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Thin titanium dioxide films were successfully prepared on titanium plates in ammonium sulfate solution with the micro-plasma
oxidation method. The thin TiO2 films were sensitized with a cis-RuL2(SCN)2·2H2O (L = cis-2, 2′-bipyridine-4, 4′-dicarboxlic
acid) ruthenium complex, and implemented into a dye sensitized solar cell configuration. The influence of current density on the
surface structure and photoelectric performance of the TiO2 films was investigated. The results show that the thin TiO2 films are
porous, and the dye-sensitized solar cell based on the film prepared at 14 A/dm2 has exhibited higher overall light-to-electricity
conversion efficiencies of 0.095% under the illumination at 40 mW/cm2.

1. Introduction

The dye-sensitized solar cell (DSSC) has attracted much
attention as the next generation solar cell during the last
decade [1, 2]. Remarkably, high enough efficiency and low
cost of manufacturing are important characteristics to make
the DSSC as a substitute of the conventional silicon and thin
film photovoltaic devices. Various methods of preparing dye-
sensitized solar cells have therefore been developed [3–5].
At present, the TiO2 photoelectrode of DSSC is usually pre-
pared by depositing a suspension or paste-containing TiO2

nanoparticles with organic additives onto conductive glass
substrates or polymer substrate [6, 7]. The deposited film is
then subject to a posttreatment with the purpose of forming
a continuous nanoparticle network with sufficient adherence
and electrical contact to the substrate and between the nano-
particles. Although the conventional preparation method of
using conductive glass substrate can achieve good intercon-
nection between particles, a batch process must include heat
treatments, which is not fast enough to produce the neces-
sary devices. In addition, the use of glass substrates with fran-
gibility limits the manufacture process and the practical ap-
plication of DSSCs. The use of plastic substrates is another
choice of the TiO2 suspension [8, 9]. However, these methods
present a weak adherence of the films to the substrates, and
obtain very thin films.

In this paper we, therefore, looked into the possibility of
developing microplasma oxidation (MPO) method to pre-
pare TiO2 thin films on the thin light titanium substrates.
This method is based on the anodic oxidation, which occurs
at potentials above the breakdown voltage of the oxide film
growing on the anode surface, such as Al, Mg, Ti, Nb, and
Zr. As the process combines electrochemical oxidation with
a high voltage spark treatment in an electrolyte bath, metal
oxides are synthesized inside high voltage breakthrough
channels across the former oxide layer. So the prepared thin
oxide films have good adherence with substrate metal and
can endure strong impact [10, 11]. In addition, the process of
preparing thin films by MPO need very short time. In this
paper, MPO in the ammonium sulfate solution with different
current densities was used to prepare TiO2 films on the sur-
face of Ti substrate. The objective of this research was to in-
vestigate the structure and surface morphology of the films
and measure their photoelectricity performance as photo
anode of the DSSC.

2. Experimental

2.1. Preparation of Films. Plate samples of a titanium sheet
(99.9% in purity) with a reaction dimension of 2 mm2 were
washed in 40% HF and 65% HNO3 (1 : 1 in volume) aqueous
solution. A home made-electrical source with the power at
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Figure 1: Results from I–V characteristics of TiO2 electrodes pre-
pared at different current density.

5 kW was used for microplasma oxidation of the samples in
a water-cooled electrolyte, and a copper sheet serves as the
counterelectrode. The reaction temperature was controlled
to below 30◦C by adjusting the cooling water flow. The elec-
trolyte used in the experiment is ammonium sulfate solution
(0.5 mol/L). The set-up scheme is shown in the past report
[12]. The whole MPO process was carried out under different
current densities (12, 14, 16, and 18 A/dm2) for 10 min. After
the treatment, the coated samples were flushed with water
and dried in air. Then, these dried TiO2 films were sensi-
tized by cis-RuL2(SCN)2·2H2O in the anhydrous ethanol
(3 mmol/L) at 40◦C for 12 h.

2.2. Characterization of Films. The photoelectrochemical ex-
periments were performed in two sandwich-type electrode
cells. The dye-coated TiO2 film was used as working elec-
trode, and transparent conducting glass (<20/Ω) as counter
electrodes. A drop of electrolyte was then placed between the
electrodes, and allowed to wet the surfaces of the electrodes
by capillary action. The electrolyte was a solution of 0.5 M
potassium iodide and 0.05 M iodine in a mixture of Ca. 80%
acetonitrile and 20% glycol. For the photocurrent-photo-
voltage measurements, the dye-sensitized TiO2 films were
illuminated through the conductive glass using a 500-W
high pressure Xe lamp with a water IR filter, and a 420 nm
long pass UV filter served as a light source as the simulating
sunlight.

The surface morphology of the films was observed on
an S-570 scanning electron microscope (SEM) from Hitachi.
The X-ray diffraction (XRD) with a Cu K source (D/max-r B
from Ricoh) was applied to study the crystalline structure of
the films with an accelerating voltage and an applied current
of 40 kV and 30 mA, respectively. Surface roughness of the
TiO2 films were examined with a digital Instruments Nano-
scope III atomic force microscope. The thickness of the films
are measured by CTG-10.

Table 1: Results from I–V characteristics of TiO2 electrodes pre-
pared at different current density.

Type (A/dm2) Voc (mV) Jsc (μA/cm2) FF η (%)

12 619 112 0.35 0.061

14 652 149 0.39 0.095

16 581 95 0.32 0.044

18 542 76 0.33 0.034

3. Results and Discussion

3.1. Photoelectricity Properties of the Films. The distinct stru-
cture of TiO2 films lead to dissimilar photoelectricity prop-
erties. A I–V curves between the TiO2 films prepared with
different current density are given in Figure 1. Table 1 shows
the averaged data extracted from I–V curve measurement on
dye-sensitized nanostructured TiO2 electrode.

As is shown in Figure 1 and Table 1, the overall efficiency
(η), open circuit voltage (Voc), and short circuit current
(Jsc) of the dye-sensitized solar cells firstly increase and then
decrease with current density of MPO. The Voc increases
from 619 to 652 mV, while the Jsc increases from 112
to 149 μA/cm2 when the current density increase from
12 A/dm2 to 14 A/dm2. The Jsc and the Voc reach maximum
at 14 A/dm2 and then decrease at the 16 and 18 A/dm2. The
highest conversion efficiency of 0.095% has been achieved for
the cell, employing the film prepared at 14 A/dm2.

3.2. Morphology of the Films. The TiO2 films prepared at dif-
ferent current densities have different surface images (see
Figure 2). It can be seen that the surface of prepared films
are mesoporous and the microporous size increase with the
current density. The mean roughness values of the TiO2 films
prepared at 12, 14, 16, and 18 A/dm2 are 110.25, 138.65,
131.36, and 128.49 nm, respectively. When the current den-
sity is 14 A/dm2, the TiO2 film obtains the largest roughness
and then decreases with the increasing of the current density.
The rough surface is propitious to absorb the sensitizer. The
thickness of the films prepared at 12, 14, 16, and 18 A/dm2

are 3.7 μm, 5.6 μm, 7.9 μm, 12.5 μm, respectively.

3.3. Structural Analysis of the Films. Figure 3 shows crystal-
line structures of the TiO2 films. It can be noticed that the
films consist of much rutile phase and less Ti substrates when
current density is below 14 A/dm2. The content of rutile
TiO2 reaches almost 100% at the current density of 16 and
18 A/dm2. And the disappearance of Ti substrate peak could
result from the increase of film thickness.

From I–V curve and SEM photographs, it can be seen
that TiO2 crystallite and pores are formed on the surface of
the Ti substrate, and this kind of films have photoelectricity
properties. From SEM photographs, the surface grain size
and the density of the pores reach the maximum at 14 A/dm2.
These changes could improve the photoelectricity properties
of the films because more mesopores can absorb more OH−

to absorb the cis-RuL2(SCN)2·2H2O, which can increase the
utilization ratio of visible light. So, the overall efficiency,
short circuit current and open circuit voltage of the TiO2 film
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Figure 2: SEM images under different current densities: (a) 12 A/dm2, (b) 14 A/dm2, and (c) 16 A/dm2.
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Figure 3: XRD of films prepared under different current densities.

prepared at 14 A/dm2 are higher than that of the films pre-
pared at 12 A/dm2. When the current density of MPO is up
to 16 A/dm2, the efficiency of the fabricated cell decline. The
reason is that the reaction temperature increases simultaneity
with the increasing of the current density, and many bigger
blocks TiO2 are formed around the pores (see Figure 2). The
sample showed inferior performance owing to the decreased
surface area, the reduction in the pore size, which is related
to the amount of dye adsorption.

4. Conclusion

In conclusion, uniform and porous thin TiO2 films have been
successfully prepared with the microplasma oxidation meth-
od in the (NH4)2SO4 electrolyte solution. This method can
prepare TiO2 electrode conveniently. A higher photoelectric
performance of TiO2 electrode is obtained when the elec-
trode is prepared by MPO under the current density of
14 A/dm2. The dye-sensitized solar cell using this TiO2 pho-
toanode exhibited the overall conversion efficiency of 0.095%
(AM-1.5, 40 mW/cm2).
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