA. Two LUTs are needed, one for 

the even order coefficients and the other for the odd order 
coefficients. Figure 7 shows the scheme for proposed 2-bit parallel 
DA for a four product MAC. The bit-level 2-bit scaling adder array 
and accumulator are used here, and there is no carry propagation 
across these components. The carry out C  from the j th PE is 

registered before it is sent to the ( 1)j − th PE, where it is added to 
input bits of the same weight. Unlike in SDA designs, the carryout 
in the bit-level PDA PE is not fed back into the same PE where it 
was generated. The bit-level 2-bit scaling accumulator shifts two 
bits at a time. As in the previous designs, carry propagation takes 
place after the last clock in the two carry propagate adders shown in 
Figure 7. The IO bit is set to a “1” after the last clock to compensate 
for the “1” that was required to be added earlier. The r-bit designs 
can be obtained directly by replacing r bit-level PEs with one r-bit 
PE in Figures 5 and 7. 

 

3.1 Cost and performance analysis 
Gate count and gate-delay unit models used in VLSI designs 

are not useful for evaluating costs and performance of FPGA 
designs. In our study, instead of gate counts, cost is measured as 
the number of configurable logic blocks (CLBs) used. 
Performance is calculated as the inverse of the computation time 
(time to complete the DA operation).  The computation time is 
estimated using a simple model that estimates the total delay



 

Table 1. CLB counts and logic delays in various components, as a function of word size n, on the XC4000 series.   

Component CLB count (C) Delays (T) 
n-bit full adder (non-registered) 

( ) 2
2FA
nC n = +  ( 2)( )

2FA INCY BYP SUM
nT n T T T−= + +  

n-bit shift accumulator (registered) 
( ) 2

2ACC
nC n = +  

 

( 2)( )
2ACC INCY BYP SUMC ICK

nT n T T T T−= + + +  

n-bit invertor 
( )

2INV
nC n =  INV ILOT T=  

 n-bit ROM-based LUT (depth <= 
16) ( )

2LUT
nC n =  LUT ILOT T=  

n-bit Shift register 
( ) ( )

2SR PSC
nC n C n= =

 

PSC CKOT T=  

1-bit Serial adder 1 SA ICKT T=  

 
in the critical path as a sum of the logic and routing delays. The 
number of logic levels in the design determines the logic delay, and 
the routing delay is estimated to be 50-100% of the logic delay. The 
actual values of the computation times are then obtained from 
Xilinx timing-simulation software instead of from gate-delay 
models used for VLSI designs. The cost-performance ratio (CT) is 
calculated as cost multiplied by the computation time. In making 
comparisons, a DA design with a lower CT ratio has better 
performance. Table 1 shows the CLB count and logic delays for 
various components in the traditional and proposed designs as a 
function of the word size n, on the XC4000 chip. In the XC4000 
series ripple-carry outputs are routed between CLBs on high-speed 
dedicated paths (Figure 8). This dedicated carry logic provides fast 
arithmetic carry capability for high-speed arithmetic functions. In 
adders using XC4000 dedicated carry logic delay estimation is 
possible [10]. The carry path in an adder uses dedicated 
interconnects between CLBs. These interconnects introduce a fixed 
delay, even when the carry passes from one CLB column to the next 

at the top or bottom of the array. This permits the routing delay to 
be incorporated into the CLB specifications published in the data 
book. Consequently, the propagation delay through an adder can be 
calculated directly from the data book specifications. The values of 
the delay parameters for the XC4000 (-3) family (shown in Table 2) 
are obtained from the Xilinx data sheet [11]. The total computation 
time to calculate the result is given by the product of the number of 
clocks and the clock cycle time. In Figure 1, the critical path is the 
delay through points A and B. The total delay is the sum of the logic 
delays from the output of the shift register, through the LUT, 
inverter and the (n+2)-bit shift accumulator including the routing 
delay between these components.  The cost is the sum of the 
number of CLBs in the shift registers, LUT, inverter and the (n+2)-
bit (signed) shift accumulator. 

The computation time of the one LUT-based traditional design 
(Figure 1) is 

 ( 1) ( ( 2) )LUT INV RPSC ACCn T T T T n T= + ∗ + + + + +  

( 1) ( 2 )
2CKO ILO INCY BYP SUMC ICK R
nn T T T T T T T= + ∗ + + + + + +

 
Figure 8. XC4000 dedicated carry logic. 

Table 2. Delay parameters for XC4000 (-3) series 
TILO Delay from F/G inputs to X/Y 

outputs 
1.6 ns 

TINCY Fast carry logic (F1/F3 to Cout) 2.0 ns 
TSUM Fast carry logic (Cin through 

function generators to X/Y 
outputs) 

2.8 ns 

TBYP Cin to Cout (bypass function 
generators) 

0.26 ns 

TCKO Clock to flip-flop output Q 2.1 ns 
TICK Setup time (F/G inputs) 1.1 ns 

TSUMC+TICK Fast carry logic and setup time 2.93 ns1 
1 Obtained from the Xilinx timing analyzer. 



 

where, RT  is the total routing delay between components in the 
critical path. 

The cost of the traditional design (Figure 1) is  

( 2) ( 2) ( ) ( ) * 4LUT ACC SR PSCC n C n C n C n= + + + + +  
Substituting the values of the parameters from Table 1 and Table 2 
gives the total computation time to be 
( 1)(10.23 0.13 )Rn n T+ + +  and the cost to be 3.5 4n + . 

Therefore, the cost-performance metric is of the traditional 
design (Figure 1) is  

(3.5 4)( 1)(10.23 0.13 )Rn n n T= + + + + .                                (4) 

The computation time of the one LUT-based proposed design 
(Figure 2) is ( 1) ( ) ( )PSC LUT INV SA R FAn T T T T T T n= + ∗ + + + + +  

( 2)( 1) ( 2 )
2CKO ILO ICK R INCY BYP

SUM

nn T T T T T T

T

−= + ∗ + + + + +

+
 

The cost of the proposed design (Figure 2) is 

( 2) ( 2) (1) ( 2) ( )
( )*4

LUT SA INV SR

PSC

C n n C C n C n
C n

= + + + ∗ + + +
+

 

Substituting the values of the parameters from Table 1 and 
Table 2 gives the total computation time to be 
6.53 10.94 ( 1) Rn n T+ + + and the cost to be 5 6n + . 

The cost-performance metric of the one LUT-based design 
(Figure 2) is  

 (5 6)(6.53 10.94 ( 1) )Rn n n T= + + + +                           (5)                         
The cost and computation time of these designs with r-bit 
wide carry chains, where 1 r n< < , can be calculated 
similarly. 

The cost-performance metrics are plotted for different values 
of r, in the range1 r n≤ ≤ , for different values of n and different 
routing delays in Figure 9. The traditional design (r = n) has the 
lowest cost (Figure 9 (a)), but a higher computation time (Figure 9 
(b)) as compared to the proposed designs. The proposed design 
( 1r = ) has the fastest computation time and the best cost-
performance metric (Figures 9(c) and 9(d)) as compared to the 
others. The design with 8r =  provides a good compromise 
between cost and performance. Figures 9 (c) and (d) show the 
variation in the cost-performance curves with zero routing delay, 
and routing delay equal to the logic delay, respectively. The 
performance improvement in designs with r n<  becomes more 
pronounced as the word size increases. The analysis given above 
can be similarly extended to other cases such as PDA and SDA 
with more than one lookup table. For lack of space we do not 
present other cases, but in general, the proposed designs 
outperform the traditional designs. 

The bit-level designs are implemented on an XC4000xl chip, 
and compared with traditional DA designs. The implementation 
results are presented in the next section. It will be shown that the 
results of the simulation are consistent with the above discussion. 

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

word size

Traditional
1 bit      
2 bit      
3 bit      
4 bit      
8 bit      
16 bit     

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

word size

Traditional
1 bit      
2 bit      
3 bit      
4 bit      
8 bit      
16 bit     

 
(a) (b) 

Figure 9. Cost-performance analysis of SDA for a four product MAC with different word sizes and carry chain lengths  (a) 
Cost vs. word size (b) performance vs. word size (0 routing delay assumed)     (figure continued) 

C T 



 

 

4.     IMPLEMENTATION RESULTS 
The designs described in the earlier section were coded using 

Verilog HDL and implemented on a Xilinx XC4820-4- BG256 chip 
using Xilinx Foundation Series 3.1i. The accumulator and   adder 
for traditional designs were implemented from the Core Generator 
library, and contain dedicated carry logic. The designs presented in 
the paper were verified through extensive simulations. Constraints 
were entered in the user constraints file (ucf). After the place-and-
route (PAR) tool completed the placement and routing, the timing 
for the design was obtained using the Timing Analyzer. The 
resources required for each design are given in terms of the total 
number of CLBs (Configurable Logic Blocks) that are used. The 
word size used for all the designs is 32 bits. Table 3 compares the 
resources and computation time required by the traditional and 
proposed one LUT-based serial DA designs for four-product MAC. 
The overall path delay has two components: delay through the logic 
gates (logic delay) and the route delay. After the designs were 
placed and routed by the place-and-route tool, they were examined 

using the Timing Analyzer tool. The tool showed that the traditional 
design could be clocked at a period of 27ns, of which 13.4ns is logic 
delay and 13.6ns is routing delay. The logic delays and the number 
of CLBs used correspond closely with those predicted by the model 
in the previous section. The traditional design has a larger route 
delay because of the additional overhead of routing delay between 
the stages in a 32-bit accumulator or adder. The proposed design 
has a period of 15ns, of which 6.4ns is logic delay and 8.6ns is 
routing delay. This design has fewer logic levels, since there is no 
carry propagation, than the traditional design resulting in lower 
logic delay. However, it consumes more resources because extra 
registers are required to hold the carry bits in the adder and 
accumulator, as shown earlier. Table 4 shows the results for serial 
DA for eight-product MAC. This uses more CLBs than the serial 
DA with one LUT because of four extra PSC shift registers and a 
lookup table. However, the logic and routing delays are almost the 
same as in the previous case. The final addition introduces a 
combinational delay of 29.4 ns, through the adder, before the final 

Table 3. One LUT-based serial DA design for four-product MAC 

Design CLBs Clock cycles Logic delay 
(ns) 

Route delay 
(ns) 

Computation 
Time (ns) 

Traditional 114 33 13.4 13.6 891.0 
Proposed (1-bit) 165 33 6.4 8.6 527.0 

 

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3
x 10

5

word size

Traditional
1 bit      
2 bit      
3 bit      
4 bit      
8 bit      
16 bit     

 

10 20 30 40 50 60
0

1

2

3

4

5

6
x 10

5

word size

Traditional
1 bit      
2 bit      
3 bit      
4 bit      
8 bit      
16 bit     

 
(c) (d) 

Figure 9 (continued). Cost-performance analysis of SDA for a four product MAC with different word sizes and carry chain lengths  
(c) cost-performance ratio vs. word size (0 routing delay) (d) cost-performance ratio vs. word size (routing delay=logic delay) 

CT CT 



 

result is available in the proposed design. The traditional design has 
a larger routing delay because of the additional routing overhead 
between stages. As the two tables above show, the (1-bit) proposed 
designs run faster by a factor of over 1.5 over traditional design. 

In Table 5 the traditional and proposed designs for 2-bit 
parallel DA for four-product MAC are compared. As before, the 
proposed design with carry chain length of 1-bit has a smaller 
computation time than traditional. 
 

5 CONCLUSION 
In this paper a novel architecture for serial and parallel 

DALUT and accumulator structures is proposed that reduces or 
eliminates the carry chain delay from the critical path. New 
designs for serial and parallel DA are presented. Also, a cost-
performance analysis of the SDA for a four-product MAC is 
performed. Instead of using gate counts and gate delays as in 
VLSI, the cost is measured as the CLB count and the performance 
measured as the inverse of the total computation time (dependent 
on the number of CLB logic levels and routing delays) to 
complete the DA operation. The cost-performance analysis shows 
that proposed r-bit designs, r n< , have a better performance 
than traditional DA designs on XC4000 series. The 1-bit designs 
have the best performance, but a high cost. The 8-bit designs 
provide a good compromise between cost and performance. Other 
families of chips can also be analyzed similarly. The designs are 
implemented using Xilinx Foundation series 3.1i on a Xilinx 
XC4028-3-BG256 chip.  The results show that the new designs 
proposed in this paper show speedup by a factor of at least 1.5 
over traditional DA designs. This can pave the way for faster DSP 
chips since DA is used in many signal and image processing 
applications. Our future work consists of using the DA 
architecture described in this paper in DSP. 
 
REFERENCES 
[1] S.A. White. Applications of Distributed Arithmetic to Digital 

Signal Processing: A Tutorial Review. IEEE ASSP 
Magazine, Vol. 6, No. 3, pp. 4-19. 

[2] B. New, “A Distributed Arithmetic Approach to Designing 
Scalable DSP Chips”, Electronic Design News, August 17, 
1995. 

[3] Mintzer, L. FIR filters with the Xilinx FPGA. FPGA ’92 
ACM/SIGDA, Workshop on FPGAs. pp. 129-134. 

[4] J. Valls, M. Martinez-Peiro, T. Sansaloni, and E. Boemo. 
Design and FPGA Implementation of Digit-Serial FIR 
Filters. Proceedings of the 1998 IEEE ICECS'98 (5th IEEE 
International Conference on Electronics, Circuits and 
Systems), Vol.2, pp.191-194, Lisboa, 7-10 Sept. 1998. 

[5] N.W. Bergman, Y.Y. Chung, B.K. Gunther. Efficient 
Implementation of the DCT on Custom Computers. In 
Kenneth L. Pocek and Jeffrey Arnold, editors, IEEE 
Symposium on FPGAs for Custom Computing Machines, 
pages 244-245, Los Alamitos, CA, April 1997. 

[6] R. Woods, D. Trainor, and J.-P. Heron. Applying an XC6200 
to Real-Time Image Processing. IEEE Design and Test of 
Computers, Vol. 15, No. 1, January/March 1998. 

[7] R. Grover, W. Shang, Q. Li. A Comparison of FPGA 
Implementations of Bit-level and Word-level Matrix 
Multipliers. Proc. 10th Intl. Conf. on field-programmable 
logic and applications, FPL 2000, Villach, Austria, August 
27-30, 2000, pp. 422-431. 

[8] W. Shang, B. W. Wah. Dependence Analysis and 
Architecture Design for Bit-Level Algorithms. Intl. Conf. On 
Parallel Process, vol. I, pp. 30-38, 1993. 

[9] Zhen Luo and Margaret Martonosi. Accelerating Pipelined 
Integer and Floating-Point Accumulations in Configurable 
Hardware with Delayed Addition Techniques.  IEEE 
Transactions on Computers, Vol. 49, No. 3, March 2000. 

[10] Xilinx Inc. Estimating the Performance of XC4000E Adders 
and Counters, v.2.0, July 1996. Available from: 
http://www.xilinx.com/xapp/xapp018.pdf 

[11] Xilinx Inc. XC4000 XL Electrical characteristics, v1.7, 
October 1999. 

[12] J. Valls, M. Martinez, T. Sansaloni, and E. Boemo. A Study 
about FPGA-based Digital Filters. Proc. 1998 IEEE SIPS, 
IEEE Workshop on VLSI Signal Processing: Design and 
Implementation, pp.191-201, Boston, Oct.1998. 
 

                                               

Table 4. Two LUT-based serial DA design for eight-product MAC 

Design CLBs Clock cycles Logic delay 
(ns) 

Route delay 
(ns) 

Computation 
Time (ns) 

Traditional 231 34 13.2 13.3 902.3 
Proposed (1-bit) 314 35 6.4 9.6 589.4 

 
Table 5. Two LUT-based parallel DA design for four-product MAC 

Design CLBs Clock cycles Logic delay 
(ns) 

Route delay 
(ns) 

Computation 
Time (ns) 

Traditional 151 17 13.2 13.5 480.6 
Proposed (1-bit) 270 18 6.4 9.6 346.8 

 


	Main Page
	FPGA02
	Front Matter
	Table of Contents
	Session Index
	Author Index




