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Supporting fault-tolerance for time-critical
events 1n distributed environments

Qian Zhu * and Gagan Agrawal
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Abstract. In this paper, we consider the problem of supporting fault tolerance for adaptive and time-critical applications in
heterogeneous and unreliable grid computing environments. Our goal for this class of applications is to optimize a user-specified
benefit function while meeting the time deadline. Our first contribution in this paper is a multi-objective optimization algorithm
for scheduling the application onto the most efficient and reliable resources. In this way, the processing can achieve the maximum
benefit while also maximizing the success-rate, which is the probability of finishing execution without failures. However, for the
cases where failures do occur, we have developed a hybrid failure recovery scheme to ensure that the application can complete
within the pre-specified time interval. Our experimental results show that our scheduling algorithm can achieve better benefit
when compared to several heuristics-based greedy scheduling algorithms, while still having a negligible overhead. Benefit is
further improved when we apply the hybrid failure recovery scheme, and the success-rate becomes 100%.
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1. Introduction

Grid or utility based computing models allow flexi-
ble use of resources by applications. Resource discov-
ery and resource allocation are among the problems
most widely studied in grid computing [3,21,27,29].
A key problem faced by applications executing in a
grid computing environment is the inherent unrelia-
bility of the resources. As one considers a variety of
commodity resources as part of a grid, resource fail-
ures could occur during the execution of an applica-
tion. Thus, resource allocation in a grid environment
should consider both the processing power and the re-
liability of the resources. However, there is only a very
limited amount of work that has considered both fac-
tors [6,12,28]. Another related problem in grid envi-
ronments is of failure recovery, i.e., continuing execu-
tion of an application when some of the resources may
fail [15].

This paper considers these two problems in con-
text of adaptive applications that perform time-critical
event handling. These are the applications where a
timely response to an important event is needed. One

*Corresponding author: Qian Zhu, Department of Computer
Science and Engineering, The Ohio State University, Columbus,
OH 43210, USA. Tel.: +1 614 292 4634; Fax: +1 614 292 2911;
E-mail: zhuq@cse.ohio-state.edu.

example could be real-time medical image processing,
where images have to be rendered at a certain level
of resolution from as many different angles as possi-
ble [24]. Another example is severe weather forecast-
ing on the Great Lakes [5] for various meteorologi-
cal information. Such time-critical and adaptive appli-
cations involve complex set of distributedly deployed
processing stages in the grid computing environment
and they are subject to a time limit. For such cases,
there could be a user provided benefit function, which
captures what is most desirable to compute. We have
been developing a middleware to support these appli-
cations [35].

Reliability is a very important factor while consider-
ing resource allocation for such adaptive applications.
Because of the strict time-limit over which a response
is needed, resource failures could lead to a signifi-
cant degradation in the application benefit, and/or a
high risk of missing the time deadline. However, ad-
dressing this problem involves several new challenges.
The overall goal in these applications is to maximize
the benefit within the pre-specified time interval. More
specifically, we want to first achieve a baseline benefit
and then maximize it. For this, we want to process the
adaptive application on the resources that are not only
efficient but also reliable. Choosing the right trade-off
between resource efficiency and reliability is extremely
important. Furthermore, because the application needs
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to meet the time deadline even when a failure occurs,
we need failure recovery mechanisms that are fast, ef-
fective and have low overheads.

This paper presents the design and implementation
of a fault-tolerance approach for supporting our tar-
get class of time-critical applications. We first propose
a reliability-aware scheduling algorithm based on the
concept of Multi-objective Optimization (MOO) to se-
lect the resources that are both efficient and reliable.
The purpose of applying this scheduling algorithm is
to minimize the possibility of resource failures during
the event processing. However, in case that the fail-
ures do occur, we propose a hybrid failure recovery
scheme that allows us to recover from failures with
limited overhead. Although there exists work on using
bi-objective optimization in grid and distributed com-
puting [12,32,33], we consider correlated failures in
our reliability model and we focus on adaptive appli-
cations with maximizing the application benefit while
satisfying the time constraint. As a result, our work is
quite distinct from the existing efforts.

Fault tolerance has been an active topic in grid com-
puting, particularly with reliability-aware scheduling
[1,6,19,28] and failure recovery [15,26]. With our goal
of achieving a baseline value of the application spe-
cific benefit function and further maximizing it within
a time interval, our fault tolerance problem is different.
Furthermore, we target Directed Acyclic Graph (DAG)
based applications, as compared to the bag of task ap-
plications that have been the focus for much of the ex-
isting work. Our work is also related to fault-tolerant
DAG based real-time scheduling, which has been stud-
ied by several researchers [8,11,20]. Both our work
and these efforts have to consider the dependency be-
tween services or tasks for resource assignment. How-
ever, the existing work on DAG scheduling with fault-
tolerance focuses on minimizing the make-span of the
application. In comparison, the problem we want to
solve in this paper is more challenging which includes
both maximum application benefit and maximum sys-
tem reliability. In achieving such a goal, we consider
the match between the resource heterogeneity and the
resource usage pattern of individual services, as well
as the reliability of the resource assignment.

The contributions we make in this paper are as
the follows. (1) A scheduling algorithm for unreliable
environments is presented, which is based on Multi-
objective Optimization (MOO). We assign application
components onto resources with goals of first achiev-
ing the baseline value of the benefit function and then
maximizing it while satisfying the time constraints,

and achieving highest success rate. (2) An effective
failure recovery scheme has been designed to recover
from resource failures and further improve the bene-
fit without missing the time deadline and (3) an in-
ference mechanism for time-critical event handling is
presented to ensure that our proposed fault tolerance
approach can always reach the baseline benefit with a
success-rate of 100%.

The rest of the paper is organized as follows. We mo-
tivate our work by two real applications in Section 2.
The system model and assumptions we make in our
models are presented in Section 3. In Section 4, we de-
scribe our scheduling algorithm for unreliable environ-
ments and the hybrid failure recovery scheme. Results
from experimental evaluation are reported in Section 5.
We compare our work with related research efforts in
Section 6 and conclude in Section 7.

2. Motivating applications

The adaptive applications we target in this work
comprise a set of dependent services. Each of these
services could have one or more service parameters,
which can be modified within the pre-specified ranges.
Examples of such parameters could be the time step
that decides the temporal granularity of a model, or
image resolution that decides the computation’s spatial
granularity. Adapting these service parameters could
impact the application benefit as well as the event han-
dling time. Our goal is to achieve the maximum bene-
fit, as per the user-defined benefit function, while sat-
isfying the time constraint. We have given a formal
model for the adaptation process and based on this for-
mulation, we have developed an autonomic adaptation
algorithm [35].

This section describes two adaptive applications that
require time-critical response to certain events. These
applications can be adapted by tuning values of mul-
tiple service parameters, with the goal of achieving an
baseline value of an application-specific benefit func-
tion and further maximizing it within the pre-specified
time interval. We now describe these applications and
the adaptable service parameters they have.

Volume Rendering: This application interactively
creates a 2D projection of a large time-varying 3D data
set (volume data) [13]. The volume data can be stream-
ing in nature, e.g., it may be generated by a long run-
ning simulation, or captured continuously by an instru-
ment. An example of the application is rendering tissue
volumes obtained from clinical instruments in real-
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time to aid a surgery. Under normal circumstances, the
system invokes services for processing and outputs im-
ages to the user at a certain frame-rate. In cases where
a notable event is detected in a particular portion of the
image, the user may want to obtain detailed informa-
tion on that area as soon as possible. For example, if
an abnormality emerges in a part of the rendered tissue
image, the doctor will like to do a detailed diagnosis in
a timely fashion.

Time may be of essence, because of the need for al-
tering parameters of the simulation or the positioning
of the instrument. In obtaining the detailed informa-
tion, there is flexibility with respect to parameters such
as the error tolerance, the image size and also the num-
ber of angles at which the new projections are done.
Details for the definition of a benefit function for this
application can be found in our previous work [35,36].
We can formally define a benefit function, which needs
to be maximized in the given amount of time and with
given resources. Let the set of all possible view direc-
tions be denoted as A. Let N, be the total number of
data blocks in the dataset. For any given data block i,
the importance value [30] and the likelihood of being
visited are denoted as /() and L(2), respectively. An-
other set of parameters includes the spatial error (SE)
and the temporal error (TE) [31]. Both of them should
be close to a pre-defined level, (SEy, TEy).

Then, the benefit function can be stated as

Benyg

N, . .
_ Z 2y 1) X L(Z)e—(SE—SEo)(TE—TEO)‘

JEA p (1)

Intuitively, Eq. (1) implies that the user wants to view
high-quality images from all possible view directions.
For each view angle §, the first factor impacting the
quality of the final image is captured by the sum of
contribution of each data block over the penalty of
choosing non-beneficial nodes (p). We further calcu-
late the contribution of data block 7 from its importance
value and the likelihood of being visited. The second
part is related to the image quality, involving the spa-
tial and temporal errors, respectively. Although none
of the tunable parameters error tolerance or image size
is directly a variable in the benefit function, different
choices of values from them would significantly im-
pact the benefit we can obtain.

As demonstrated in our previous work [36], assign-
ing the Unit Image Rendering service of this applica-
tion to a processing node /N| can adjust both the para-

meters error tolerance and image size to larger values,
which leads to more application benefit within 20 min
time limit, than executing it on node N,. Thus, in a
reliable computing environment, an effective resource
allocation scheme is critical in achieving the maximum
benefit within the time interval. However, failures of
computing nodes and network links are inevitable in
the grids. In a test, we assign services from the Vol-
umeRendering application using the scheduling algo-
rithm that we previously proposed [36], to the most ef-
ficient resources regardless of their reliability values.
One or more resource failures occur 8 times out of
10 runs for a 20 min event processing in a moderately
reliable environment. As a result, the application ben-
efit for a failed execution could drop dramatically to
50% of the benefit from a successful run.

Great Lake Forecasting System (GLFS): This appli-
cation monitors meteorological conditions of the Lake
Erie for nowcasting (for the next hour) and forecasting
(for the next day). Every second, data comes into the
system from the sensors planted along the coastal line,
or from the satellites supervising this particular coastal
district. Normally, Lake Erie is divided into multiple
coarse grids, each of which is assigned available re-
sources for model calculation and prediction. In a sit-
uation where particular areas in Lake Erie encounters
severe weather condition, such as a storm or contin-
uous rain, the experts may want to predict additional
factors, by executing other models. One possible goal
may be managing sewage disposal in this area in view
of the severe weather.

There is a strict time constraint on when the solu-
tion to these models is needed. However, while it is
desirable to run the models with high spatial and tem-
poral granularity, clearly there is some flexibility in
this regard. For example, such flexibility could be the
resolution of grids assigned to the model from a spa-
tial view, or the internal and external time steps decid-
ing the temporal granularity of model prediction. Fur-
thermore, if computing resources available are limited,
running new models in certain areas may be more crit-
ical than running those at other areas. We have defined
a benefit function for this application that is explained
in our earlier publications [35,36].

Thus, a we can formalize a benefit function as fol-
lows.

1
Benpoy = (w X R+ Ny X ZR)

M .
P(i)
x ; a0 )
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w — { 1 if water level is predicted,
0 otherwise.

Equation (2) specifies that the water level has to be pre-
dicted by the model within the time constraint since it
is the most important meteorological information. R is
a constant value for reward if this criterion is satisfied.
It also gives credits to other outputs and the number of
outputs Ny, has to be maximized. Besides outputting
useful results, the user also wants the resources to be
allocated to the models with high priority. This is cap-
tured by getting the ratio of the model priority P(z) and
its cost C'(¢). We also applied our previously proposed
scheduling algorithm to the GLFS application in a test-
ing experiment. The 1 h event handling failed 7 out of
10 runs in a moderately reliable environment and we
only obtained 45% in terms of the application benefit
from failed runs comparing to that of a successful run.

Therefore, we need a scheduling heuristic that con-
siders both the efficiency value and the reliability of the
resources. Furthermore, if a failure cannot be avoided
during time-critical event handling, there should be an
efficient failure recovery scheme which can guarantee
to achieve the baseline benefit and further improve it
within the time interval.

3. System model and assumptions

In this section, we present our system model and the
assumptions that we use in the problem formulation.
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Our discussion is divided into descriptions of the ap-
plication, target environment and reliability computa-
tions.

Application model: An adaptive application we tar-
get comprises a series of interacting services, which
are denoted as S1,S57,...,5,. One service could be
data-dependent and/or control-dependent on another
service. Not considering the possibility of circular de-
pendencies, we assume that the application has a DAG
structure, as illustrated in Fig. 1. Each service is as-
sumed to be deployed on a single node. The applica-
tion initiates one initial service, which then initiates,
directly or indirectly, all other invoked services. We as-
sume that we have at least as many nodes available as
the services, and a separate node could be used for each
service.

Each time-critical event is associated with a pre-
specified time constraint, denoted as 7, and a pre-
specified benefit function, denoted as B. A benefit
function is a mathematical function that takes certain
application parameters as input and outputs a real num-
ber. Examples of these functions were shown earlier in
Egs (1) and (2). In this work, we also propose a base-
line benefit, which is required to be obtained from the
processing. We refer to it as By.

Now, our goal is to achieve the baseline benefit By
within 7 and further maximize the value of applica-
tion benefit function B. Recall that each service, S;,
could have one or more adaptive service parameters,
which are referred to as Xg,. Such parameters could

e

ONONONONORO

1 2
R} =0.96 R2=0.92

3 4 5 6
R2=046 R$=050 RZ=0.94 R{=0.92

Efficiency Values

Services
N1 N2
St 10.82 0.46
S2 1068 0.72
Ss 054 0.56

N3

N4 Ns Ne

098 055 0.72 0.53
056 0.96 0.55 0.92
0.68 0.93 0.48

0.71

Fig. 1. Running example: Application DAG, resource reliability values and efficiency values.
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be tuned at runtime and their values significantly im-
pact resource usage and execution time of service S;,
as well as the overall application benefit.

Environment model: We assume that the grid com-
puting environment is composed of m heterogeneous
computing nodes, which we denote as Nj, N,
...»Np. The latency and bandwidth between these
nodes are assumed to be known. Assigning a service S;
to a processing node N; is associated with an efficiency
value E; ; [36], which is calculated as follows. Primar-
ily, it represents how efficient it is to process the service
S; on the node N; in terms of benefit maximization.
The other part considers the possibility of satisfying
the time constraint Te. F; ; is between 0 and 1, with
1 denoting the most efficient resource for a service.
Given a set of selected resources ©, we use B(0O) to
represent the application benefit and 7(®) to repre-
sent the execution time. Intuitively, selecting a resource
with a high E; ; for service S; could help achieve the
baseline By and further help maximize B within the
time constraint 7.

However, due to the inherent unreliability of grid re-
sources, each node NNV; or network link L; ; is associ-
ated with a reliability value. Furthermore, we are con-
sidering the possibility that the processing node with a
high efficiency value can have a low reliability value,
and vice versa. The detailed reliability model will be
discussed next. In our previous work, we have studied
how to schedule service components based on our effi-
ciency value definition in a perfectly reliable grid [36].
However, grid resources are often unreliable, and a re-
source failure could jeopardize time-critical event han-
dling. Reliability-aware scheduling is the focus of this
paper.

Reliability model: The bi-objective scheduling re-
ported in this paper needs a model for computing
reliability associated with a particular selection of re-
sources. We describe the method used in our imple-
mentation here, though it should be noted that our
scheduling algorithm is independent of the specific
method for computing the reliability.

The model we use is quite general. It considers
the possibility that in a large-scale, heterogeneous and
complex grid computing environment, resource fail-
ures are often correlated. Specifically, there could be
temporal correlation, implying there could be several
failures occurring on multiple processing nodes over
a short time interval, or a failure could appear multi-
ple times on the same node. Similarly, we also capture
spatial correlation, i.e., failures could occur simulta-
neously on multiple nodes, or a failure of a processing

node may cause another failure. In contrast, most of
the work in the literature simply assumes independent
failures [12,16].

We assume that the probability of a resource fail-
ure could increase with system uptime and the appli-
cation workload. Thus, we assume failures are Poisson
processes [12]. Finally, we consider fail-silent (or fail-
stop) failures on processing nodes and network links,
and assume the failure can be detected in a timely man-
ner.

Each processing node NV; (network link L; ;) is as-
sociated with a reliability value, denoted as R%; (R}”).

The reliability value Rév or RZI:] is defined as the prob-
ability that the node N; or the link L; ; could perform
its intended function in a unit time. As stated previ-
ously, we assume this value for each resource follows a
Poisson distribution dependent of time ¢. It has a range
of [0, 1], with 1 denoting that the resource never fails.

To be able to capture temporal and spatial corre-
lations, we use Dynamic Bayesian Networks (DBN)
[22]. Since a DBN expands the basic Bayesian network
with temporal dependency, we first discuss how to ap-
ply a Bayesian network to represent the spatial corre-
lation of failures in the system reliability model. Then
DBN is used to represent the temporal correlation of
failures.

A node in the Bayesian network represents a re-
source, i.e., a processing node or a network link. A link
connecting two nodes represents spatial reliability de-
pendency relations among those resources. Figure 2(a)
illustrates such a Bayesian network. The spatial cor-
relation between resource failures are represented as
solid lines. In the example, if both the nodes /Ny and NV,
fail, a failure of the link L; 5, which joins these two
nodes, is also likely. Now we consider the failures with
temporal correlation in the reliability model. We ex-
pand the Bayesian network to a Dynamic Bayesian net-
work by representing a node ¢ with multiple states. In
our model, the DBN is unrolled for two time-steps,
which is referred to as a discrete-time, two-slice, tem-
poral Bayes net (2TBN) [23]. Thus, N f_l and N rep-
resent the two states for the node Ny, as illustrated in
Fig. 2(a). The dotted line denotes the temporal correla-
tion between resource failures. For example, a failure
occurring on the node [V at the time-step ¢ could lead
to another failure on the link L 5, at the time-step ¢.

Given the topology of a Bayesian network and the
probability distribution values at some of the nodes, the
probability distribution value of some other nodes may
be deduced. This is known as inference in Bayesian
networks. We use R(©, T¢) to represent the probability
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(a)

Temporal
dependency

—
Spatial
dependency

(b)

Fig. 2. Example of DBN: (a) serial; (b) parallel.

of finishing the event handling with time constraints 7.
on a set of selected resources ©, without occurring a
single resource failure. The value of R(®,7;) can be
inferred from the Dynamic Bayesian network that we
previously discussed. We refer to it as reliability infer-
ence. Note that R(0,T;) is impacted by the reliabil-
ity value of an individual resource in © and the time
constraints 7T,.. We have applied an likelihood weight-
ing inference algorithm [23] to estimate the value of
R(©,T,), based on individual resource reliability val-
ues and temporal and spatial correlations. Note that we
do not assume the underlying failure distribution of the
grid computing environment has to be known a priori.
The method we use allows us to learn temporally and
spatially correlated failures.

When assigning each service component to a single
node, as demonstrated in Fig. 2(a), we refer to it as
scheduling with a serial structure. We infer the value of
R((Ny. N3, N5),20) = P(NS | L=, L15"%)x
PO % oo x PONT=20NT=19)
P(Nchzlg) = 0.86. However, in order to achieve
redundancy, a service could be assigned to multi-
ple nodes and we refer to it as scheduling with a
parallel structure. Such an example is illustrated in
Fig. 2(b). Note that we omit the temporal correla-
tion between nodes for the simplicity of presentation.
We schedule two copies of S} to nodes N; and N3
and two copies of S5 to nodes N, and Ny in the ex-
ample. The value of R({Ny, N, N3, N4, N5),20) =

1= (1= PNy =037, L0, ) x e x (1=
P(N[=2INT=="%) = 0.96.

4. Fault-tolerance approach

This section presents the solution we propose to
support fault-tolerance in handling time-critical events.
We first present two initial solutions. Then, the fault-
tolerance problem is formally formulated, and based
on this formulation, we present our scheduling algo-
rithm for unreliable resources. Finally, an efficient fail-
ure recovery scheme is proposed which cooperates
with the scheduling algorithm and targets faults occur-
ring during the event processing.

Initial solutions: As straightforward solutions to
achieve our goal, we consider the following two heuris-
tics. First, we could schedule the application onto
the most efficient resources, i.e., perform efficiency-
value based scheduling. Alternatively, we could select
the most reliable resources, i.e., perform reliability-
value based scheduling. Both these methods proceed
in a greedy way. However, it turns out that nei-
ther of these solutions is adequate for our needs.
In an experiment using these two scheduling heuris-
tics, we trigger a 20 min event for 10 times for the
VolumeRendering application. For example, as illus-
trated in Fig. 1, the scheduling heuristic based on
the efficiency value would assign S, S and S3 to
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0, = (N3, N4, Ns), with R(©1,20) = 0.28 and We demonstrate the obtained benefit percentage
B(©1)/By = 178%. While the scheduling heuristic from these two approaches in Fig. 3. The event
based on the reliability value would assign those ser- processing stops if there is a resource failure and the
vices to @y = (Ny, N, Ns), with R(©,,20) = 0.85 current benefit is taken as the final application bene-
and B(©,)/By = 72%. fit. Note that the benefit percentage is B(©)/Bj and

180%
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80%

Benefit Percentage
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Run Number

(a)
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90% - b

80%

70%

60%
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40%
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20%

10%

Run Number

(b)

Fig. 3. Benefit percentage of VolumeRendering application with different scheduling heuristics: (a) efficiency value; (b) reliability.
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failed runs are marked with X in both figures. We can
observe that when scheduling only based on the effi-
ciency value, the application can achieve up to 180%
of the baseline benefit, if there are no resource failures
during the processing. However, there are only two
successful runs from among the ten runs, and the ben-
efit from the failed ones can drop to 68% of the base-
line benefit, which is roughly % of the benefit from the
successful runs. By scheduling based on the reliability
value, sub-figure (b) illustrates that although 9 out of
10 runs are successful, the average benefit percentage
is only 70%.

The results from this experiment demonstrate that
there are usually conflicting requirements between
maximizing the benefit function and the reliability of
the application processing, and it may not be pos-
sible to simultaneously optimize both. However, the
scheduling algorithm should be capable of balancing
the application benefit value and reliability maximiza-
tion. We propose such a solution in this paper.

4.1. Problem formulation

To present our solution, we first need to present a
formal problem description. In order to achieve the
pre-defined baseline benefit By with maximum further
improvement, while satisfying the time constraint 7,
we have to select a set of resources © in a unreli-
able computing environment for the processing. That
is, both the application benefit B(0©) and reliability
R(0,T,) from the selected resources should be maxi-
mized. We apply the concept of Multi-objective Opti-
mization (MOO) to formulate this problem. It should
be emphasized that the MOO based scheduling prob-
lem with goals including both reliability and bene-
fit maximization, while meeting the time constraint
is new in the literature. Particularly, there is no di-
rect tradeoff between reliability and application ben-
efit. Therefore, both the resource reliability and effi-
ciency values could affect the application benefit.

max[B(®), R(0,1,)] 3)
satisfying the following inequality constraint

B(©) > By “4)
and the following equality constraint

T©®) =Te. (%)

In the case of MOO, two different solutions can-
not always be directly compared to each other. In

the running example, as we previously discussed, by
assigning services Sj, S» and S3 to ©®;, we have
[B(©)/By = 178%, R(©,20) = 0.28]. While with
the selected resources in @, we have [B(0,)/By =
72%, R(©,,20) = 0.85]. We cannot say O is a bet-
ter resource configuration than ©, or vice versa. Thus,
we use the concept of domination in order to compare
two resource plans in the context of our optimization
problem. A resource plan ©; dominates another re-
source plan ©,, if and only if O is partially larger than
0,(0; >, ©7)

B(©)) > B(0y) AN R(O1,T) 2 R(©,;,Te) (6)
and
B(©1) > B(©y) V R(©,1¢) > R(©,,Tc). (7)

In the absence of any preference information, a set
of solutions for © is obtained, where each solution is
equally significant. This is because in the obtained set
of solutions, no solution is dominated by any other
solution. Such a set of solutions is referred to as the
Pareto-optimal (PO) set [10]. Usually, we need to
choose a single solution from the Pareto set, as re-
quired for the implementation. We define the follow-
ing objective function as weighted sum of benefit and
reliability with a trade-off factor a.

max a X (B(0®)/By) + (1 — a) x R(©,T¢). (8)
0cPO

The trade-off factor, v, can be tuned to best fit to the
characteristics of the computing environment. We use
the Eq. (8) interactively during the search process to
find the best candidate from the Pareto-optimal set. The
detailed algorithm is presented in the following sub-
section.

4.2. Scheduling algorithm for unreliable resources

In this subsection, we first present our scheduling
algorithm for unreliable resources which has a serial
scheduling structure. Then, we discuss scheduling with
redundancy and failure recovery, which is based on the
parallel structure. We argue that our proposed schedul-
ing algorithm is independent of the reliability model
that is used.

The determination of a complete Pareto-optimal set
is a very difficult task, due to the computational com-
plexity caused by the presence of a large number of
suboptimal Pareto sets. There has been a tremendous
amount of work on Multi-objective Optimization with
the goal of finding the Pareto-optimal set [10]. In
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this paper, we adopt a recently proposed metaheuristic
called Particle-swarm Optimization (PSO) [18] as the
search mechanism. The reason is that the algorithm has
a high speed of convergence and it allows us to itera-
tively interact with the single objective function, which
we defined in Eq. (8), to find the best solution from the
approximate Pareto-optimal set [2]. Furthermore, it is
easy to balance the scheduling time and the quality of
the resource plan generated by the algorithm by adjust-
ing the convergence criteria.

One of the issues is choosing the appropriate value
for the parameter .. This parameter decides the weight
of the benefit in the overall objective. As we stated pre-
viously, the choice of this value should depend on the
characteristics of the underlying environment. We now
briefly describe a heuristic to automatically choose the
value of .

The heuristic has two main steps. In the first step,
we decide if the environment could be considered reli-
able or not. If yes, the value of a we choose is higher
than 0.5, since less weight needs to be given to relia-
bility. If not, the value of o we choose is less than 0.5.
In the second step, we further refine the value of .
To enable these steps, we generate two sets of initial
resource configurations using greedy scheduling, with
the efficiency value and reliability value as the criteria

for each. These two sets are denoted as O and Op,
respectively. For both the sets, we calculate the mean
of the reliability values. If the difference between the
mean reliability of the two sets is less than a thresh-
old, we conclude that the environment is reliable. In
our implementation, we used 0.1 as the threshold. Oth-
erwise, we conclude that the environment is unreliable.
The reason is that in a reliable environment, greedy
scheduling based only on efficiency will still lead to
high reliability.

The next step refines the value of «. If the environ-
ment is considered reliable, we increase the value of «,
starting from 0.5. After each increment, we calculate
the objective function value based on Eq. (8), for each
configuration in the set ® . The goal is to see how
we can maximize the benefit, within the set of configu-
rations that maximize reliability. This procedure stops
when there is no further increase in the value of the ob-
jective function. If the environment is considered un-
reliable, we decrease the value of «, starting from 0.5,
and work with the configurations in the set O .

We next present the scheduling algorithm in Fig. 4.
A resource configuration is referred to as a particle
in the algorithm description. The position of the par-
ticle is defined as the objective function value calcu-
lated from the Eq. (8). The velocity of the particle is

Algorithm VIL1: (RELIABILITYAWARESCHEDULING(0bj, S, T¢))

INPUT

obj: the objective function

S: set of service components
Te: Time constraint for the event

OUTPUT

©: the optimal resource plan
CalculateEfficiencyValue(S);

P = InitializeParticles(S); // initialization of particles

while (true)
for each ©; € P

//calculate B(®) and R(©,T;)
p; = CalculateObj(obj, ©;);

if p; > pBest,;

pBest; = p;; /lupdate local optima
gBest = maxg,c p(pBest;); //update the global optima

for each ©;, € P

/lupdate resource assignment
v; = v; + C x r1 X (pBest; — p;)
+ Cy X 1y X (gBest — p;);

0, =0; +v;

if (convergence criteria is met)

break;

Fig. 4. Fault tolerant scheduling algorithm.
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defined as change to the current resource configura-
tion by assigning one of the service components to an-
ther node. The algorithm begins with calculating the
efficiency values, and proceeds with searching for op-
tima by updating generations. In every iteration, we
first update each resource configuration by following
two best values. One is the optimal objective function
value achieved by a particular particle, which is re-
ferred to as pBest in the algorithm. The other is the op-
timal objective value achieved by any particle and we
denote it as gBest. After both of them are updated, we
try to explore more resource configurations by chang-
ing resource assignments based on the two formulas
we present in Fig. 4. Note that | and 7, are random
numbers between 0 and 1 and ¢y = ¢ = 2, which
are the learning factors in our approach. This iterative
procedure stops when there is no significant gain with
regard to either benefit or reliability. We return the par-
ticle with the gBest as the optimal resource configura-
tion.

Example: Applying the proposed scheduling algo-
rithm to the example in Fig. 1, we decide to choose
the resource plan ©3 = (N, Ng, Ns), which leads
to [B(©3)/By = 186%, R(03,20) = 0.85]. It is ob-
vious that ®3 dominates both ®; and ©®,, which we
had obtained earlier from our two simple heuristics. In
other words, the resource configuration generated by
our proposed scheduling algorithm can achieve better
benefit and success-rate. The reason our MOO based
scheduling algorithm outperforms the two initial so-
lutions is as the following. Recall that the efficiency-
based heuristic selects the nodes with the highest
efficiency values. In comparison, our proposed algo-
rithm is able to select the resources with efficiency val-
ues that are very close to the highest possible, while
achieving much higher reliability. That is why we
choose node | over N3 in resource configuration @3
for service S; assignment. Although F;3 = 0.96 is
larger than E;; = 0.82, node N; is more reliable
than N3 (0.96 vs. 0.46). Similar reason could apply to
the reliability-based heuristic. We argue that the real
grid computing environments can have resources that
vary in capacity, and/or reliability based on either het-
erogeneity or workloads/usage. Our MOO based algo-
rithm will not apply to the case where there are either
highly efficient resources with very low reliability val-
ues, or there are highly reliable resources but very in-
efficient.

We repeated the experiment using our proposed
scheduling algorithm and observed that due to the un-
reliability of resources, there are still 2 failures in the

10 runs. The benefit percentage for the failed runs is
86% on average. We discuss how to successfully com-
plete the event handling when the resource failures do
occur in the next subsection.

4.3. Discussion

We now discuss the following three characteristics
of the algorithm. First, the value of the parameter
in Eq. (8) is automatically chosen from the algorithm
we proposed and it is not based on any priori knowl-
edge of the reliability distribution of the underlying en-
vironment. In a highly reliable environment, this value
should be close to 1, in order to favor the applica-
tion benefit. Whereas, if most resources are unreliable,
a should be closer to 0, to favor the reliability. Sec-
ond, our scheduling algorithm generates resource map-
pings where the pre-specified baseline benefit is guar-
anteed to be achieved within the time interval, provided
the run is successful, i.e., no failures occur. This is
achieved by inferring the benefit that could be obtained
from a resource plan based on the efficiency value of
the individual nodes. We refer to it as benefit inference.
Finally, we have to balance the scheduling overhead
and actual processing time so that the time-critical
event can be successfully processed within the pre-
specified time constraint, even in presence of failures.
This is referred to as time inference. We now present
benefit inference and time inference in detail.

Benefit inference: Recall that every time-critical
event is associated with a baseline benefit, which is re-
quired to be achieved for event processing during the
specified time constraint. In order to guarantee such
a baseline benefit, our proposed scheduling algorithm
should be able to estimate the benefit that could be ob-
tained given the resource configuration generated from
our algorithm. Particularly, the value of each adaptive
service parameter within a certain amount of time is
first estimated. Then, based on the learned relation-
ship (fg(x)) between these parameters and the appli-
cation benefit [35], we can infer the benefit that could
be obtained from the selected resources. Specifically,
the value of each adaptive service parameter is esti-
mated as follows. For each of the services, we collect
multiple tuples, where each tuple is of the format d;,, =
(Emstm, Tm). Em is the efficiency value associated
with executing this service on a particular node and
is formally defined in [36]; ¢;, is the execution time
and z,, are the values which the adaptive service pa-
rameters converge to at the end of execution. Now we
regress the relationship between the efficiency value
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and the values of the parameters. Such relationship is
denoted as fp(F,t). Note that we consider the execu-
tion time in this relationship for two reasons. First, the
efficiency value is dependent on the time constraint.
Thus, same value of the efficiency value with various
time constraints will cause the adaptive service para-
meters to converge to different values. Second, in the
case where the service is hosted on the same processing
node with different time constraints, we will have the
parameters converging to different values. Therefore,
given a time-critical event with the baseline benefit B
and the time constraint T, the application benefit can
be estimated based on the resource configuration gen-
erated from our scheduling algorithm as the following
(assume service S; is hosted on node N;):

Best = fB(XSZ'),
Xg, = [p(Ei ;. Te) fori=12,...,n.

where Xg, € 5; and
)

The resource configuration will be discarded if
Best < Byg. As we demonstrate in the experimental
evaluation, the benefit inference is accurate and our
scheduling algorithm can always generate the resource
configuration to achieve the required baseline benefit.

Time inference: The time constraint associated with
an event is divided into two parts, i.e. the scheduling
overhead, denoted as t5, and the actual event process-
ing time, denoted as ;. Intuitively, a longer schedul-
ing time could generate a better resource configuration.
However, we need to make sure the benefit we gain is
worth the price we pay for increasing the scheduling
overhead, and thus reducing the actual time available
for processing. Furthermore, more time for failure re-
covery will be reserved if the estimated system relia-
bility value is small. Effectively distributing the avail-
able event processing time T to ¢ and £, is quite chal-
lenging. We propose the following heuristic to solve
the problem.

Recall that our reliability-aware scheduling algo-
rithm stops when there is no significant gain with
regard to either benefit or reliability, as illustrated
in Fig. 4. Such convergence criteria can be varied
to trade-off the scheduling time and gquality of gen-
erated resource configuration. A small value of the
convergence criteria could be significantly compute-
intensive, thus causing a large scheduling overhead.
Meanwhile, the solution would also be close to the
optimal to the MOO problem, i.e. the adaptive appli-
cation executed on such selected resources will lead
to a large value of benefit with a high probability of

avoiding resource failures during processing. On the
other hand, we can reduce the scheduling overhead by
setting the convergence criteria for the algorithm to a
large value. However, the generated resources could be
less efficient and/or unreliable. Therefore, during the
training phase, we vary the convergence threshold and
record the corresponding scheduling time and applica-
tion benefit obtained from the generated resource con-
figurations. Note that we have a fixed set of candidate
values for the convergence criteria and each of them is
associated with a significantly different level of appli-
cation benefit that can be achieved.

Next, we need to take into account the failure recov-
ery time if a resource failure occurs during the event
processing. In this work, we consider the failures on
processing nodes and network links. During the ex-
periments, we observe that the time to recover from a
node/link failure is consistent. Thus, we believe the av-
erage statistics will be a good estimate for such recov-
ery time. Specifically, T} refers to the estimated time
to recover a network link or a processing node failure.
Finally, we relate the reliability value of the selected
resources with the number of failures that occurs dur-
ing the event processing. Such relationship is denoted
as fp(r), where r = R(O,T;) and it is the reliabil-
ity value from the generated resource configuration ©
given time constraint 7. Based on the learned relation-
ship (f7(x)) between adaptive service parameters and
the application execution time [35] and Eq. (9) to esti-
mate parameter values, we distribute T to scheduling
overhead and actual processing time as follows. For
each candidate convergence criteria, we assign ts to the
recorded scheduling time. Then ¢, = T, — %5 and it has
to satisfy the following constraint:

tp > fr(Xs) +m x Ty,
where m = fr(r)andi=1,2,...,n. (10)

Then the candidate with the largest benefit while meet-
ing the constraint in Eq. (10) will be taken.

Together, reliability, benefit and time inferences fa-
cilitate a synergy of the failure recovery scheme with
our reliability-aware scheduling algorithm. In the fu-
ture, we will work on how to automatically tradeoff the
scheduling overhead and the quality of the generated
resource configuration.

4.4. Failure recovery scheme

Although our scheduling algorithm chooses
resources so as to reduce the possibility of resource
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failures during the processing, it is still possible that a
failure may occur and interrupt the processing. Thus,
an effective failure recovery scheme is necessary.

A simple solution could be based on replication.
We can create multiple copies of the entire application
and schedule all of the copies. To evaluate how this
approach will work, we trigger an event requiring a
20 min response, using the VolumeRendering applica-
tion. We use 4 copies of all services associated with the
application. The results from repeating this experiment
10 times are shown in Fig. 5. As we can see, all 10 runs
are successful. However, the obtained benefit percent-
age is an average of 96%. This is due to the significant
overhead of maintaining and switching between multi-
ple copies.

We propose a hybrid failure recovery scheme as an
enhancement to our proposed scheduling algorithm.
A key observation we use is that services that are not
the initial service, as often invoked repeatedly by their
parent(s) in the DAG, there is often only a very small
amount of state that needs to be preserved between
these invocations. Such a small amount of state can
be easily checkpointed. Such checkpoints are first up-
dated locally, and then they are transferred to a reli-
able node for storage and retrieval. For services where
such low-cost checkpointing is not possible, we have
to schedule multiple copies. In our implementation,
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we use checkpointing for the service where the size
of its state is less than 3% of the memory consumed
by the service. Furthermore, all copies start processing
when the service is invoked by another service, and the
copy that finishes processing first will be considered as
the primary. In the running example, both service S}
and S are replicated with two copies each, while S3
will be checkpointed during its execution. We set the
reliability value of the service with checkpointing as
0.95.

Such a combination of checkpointing and replica-
tion of services can allow failure recovery. Further-
more, the point at which the failure occurs impacts
the decision of choosing the recovery strategy, as sug-
gested by the reference mechanism. We consider the
following three cases.

Close-to-start: If the failure occurs shortly after the
processing begins, we simply ignore what has been
done up to the failure point. This is because it is very
likely that the processing performed so far is not very
useful, and the loss of such a short period of time will
not significantly impact the benefit achieved.

Middle-of-processing: We want to resume from the
failure point since useful processing has been done. We
can resume the services using the stored checkpoints
or switch to another copy, depending upon the service.
The failure recovery may cause overhead, however, re-
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. 5. Benefit percentage of VolumeRendering: Multiple application copies.
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trieving the past processing information helps us im-
prove the achieved benefit.

Close-to-end: If the failure occurs very close to the
end of time-period for processing, we simply stop
processing at this point. This is because any recovery
may not help improve the benefit any further.

5. Experimental evaluation

This section presents results from a number of ex-
periments we conducted to evaluate our reliability-
aware scheduling algorithm and the hybrid failure re-
covery scheme.

5.1. Algorithms compared, metrics and goals

For comparison, we used three alternative schedul-
ing heuristics. Greedy-E chooses the resource assign-
ment only based on the efficiency value we discussed
in Section 4. The Greedy-R chooses the resources only
based on their reliability values. The third heuristic
takes both the efficiency value and the reliability value
into account and resources are ranked by the product
of these two values. We refer to it as Greedy-E x R.

In order to evaluate our proposed failure recovery
scheme, we compared it with a simple redundancy
based approach where r copies of the entire appli-
cations are scheduled and each copy uses a different
adaptation strategy. We vary the value of parameter r
from 2 to 5 for different grid environments. The high-
est benefit obtained from copies that can complete suc-
cessfully within the time interval is taken as the result.
We refer to this approach as With Application Redun-
dancy.

To evaluate the performance of our approach against
Greedy-E, Greedy-R and Greedy-E x R, we use the
following two metrics: (1) Benefit Percentage: This
shows the benefit obtained from the scheduling algo-
rithm, as a percentage of the pre-defined baseline ben-
efit. Recall that the baseline benefit is specified as be-
ing a requirement from the user. (2) Success-Rate: The
success-rate is defined as the percentage of the time-
critical events successfully handled within the time in-
terval. While the goal of each scheduling algorithm is
to have a 100% success-rate, it does not always hap-
pen because of the limitations of the scheduling algo-
rithm and resource failures that occur during the event
processing.

Using the three scheduling heuristics and the above
two metrics, we designed the experiments with the

following goals: (1) Demonstrate that our proposed
reliability-aware scheduling algorithm can generate an
efficient resource configuration, which leads to high
benefit and success rate, (2) the scheduling overhead of
our algorithm is negligible, and the algorithm is scal-
able, (3) demonstrate that when there are one or more
failures during the event handling, our proposed hybrid
failure recovery scheme can improve the benefit over
what is achieved by our scheduling algorithm.

5.2. Experimental setup

We emulated grid environments using two Linux
clusters, each of which consists of 64 computing
nodes. One cluster has dual Opteron 250 (2.4 GHz)
processors and the other has dual Opteron 254
(2.4 GHz). Each processing node has 8 GB of main
memory and 500 GB local disk space, and is intercon-
nected with switched 1 Gb/s Ethernet. The two clusters
are located in different buildings, about 0.5 miles apart,
within the Ohio State university campus and are con-
nected using two 10 Gb/s optical fibers. We emulated
two Grid sites with each representing a 64 node cluster.
The emulator we used is GridSim [7] with time-shared
round robin scheduling for each processor.

In order to emulate various real-world resources in
computational grids, we emulated the following three
grid environments in terms of resource reliability:

e HighReliability: A highly reliable environment
where most of the resources do not fail during the
application processing. This was emulated using
the complement of a normal distribution (¢ = 1,
0 = 0.05).

e LowReliability: A highly unreliable environment
where most of the resources fail frequently during
the application processing. This was emulated us-
ing the a heavy-tailed distribution (1-Pareto(a, b)
with parameters a = 1, b = 0.2).

e ModReliability: A moderately reliable environ-
ment with a mix of reliable and unreliable re-
sources. This was emulated using a uniform dis-
tribution with mean of 0.5.

Furthermore, in order to emulate the temporally and
spatially correlated failures, we have applied the tem-
poral/spatial correlation model of failures studied in
high performance computing systems from [14]. Most
of our experiments were performed in a highly het-
erogeneous environment where, the processor architec-
ture, CPU speed, memory size and network bandwidth
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Details of the VolumeRendering and GLFS applications

Application Services Dataset
Preprocessing Rendering
VolumeRendering WSTP tree construction service Unit image rendering service 7.5 GB
Temporal tree construction service Decompression service (30 time steps)
Compression service Image composition service
GLFS POM model service (2-D mode) POM model service (3-D mode) 21.0 GB

Grid resolution service

Linear interpolation service

vary significantly. We followed the resource models
studied in [17].

The experiments we report were conducted using
two applications, i.e., VolumeRendering and GLFS,
which were described previously in Section 2. The de-
tails of both applications are listed in Table 1. There are
three adjustable service parameters in the VolumeRen-
dering application. The wavelet coefficient, denoted
as w, is from the Compression Service. Both error tol-
erance and image size, denoted as 7 and ¢, are para-
meters in the Unit Image Processing Service. The ben-
efit function is defined using Eq. (1). We observed that
a smaller value of 7 yields more benefit from Benyg.
The correlation between ¢ and Benyg is positive. Fur-
thermore, 7 impacts Benyg more significantly than ¢
does. For this VolumeRendering application, if one or
more service components encounter resource failures
during the time-critical event handling, the value of the
adaptive service parameters, i.e. error tolerance or im-
age size, should be retrieved and the communication
with its invoker or invokee services should be recov-
ered. Otherwise, images would not be rendered with
the required resolutions or we will miss certain display
angles. The second application is referred to as GLFS.
The tunable parameters in this application are the num-
ber of internal time steps (7;), number of external time
steps (1) and grid resolution (#). They are from POM
Model Services and the Grid Resolution Service, re-
spectively. The benefit function for GLFS application
is defined in Eq. (2). Through the experiments, we ob-
served that there is a relationship between Benpgys and
T; and Tg. Furthermore, the correlation is negative for
Te and positive for T;. Similarly, the GLFS applica-
tion should retain the value of its adaptive parameters,
i.e. the grid resolution, internal and external time steps
in the presence of resource failures. They are used to
predict the most important meteorological information.
Therefore, occurrence of failures can cause degrada-
tion of application benefit or delay for an adaptive ap-
plication.

5.3. Performance of scheduling algorithm

In this subsection, we evaluate the performance of
our approach against Greedy-E, Greedy-R and Greedy-
E x R with respect to the two metrics, i.e., benefit per-
centage and success-rate. We also compare the over-
head of different approaches.

Benefit percentage comparison: We now compare
our proposed scheduling algorithm against the three
heuristics. In this experiment, we demonstrate that our
approach can assign service components to resources
that are both efficient and reliable. Thus, we can always
achieve the baseline benefit as well as a high success-
rate.

First, we show how the VolumeRendering applica-
tion could benefit from our reliability-aware schedul-
ing algorithm in terms of minimizing the possibility of
resource failures for benefit maximization. During the
processing, we invoked multiple time-critical events,
with the time constraints being 5, 10, 15, 20, 25, 30,
35 and 40 min, respectively. For each event, we exe-
cuted 10 runs and report the average value. Note that
if a resource fails, we stop the processing and take
the current benefit as the final result. We considered
the application benefit as defined in Eq. (1). The ben-
efit percentage, which is the ratio of obtained bene-
fit over the baseline benefit, is shown in Fig. 6. The
three sub-figures consider cases with different levels of
reliability. We make the following observations from
the results. First, our approach can always achieve the
pre-defined baseline benefit. This demonstrates that
the scheduling algorithm can minimize the possibility
of failures without sacrificing the application benefit.
Note that there could be up to 2 out of 10 runs which
fail to achieve the baseline benefit. Later we show how
our proposed hybrid failure recovery scheme will help
achieve the goal even in presence of failures. Second,
the benefit percentage is further improved up to 206%,
168% and 110% in highly reliable, moderately reliable
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Fig. 6. Benefit percentage comparison of our approach with three scheduling heuristics: VolumeRendering — (a) highly reliable environment;
(b) moderately reliable environment; (c) highly unreliable environment.

and highly unreliable environments, respectively. We
also observed that the obtained benefit decreases in less
reliable environments because of a higher possibility
of resource failures.

We believe the further improvement over the base-
line benefit is achieved because that our scheduling al-
gorithm can interactively adjust the value of the para-
meter « in Eq. (8). Thus, it can favor nodes with high
efficiency values in a highly reliable environment, or
focus more on the reliability values when most nodes
are unreliable. To further illustrate this issue, the ob-
tained benefit and success rates of a 20 min event are
shown as a function of « in Fig. 7(a) and (b). The max-
imized benefit with a 90% success rate is achieved by
tuning the parameter « to be 0.9 in the highly reliable
environment. Whereas, o = 0.3 yields the best bene-

fit with a success rate of 100% in the highly unreliable
environment. In the moderately reliable environment,
the benefit peaks when « is 0.6. The values of « we ob-
tained for these three cases were automatically decided
by the method we had described earlier.

Finally, an observation can be made that the benefit
gain increases as the time constraints associated with
the events increase. The reason is that we can use a
higher scheduling time to select resources for applica-
tion performance optimization.

In comparison, the benefit percentage from
Greedy-E could achieve 182% and 106% in highly
and moderately reliable environments, respectively,
but only achieves 62% in the highly unreliable en-
vironment. Similar observations can be made for the
Greedy-E x R heuristic. The reason is that when the
reliability is not a concern, considering only the effi-
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ciency value for scheduling can achieve good perfor-
mance. However, with unreliable resources, the ratio
drops dramatically. Even with Greedy-E x R, where
both the efficiency value and the reliability value are

considered, simply taking the product does not gener-
ate a resource assignment with smaller probability of
failures. We argue that our proposed scheduling algo-
rithm outperforms the Greedy-E x R heuristic because
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the latter chooses a node with a large value of the prod-
uct of the efficiency and reliability values. However,
this could lead to a problem in the case when the node
is relatively inefficient yet with a high reliability value
(to make the product value large), and environment is
reliable. In such a case, the efficiency value should be
favored with regard to benefit maximization, which is
what our approach does. Note that the Greedy-E x R
heuristic achieves 18% less benefit compared to our
approach in the moderately unreliable case. The third
heuristic we compared with, which is Greedy-R, did
not reach the baseline benefit in three computing en-
vironments. This is due to the fact that some reliable
resources could be very inefficient and focusing only
on the reliability could degrade the application benefit
significantly.

The benefit experiment was repeated using the
GLFS application. We invoked time-critical events

with 1, 2, 3, 4 and 5 h as the time constraints. Re-
sults are demonstrated in Fig. 8(a)—(c), for highly re-
liable, moderately reliable and highly unreliable en-
vironments, respectively. Similar observations can be
made for this application. The benefit percentage from
our scheduling algorithm is up to 220%, 172% and
117% in the three environments. Whereas, Greedy-E
could achieve 176%, 128% and 87% on average and
Greedy-E x R achieves 143%, 158% and 91%. Simi-
larly, Greedy-R can hardly reach the baseline benefit.
Success-rate comparison: Next we compared the
performance of the four scheduling algorithms in terms
of the success-rate. We first carried out the experiment
using the VolumeRendering application. As illustrated
in Fig. 9(a), in a highly reliable environment, we can
achieve 90-100% from our algorithm. In comparison,
the success-rate for Greedy-E and Greedy-E X R is
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Fig. 9. Success-rate comparison of our approach with three scheduling heuristics: VolumeRendering — (a) highly reliable environment; (b) mod-

erately reliable environment; (c) highly unreliable environment.

80% and 90%, respectively. The Greedy-R can achieve
100% success-rate. In an environment where resources
rarely fail, selecting the resources regardless of their
reliability values will not significantly impact the ap-
plication performance. In such a case, we tune the
weight factor v in Eq. (8) to favor the resource effi-
ciency value. Therefore, we can achieve better bene-
fit while minimizing the possibility of resource failure
during the event handling, comparing to the other three
heuristics. When the application is executed in a highly
unreliable environment, as the shown in Fig. 9(c), the
success-rate of Greedy-E and Greedy-E x R dramati-
cally drop to 40% and 60%, respectively. This also ex-
plains the benefit percentage drop we discussed pre-
viously. Now our approach tunes the o parameter to
favor the resource reliability. Thus, we can still reach
the baseline benefit with the success-rate of 80%. Note

that failure recovery is not invoked for this experiment,
as we consider this in the next subsection. Similar ob-
servations can be made from the moderately reliable
environment, as illustrated in Fig. 9(b). We also used
the GLFS application for the success-rate comparison.
Results are demonstrated in Fig. 10. The GLFS appli-
cation using our algorithm can achieve 100%, 90% and
80% in the three computing environments, outperform-
ing other approaches.

Scheduling overhead and scalability: We now evalu-
ate the overhead of our scheduling algorithm and com-
pare it with the overhead of the other three heuristics.
We first used VolumeRendering application and the re-
sults are shown in Fig. 11(a). Note that the schedul-
ing overhead is not dependent on the resource reliabil-
ity. As shown in the figure, when the time constraints
associated with events get longer, our algorithm spent
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Fig. 10. Success-rate comparison of our approach with three scheduling heuristics: GLFS — (a) highly reliable environment; (b) moderately

reliable environment; (c) highly unreliable environment.

more time on generating the resource configuration.
Our algorithm scheduled the application with six ser-
vice components onto 2 emulated grid sites, each with
64 nodes, in 6.3 s in the worst case. It is less than 0.3%
of the application execution time, which is 40 min.
In comparison, the other three heuristics only caused
1 s or less. Although our approach is several times
slower, processing applications on the resources se-
lected by our algorithm can achieve much better benefit
and success-rate. The overhead of scheduling was also
measured for the GLFS application and similar trend
was observed.

Furthermore, we evaluated the scalability of our
scheduling algorithm and we demonstrate the result
in Fig. 11(b). For this experiment, we simulated 640
processing nodes for a grid computing environment
that is moderately reliable. We generated a synthetic

application with the number of service components
varying as 10, 20, 40, 80 and 160. Dependencies are
involved in each case. We compare our proposed al-
gorithm with the Greedy-F X R heuristic, since it has
the most scheduling overhead among the heuristics we
have considered in this paper. We have observed that
the scheduling overhead increases linearly as the num-
ber of services increases and it takes less than 49 s to
schedule 160 service components on 640 nodes. This
demonstrates that our scheduling algorithm is scalable.

5.4. Performance of the failure recovery scheme

We now evaluate our proposed failure recovery
scheme. We first apply the failure recovery scheme to
the three scheduling heuristics, i.e., Greedy-E, Greedy-
E x R and Greedy-R, and evaluate the obtained ben-
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Fig. 11. (a) Scheduling overhead comparison of our approach with three heuristics: VolumeRendering — (b) scalability.

efit percentage with failure recovery enabled. Then,
we show how our fault tolerance approach can achieve
the baseline benefit and further maximize it, within
the time constraint, by working synergistically with

the proposed failure recovery scheme. The results of
the first set of experiments from the VolumeRender-
ing application are shown in Fig. 12. The results show
that our proposed failure recovery has a very low over-
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Fig. 12. Benefit percentage comparison of the three scheduling heuristics with our failure recovery scheme: VolumeRendering — (a) highly reliable
environment; (b) moderately reliable environment; (c) highly unreliable environment.

head. In a highly reliable environment, where resource
failures occur very infrequently, the benefit obtained
from Greedy-E and Greedy-E X R increased up to
44% and 47%, respectively, by cooperating with our
proposed failure recovery scheme. Such improvement
can also be observed in the moderately reliable envi-
ronment. We are able to achieve up to 38% and 29%
for those two scheduling heuristics. The number of re-
source failures that could occur during event process-
ing is reasonable so that failures can be quickly recov-
ered, without consuming a large portion of the total
time. The obtained benefit increased since we are able
to achieve 100% success rate. However, in the highly
unreliable environment, the achieved benefit is still be-
low the baseline. With a detailed analysis, we found out
that failure recovering can take up to 12% of the total
processing time, due to a very large number of resource
failures. Not considering the resource reliability prop-
erly, Greedy-E and Greedy-E X R select resources that
could cause such frequent failures. For the Greedy-R

heuristic, the benefit did not improve significantly in
the three environments with failure recovery enabled.
This is because the success rate of Greedy-R is already
very high. Thus, it can barely benefit from using fail-
ure recovery schemes. This set of experiments demon-
strate the importance of minimizing the probability of
incurring resource failures during event processing, as
part of the scheduling algorithm.

Next we demonstrate effectiveness of our fault tol-
erance approach, which is based on a reliability aware
scheduling algorithm and a failure recovery scheme.
The results of this set of experiments from the Vol-
umeRendering application are presented in Fig. 13.
The results show that we could further improve the ob-
tained benefit, while achieving a 100% success-rate, in
the presence of resource failures. Note that there are
one, three, and five failures that occurred during ap-
plication processing in the highly reliable, moderately
reliable, and highly unreliable environments. We refer
to the application execution without invoking any fail-
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Fig. 13. Benefit percentage comparison of our failure recovery scheme: VolumeRendering — (a) highly reliable environment; (b) moderately

reliable environment; (c) highly unreliable environment.

ure recovery as Without Recovery. Recall from Sec-
tion 5.1, the approach that simply schedules multiple
copies of the entire application is referred to as With
Redundancy. We denote our approach as the Hybrid
Approach. When comparing against Without Recov-
ery, our proposed hybrid failure recovery scheme can
improve the benefit percentage to 8%, 20% and 33%,
in the three computing environments. Furthermore, the
success-rate is increased to 100%. The reason is that
by applying the failure recovery scheme, we incur the
cost of maintaining checkpoints and synchronizing the
status of multiple service copies. In the case where fail-
ures occur rarely, the relative improvement is small be-
cause of this overhead. However, as the failures oc-
cur more frequently, the recovery procedure is invoked
more frequently. This leads to a more significant bene-
fit gain. Meanwhile, our scheme always achieve 100%

success-rate. We also compared our scheme with With
Redundancy. An obvious drawback for this approach is
the high overhead. Furthermore, it is hard to schedule
redundant copies to resources where an successful run
with a high benefit could be obtained, in a highly het-
erogeneous environment. Thus, our proposed failure
recovery scheme outperforms the With Redundancy by
6%, 8% and 12% in the three computing environments.
We repeat this experiment using the GLFS application
and the results are presented in Figs 14 and 15. Similar
observations can be made. The benefit obtained from
Greedy-E and Greedy-FE x R improved by 46% and
47% in highly reliable and moderately reliable envi-
ronments, respectively. Our proposed failure recovery
scheme can achieve 6%, 18% and 46% more benefit
comparing to that from the Without Recovery version.
It is 4%, 9% and 12% better when we compare the ob-



Q. Zhu and G. Agrawal / Supporting fault-tolerance for time-critical events in distributed environments

240° Il Greedy with E + Hybrid
0%| I Greedy with E*R + Hybrid
220%|[___]Greedy with R + Hybrid b
200%

o 180%[
[=2]
£ 160%
Q
S 140%F
()
< 120%[
© 100%- - - - - --
[}
@ go%

60%F

40%F

20%F

0
1 2 3 4 5
Time Constraints (Hour)
(a)

Benefit Percentage

73

Il Greedy with E + Hybrid
[ Greedy with E*R + Hybrid
[]Greedy with R + Hybrid b

180% 1

220%

200%

160% 4
140% 4
120% 4
100% = = = = - -- - - -
80% 4
60% - 4
40% - 4
20% 4

0
1 2 3 4 5

Time Constraints (Hour)

(b)

120% Il Greedy with E + Hybrid

[ ]Greedy with R + Hybrid

[ Greedy with E*R + Hybrid

100%F == === === === ---=--=c-"---

80%

60% -

Benefit Percentage

40%[

20%[

1 2

4 5

Time Constraints (Hour)

(©

Fig. 14. Benefit percentage comparison of the three scheduling heuristics with our failure recovery scheme: GLFS — (a) highly reliable environ-
ment; (b) moderately reliable environment; (c) highly unreliable environment.

tained benefit percentage with With Redundancy, for
the three cases, respectively.

6. Related work

We now discuss the research efforts relevant to our
work from the areas of fault tolerance in grid comput-
ing and DAG-based real-time scheduling in the pres-
ence of failures.

Fault tolerance in grid computing: We particularly
focus on efforts that apply reliability-aware scheduling
or perform failure recovery. Reliability-aware schedul-
ing has been widely studied [1,6,12,19,28]. Close to
our work, Sonnek et al. [28] propose an adaptive algo-
rithm to choose the number of replicas for each task.
Our work is different because the adaptive applications
we target comprise a DAG of services. Our scheduling
algorithm needs to consider the dependence between
the services as well as the match between the resource

capacity and the resource consumption of individual
services.

Many research efforts have contributed to failure re-
covery in a grid computing environment [15,26,34].
Schulz et al. [26] focus on taking checkpoints at the
application level for parallel programs, using com-
piler technology to instrument code and enable self-
checkpointing and self-restarting. Zhang et al. [34]
propose a primary-backup protocol using Open Grid
Services Infrastructure (OGSI) and implement it using
Globus Toolkit. Our hybrid strategy chooses between
replication and checkpointing, based on the character-
istics of a service. The advantage of our proposed ap-
proach is lower overhead and a faster recovery time,
as is critically required for deadline-driven processing.
Migrating tasks to other resources in the presence of
failures has also been studied in the grid computing
community [9].

DAG-based real-time scheduling in presence of fail-
ures: Existing work on real-time scheduling mainly fo-
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ment; (c) highly unreliable environment.

cuses on minimizing the make-span of the application
or making it satisfy certain time constraints, in pres-
ence of resource failures [8,11,20]. Here we only con-
sider the work that involves DAG-based applications
and where both the computing nodes and network links
failures are taken into account. Dima et al. [11] pro-
pose an off-line scheduling algorithm that uses an ac-
tive replication of tasks and communications to tolerate
a set of failure patterns. Satyanarayana et al. [25] first
assign time deadline to individual subtasks without vi-
olating their precedence constraint, and then apply the
passive replication by scheduling both the primary and
backup copies of each sub-task. Our work has the fol-
lowing distinctive aspects. First, we consider heteroge-
neous resources. Second, besides completing the event
within the pre-specified time interval, we also want to
achieve the baseline benefit and further improve on it,

which is more complex than the minimization of the
application make-span.

Since our scheduling task has two objectives, i.e.,
maximizing application benefit and reliability, to
achieve, our work is also related to the problem of bi-
criteria scheduling [4,12,27,33]. Assayad et al. [4] pro-
posed a list scheduling heuristic with the goal of min-
imizing the scheduling length, while maximizing the
system reliability. Singh et al. [27] applied the multi-
objective optimization concept and used a genetic al-
gorithm to minimize both the resource provisioning
cost and application make-span. We have also used the
Pareto-optimal set and we applied the Particle-swarm
Optimization algorithm to generate the best resource
configuration, given the compromise objective func-
tion. The advantage of our proposed algorithm is that
we can achieve faster convergence by searching the re-
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source configuration candidates that lead towards the
objective function.

7. Conclusion

A key problem faced by applications executing in a
grid computing environment is the inherent unreliabil-
ity of the resources. In this paper, we have focused on
the problem of supporting fault-tolerance for adaptive
applications. Our goal is to achieve the baseline bene-
fit and further improve it within the pre-specified time
interval for a processing event, when resource fail-
ures can occur. We have proposed a reliability-aware
scheduling algorithm based on the concept of Multi-
objective Optimization (MOO). Furthermore, when a
resource failure does occur, we use a hybrid failure re-
covery scheme for efficient recovery. We have applied
our approach to two adaptive applications, namely,
VolumeRendering and GLFS. Experimental evalua-
tion has demonstrated that by applying our proposed
scheduling algorithm, the obtained benefit can always
achieve the baseline and further improve it up to 206%,
with a success-rate of 80% . If combined with failure
recovery, the obtained benefit improves up to 33% and
the success-rate is now 100%. Furthermore, the over-
head of the our scheduling algorithm is very low, for
example, less than 0.3% for a 40 min event.
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