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This paper explores wildfire modeling based on meteorological variables for Tanjung Puting National Park, located on the island
of Borneo. A separable model is developed for predicting daily wildfire burn area using variables such as temperature, sea level
pressure, humidity, precipitation, visibility, and wind speed. Each component in the model is estimated using kernel smoothing
and maximum likelihood methods. The data are shown to be largely compatible with the separable model, suggesting that the
relationship between wildfire burn area and any of these weather variables in particular does not appear to change significantly
depending on the values of the other weather variables. The analysis appears to confirm the findings of previous studies on wildfire
in Southern California which indicate that wildfire hazard may be suitably estimated using a simple multiplicative model where
the impact of each weather covariate is estimated separately.
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1. Introduction

The island of Borneo has suffered severe deforestation and
forest degradation over the past two decades, with fire acting
as a significant factor [1]. Located on the southern coast of
the island’s Indonesian territory known as Kalimantan, Tan-
jung Puting National Park covers over 400 000 hectares and
is susceptible to anthropogenic fires and wildfires year round.
A map of the region is shown in Figure 1. The park contains
a variety of habitats, including lowland rainforest, peat
swamp forest, mangrove swamp, and abandoned agricultural
areas, and is well known as the home of Camp Leakey, a
world renowned center for the study and rehabilitation of
orangutans [2].

Accurate estimation of wildfire hazard is very important
in aiding National Park officials to prepare supplies and staff
in preventing, combatting, and controlling large wildfires.
One way to obtain estimates of wildfire hazard would be
to produce a statistical model that uses weather variables
such as mean humidity, mean temperature, and precipitation
in forecasting total daily burn area due to wildfires in
the National Park. While a variety of different types of
models may be used to predict wildfire incidence based on

models for human or lightning-caused ignition and other
possible factors, or to model the spread of existing fires
possibly relying on physical characteristics of the fires and
the landscape, the focus here is on the forecasting of wildfire
activity solely using meteorlogical variables. Such statistical
forecasts may be useful not only for planning and preventive
purposes, but also for the sake of understanding the critical
role that these weather variables can play in affecting wildfire
incidence and behavior.

Recently, separable point process models of this sort have
been used to estimate wildfire hazard in Southern California,
as a function of weather variables [3]. The current paper
explores the fit of such models to Tanjung Puting National
Park. Using weather variables as covariates, components
of a purely multiplicative model can readily be estimated
individually if the assumption of separability is satisfied [4].
In such cases, one may use a nonparametric method such
as kernel smoothing in order to suggest a parametric form
for each component in the model. While Schoenberg et al.
[3] found separable models to fit rather well to wildfire data
in Southern California, a question posed was whether these
types of models could fit adequately in other regions. Here,
we explore the use of kernel smoothing and semiparametric
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Figure 1: Map of Tanjung Puting National Park (reprinted from Galdikov and Shapiro 1994; courtesy: Orangutan Foundation
International). Weather station 966450 (WRBI) is located at (−2◦7′, 111◦7′), elevation 25 meters, near the NorthEastern tip of the National
Park.

approaches in estimating separable point process models for
daily burn area in Tanjung Puting National Park. While a
variety of different response variables are used in wildfire
hazard models such as the US National Fire Danger Rating
System [5], the focus of this paper is on forecasting total
daily burn area, rather than fire frequency or the spread rates
of existing fires. The purpose of fitting such a model is not
only for the accurate estimation of wildfire hazard on a given
day, but also in order to simulate realistic overall wildfire
activity given meteorological conditions in the National Park.
In addition, the simple empirical-based model proposed
here may be seen as a baseline against which alternative,
more complex physics-based models for forecasting wildfire
incidence in Indonesia, such as that described in de Groot
et al. [6], may be compared.

A description of the weather and fire data for Tanjung
Puting National Park used in this paper can be found in
Section 2. Kernel smoothing techniques as well as several
bandwidth selection methods are explored in Section 3. The
definition of separability is also reviewed in Section 3, and
the different distributions explored in order to simulate
fires for testing separability are described. Results of the
methods chosen in Section 3 are then detailed and explained
in Section 4. Conclusions are given in Section 5, and a
discussion of limitations and suggestions for further study
are explored in Section 6.

2. Data

There are over 160 weather stations located among the
islands of Indonesia. Situated in Pangkalan Bun, just outside
the boundaries of Tanjung Puting National Park (−2◦7′,
111◦7′, elevation 25 meters), weather station 966450 (WRBI)
records a variety of daily meteorological variables. We focus
here on temperature, sea level pressure, humidity, precipita-
tion, visibility, and wind speed, collected from January 2001
to January 2007. The data are presented on Tutiempo.net,
which bases its data summaries on data exchanged under the
World Meteorological Organization (WMO) World Weather
Watch Program according to WMO Resolution 40 (Cg-XII).

The MODIS Rapid Response System utilizes a contextual
fire detection algorithm that incorporates a combination of
an absolute threshold test and a series of contextual tests that
look for the characteristic signature of an active fire using two
4 μm wavelength bands and an 11 μm wavelength band [7].
The algorithm further uses cloud and water masking, as well
as several false alarm rejection tests such as sun glint rejection
to verify the existence of detected wildfires. On-board the
satellites Terra and Aqua, the MODIS sensor passes over
Borneo four times a day, ensuring accurate and thorough
coverage of fire activity on the Island [8]. The MODIS sensor
is a well-established system used to recognize fires at a spatial
resolution of 1 km [9]. All fires detected within the region of
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Tanjung Puting National Park from January 2001 to January
2007 by the MODIS sensor on both the Terra and Aqua
satellites, whose total area exceeded 9600 km2, were used for
this analysis.

Data were missing for one or more weather variables on
certain days over the time range considered here. We restrict
our attention to the 1533 days where temperature, visibility,
wind speed, sea level pressure, humidity, and precipitation
were all recorded. On these days, there were 329 days on
which fires were recorded, with 793 km2 being the largest
amount of area burned on any single day during this 6-year
period.

3. Methods

Spatial-temporal marked point process models are used to
represent observations of rare events such as wildfires or
earthquakes. For a thorough treatment of point processes
and related constructs, see Daley and Vere-Jones [10]. A few
important details are summarized here. A point process N
is a random collection of points in some metric space χ. In
modeling the occurrence of wildfires, for example, one may
identify with each event a point (t, x,m), where t represents
the time of the event’s origin, x the corresponding location,
andm a real-valued measure of its size. The basic construct of
a point process model is the conditional intensity, λ(t, x,m),
which one can interpret as the limiting expected rate at which
points of mark m amass around any location (t, x) of space-
time, conditional on the history of the process prior to time t.

In order to model the incidence of wildfires in Tanjung
Puting National Park, one technique would be to create
a model based on the point process models developed in
other papers to describe wildfires in Los Angeles County.
As suggested by Schoenberg [11], a model that is purely
multiplicative, or separable in the terminology of Cressie
[12], may be appropriate. Typically, in such models, each
component of the model may be estimated individually. As
mentioned in Section 1, the goal of our analysis is to use
daily weather variables to model the expected total daily
burn area, rather than fire frequency or the spread rates
of existing fires. That is, we model the integral EY(t) =∫∫∫

mλ(t′, x,m)dmdx dt′ taken over all fire sizes, all locations
x, and all times t′ within the day t in question. In analogy
with the model proposed in Schoenberg et al. [3], we
consider models where on any given day t, the expected burn
area is separable, that is,

EY(t)=μ f1(P(t)) f2(V(t)) f3(H(t)) f4(S(t)) f5(T(t)) f6(W(t)),
(1)

where Y(t) denotes total burn area on day t, and
P(t), V(t), H(t), S(t),T(t), and W(t) represent precipita-
tion, visibility, humidity, sea level pressure, temperature, and
wind speed, respectively, for day t.

One may argue that the association between the variable
visibility and wildfire activity may possibly be due to visibility
being a proxy for wildfires that have already occurred; that
is, low visibility is often largely the result of large wildfires,
rather than the other way around. Hence one may wonder

about the performance of a separable model with visibility
excluded, that is, a model of the form

EY(t) = μ f1(P(t)) f2(H(t)) f3(S(t)) f4(T(t)) f5(W(t)). (2)

In addition, for comparison with the work of de Groot et
al. [6] in forecasting wildfire activity, one may also assess a
separable model similar to (1) but with both visibility and
sea level pressure removed, that is,

EY(t) = μ f1(P(t)) f2(H(t)) f3(T(t)) f4(W(t)). (3)

Such a model would represent a much simpler alternative to
the much more complex physics-based models summarized
in de Groot et al. [6], which also use only precipitation,
humidity, temperature, and wind speed.

In estimating each of the individual component func-
tions f j in (1), one approach is to use a nonparametric
method such as kernel smoothing [13]. That is, if x(t) rep-
resents the corresponding weather variable in (1), then the
component f j(x̃) may be estimated using kernel regression

via f̂ j(x̃) = ∑iY(ti)K(x̃ − x(ti);h)/
∑

iK(x̃ − x(ti);h), where
x̃ is any real number and x(ti) is the value of the weather
variable on day i. The function K is called the kernel density
and typically obeys the constraint

∫
K(x̃;h)dx̃ = 1. The

parameter h represents the bandwidth, which controls the
degree of smoothing.

There are several different methods for automatically
choosing a bandwidth for kernel smoothing. Silverman’s
“rule of thumb” bandwidth selection technique is a com-
mon method used for automatically choosing a band-
width for kernel smoothing, where the bandwidth h =
0.9 min{s, IQR}n−1/5/1.34, with s the sample standard devi-
ation, IQR the interquartile range, and n the number of
observations of the variable being smoothed [13]. The
bandwidth chosen by Silverman’s rule, however, often is too
small when the covariate under consideration is not normally
distributed [13, 14].

Another method commonly used in bandwidth selection
is the likelihood cross validation (LCV) technique [13].
This approach temporarily removes each observation x(ti)
in the dataset and then calculates the estimate of the kernel
smoothed function at that point using an initial bandwidth

h. This value, f̂ (x(ti);h), is then used to calculate the

distance d(x(ti);h) = | f̂ (x(ti);h) − Yi| from the observed
total burn area on the day that was removed in computing
the kernel estimate. The bandwidth h that minimizes∑

i log{d(x(ti);h)} is then chosen as the optimal bandwidth.
LCV bandwidth selection is not optimal, however, when used
to estimate the relationship between a particular weather
variable and observations of rare events such as fire incidence
[14]. In particular, when the covariate has many repetitions
of identical values, bandwidths estimated by LCV tend to be
too small. This is the case for the observed weather variables
studied, where over 58% of mean temperature observations,
for example, are exactly the same on ten or more days.

In light of the shortcomings of likelihood cross vali-
dation, Schoenberg et al. [14] suggest a modified version
of LCV bandwidth selection that will result in a smoother
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estimate. In modified likelihood cross validation, instead of
only removing x(ti) in the prediction of the density at x(ti),
all observations with the same value as x(ti) are removed
when predicting x(ti). Thus, rather than removing one
observation at a time, the modified LCV approach removes
one small portion of the x-axis at a time. As with LCV, the
bandwidth h that minimizes

∑
ilog(d(x(ti);h)) is then chosen

as the optimal bandwidth.
Model (1) is purely multiplicative, and one may wish

to test whether such a model, which is called separable
in the terminology of Cressie [12], may be appropriate.
Several statistics for testing separability in point process
models were proposed in Schoenberg [11], and extended in
Chang and Schoenberg [4] to the case of multi-dimensional
point processes with covariates. The method described in
Schoenberg [11] involves selecting a pair of covariates, and
comparing a bivariate kernel smoothing of the response
variable (which in this case is total daily burn area),
smoothed with respect to both covariates, with the product
of two univariate kernel estimates, smoothed with respect
to each of the covariates individually. The former may be
considered a nonseparable estimate of burn area, since it
does not assume a multiplicative relationship between the
two variables, whereas the product of the two univariate
kernel estimates may be considered a separable estimate
of wildfire burn area based on these two variables. The
statistics suggested by Schoenberg [11] and Chang and
Schoenberg [4] to be most powerful in detecting departures
from separability is their Cramer-von Mises-type statistic
S3, which is the integrated squared difference between these
two kernel estimates. In order to produce P-values for these
test statistics, simulations of separable models may be used,
exactly as in Chang and Schoenberg [4]. In addition, one may
assess the fit of the resulting separable model by computing
its root mean squared error in predicting daily wildfire
area burned, and comparing with a simple alternative such
as a homogeneous Poisson model. Note that since the
distribution of wildfire sizes tends to be heavy tailed and well-
approximated by the Pareto or tapered Pareto distributions
[15, 16], the root mean squared fire size is typically much
larger than the mean, and hence it is important to compare
the root mean squared error of a model with that of a simpler
model such as the homogeneous Poisson process, rather than
with the mean wildfire size.

4. Results

Wildfire activity in Tanjung Puting National Park appears
to depend rather critically on weather variables such as
precipitation, temperature, humidity, and atmospheric pres-
sure. For instance, the solid curve in Figure 2 shows a
smoothed estimate of the relationship between daily area
burned and sea level pressure, obtained by kernel regression
using a Gaussian kernel function and bandwidth selected
by modified LCV. The fitted curves suggest that the average
daily burned area increases with increasing atmospheric
pressure, although the scatter about the curves shrouds this
observation in uncertainty. (Note that in the right panel
of Figure 2, the y-axis has been truncated to highlight the

smoothed curve, and as a result not all points are shown in
the figure.)

Figure 3 shows the smoothed estimate of the relationship
between daily burn area and visibility. As visibility increases,
the mean area burned in wildfires decreases rapidly. Note
that this is consistent with the hypothesis mentioned in the
previous section, regarding low visibility being essentially a
proxy for wildfire activity already in progress. This kernel
regression plot of mean visibility and number of fires per
day suggests an exponential form for the function f2 in
model (1). Similar kernel regression plots of number of daily
fires against each of the other four weather variables suggest
exponential forms for f3, f4, f5, and f6, whereas a linear
model appears preferable for f1.

The assumption of separability in model (1) should be
tested to ensure that a separable model is in fact appropriate
for the data. Figure 4 shows nonseparable and separable
kernel estimates, respectively, of daily burn area as a function
of temperature and mean sea level pressure. Both estimates
show that when mean sea level pressure is high, expected
area burned is also high, though the two estimates have
obvious discrepancies, especially when both temperatures
and atmospheric pressures are highest. Nevertheless, the
left panel of Figure 5 shows that the difference between the
nonseparable and separable estimates shown in Figure 4 is
not statistically significant. The estimated P-value of S3 using
100 simulations is .22, suggesting that a separable model
for mean temperature and mean sea level pressure may be
reasonable for wildfire incidence in Tanjung Puting National
Park.

Similar to Figure 4, Figure 6 shows the nonseparable and
separable kernel estimates of burn area as a function of
humidity and precipitation. The two estimates in Figure 6
appear to agree generally. Both the nonseparable and
separable estimates in Figure 6 are high when humidity
is between 58% and 68% and precipitation is low. The
nonseparable estimate predicts a high amount of area
burned when precipitation is below 25 millimeters, while
the separable estimate suggests a high expected amount of
area burned when precipitation is below 10 millimeters. The
right panel of Figure 5 shows that the difference between the
nonseparable and separable estimates shown in Figure 6 is
not statistically significant. The estimated P-value of S3 using
100 simulations is .35, suggesting that a separable model for
burn area as a function of mean humidity and precipitation
may be reasonable for wildfire incidence in Tanjung Puting
National Park. Similar tests of separability were conducted
for all possible combinations of weather variables and their
P-values are presented in Table 1.

Table 1 shows that a separable, or purely multiplicative
form for model (1) may be reasonable in light of the fact
that the difference between the nonseparable and separable
kernel estimates of burn area for any two covariates xj and
xk is not statistically significant. The implication is that the
relationship between wildfire burn area and one covariate
such as temperature, for example, does not appear to change
significantly depending on the values of the other covariates.

The extent to which the weather variables used in model
(1) result in improved predictions of daily wildfire burn
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Figure 2: Estimate (solid line) of total area burned (km2) per day by mean sea level pressure, smoothed using a Gaussian kernel smoother
and bandwidth of 0.8 millibars, calculated by modified likelihood cross-validation. 95% confidence limits (dotted lines) of the smoothed
estimate are also shown. (a) All the data are shown, (b) only days with burn areas less than 50 km2 are shown.
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Figure 3: Estimate (solid line) of total area burned (km2) per day by mean visibility, smoothed using a Gaussian kernel smoother and
bandwidth of 0.9 kilometers, calculated by modified likelihood cross-validation. (a) All the data are shown, (b) only days with burn areas
less than 180 km2 are shown, in order to highlight the behavior of the kernel smoother, and the fit of an exponential curve (dashed curve) is
overlaid.

area may be indicated by the relative decrease in root
mean squared (RMS) error in wildfire area when using
these variables. Compared to the best-fitting homogeneous
Poisson (“null”) model with constant expected burn area
over all days, the separable model (1) reduced the root
mean squared error from 38.20 km2 to 31.36 km2. In the
second column of Table 2, the RMS errors are reported when
the entire 6-year dataset was used both in fitting and for
model assessment. As a precaution against overfitting, the
models were also fitted to the first 4 years of data and

then assessed based on the final 2 years, and the resulting
RMS errors are reported in the third column of Table 2.
Although a considerable contribution of the association
between these weather variables and daily burn area is due
to visibility, as seen by the relative performance of model
(1) compared to model (2), note that model (2) nevertheless
does provide a very substantial improvement compared to
the null model, indicating that the other weather variables
such as temperature and precipitation have a cumulative
effect that is stronger than that of visibility. Similarly, the



6 International Journal of Forestry Research

M
ea

n
se

a
le

ve
lp

re
ss

u
re

(m
b)

1006

1008

1010

1012

1014

Mean temperature (◦C)

24 26 28 30

(k
m

2
/◦

C
m

b)

4.7e − 33

480

960

(a)

M
ea

n
se

a
le

ve
lp

re
ss

u
re

(m
b)

1006

1008

1010

1012

1014

Mean temperature (◦C)

24 26 28 30

(k
m

2
/◦

C
m

b)

4.7e − 33

480

960

(b)

Figure 4: Kernel estimates of daily burn area as a function of mean temperature and mean sea level pressure: (a) nonseparable kernel
estimate; (b) separable kernel estimate.
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Table 1: Estimated P-values of S3 using 100 simulations for
testing the separability of each of the weather covariates in model
(1). P(t), V(t), H(t), S(t), T(t), and W(t) represent precipitation,
mean visibility, mean humidity, mean sea level pressure, mean
temperature, and mean wind speed, respectively, for day t.

W(t) T(t) S(t) H(t) V(t)

P(t) 0.54 0.54 0.38 0.35 0.52

V(t) 0.37 0.43 0.65 0.79 —

H(t) 0.46 0.88 0.46 — —

S(t) 0.26 0.22 — — —

T(t) 0.61 — — — —

Table 2: Root-mean-square (RMS) errors in estimates of total daily
burn area. “Null” model refers to a stationary Poisson model, where
the expected burn area is constant. The second column shows the
RMS of the residuals for each of the models, fitted and assessed
using data from January 2001 to January 2007. The third column
shows the RMS of the errors when each of the models is fitted
using only data from January 2001 to December 2004, and then
subsequently used to forecast burn area from January 2005 to
January 2007.

Model RMS error, Jan. 2001–Jan.
2007

RMS error, Jan. 2005–Jan.
2007

Null 38.20 59.53

(1) 31.36 48.19

(2) 34.87 55.40

(3) 35.45 55.59

association between sea level pressure and burn area is rather
weak once the other variables (temperature, precipitation,
humidity and wind speed) have been taken into account,
as seen by the similarity in the performance of models (2)
and (3). Note that the difference between columns 2 and
3 is largely due to the fact that 2006 saw an unusually
high level of burn activity in Tanjung Puting. Indeed, even
the homogeneous Poisson model, which only has one fitted
parameter, has a very substantial increase in RMS error
during the last two years of the dataset, and this is clearly
not the result of overfitting.

5. Conclusions

A purely separable model which predicts wildfire burn area
as a function of temperature, sea level pressure, humidity,
precipitation, visibility, and wind speed, appears to offer
satisfactory fit to the data from Tanjung Puting National Park
from January 2001 to January 2007. For the Tanjung Puting
data, the relationship between each of the weather variables
and burn area appears to be approximately exponential,
with the exception of precipitation whose relationship with
wildfire area is closer to linear. Departures from separability
are not statistically significantly as indicated by application
of the tests of Schoenberg [11]. The results appear to support
the findings of Schoenberg et al. [3] and Schoenberg et al.
[14] which suggest estimating wildfire hazard using a simple
multiplicative model where the impact of each weather

covariate is estimated separately. The separability of the
model implies that the relationship between wildfire burn
area and any of these weather variables in particular does
not change significantly depending on the values of the other
weather variables.

6. Discussion

Accurate wildfire prediction based solely on daily weather
variables such as those considered in model (1) is inherently
limited. Weather is only one of several factors relating to
wildfire occurrence and spread in Tanjung Puting National
Park. In addition to obvious human interactions with
wildfire activity such as arson, fire prevention policies, and
fire suppression activities, slash-and-burn techniques, the
preferred method of land clearing in Indonesia where fire
is used as a tool to clear land, can rapidly spread fire
if conducted in a negligent fashion or during periods of
drought [17]. Nevertheless, the use of weather variables
for gaining a better knowledge of when Tanjung Puting
National Park is most susceptible to wildfire activity would
be very valuable to park management and officials. The
weather variables are easily attainable for park officials,
and thus the use of current weather or immediate future
weather information could be used in a model such as that
discussed in this paper to inform park officials when they
should prepare supplies and staff for containing or fighting
particularly large fires.

The separability of model (1) has not been shown to be
significantly violated for the dataset considered here. Were
we to suggest this model for use by officials at Tanjung Puting
National Park we must also note model (1) is quite simplistic
and its fit could no doubt be improved by using more
complicated functional forms for each of the terms, as well
as considering different interactions between the variables.
Furthermore, a homogeneous Poisson model is not an ideal
baseline with which to compare the mean squared prediction
error, and in future research, actual forward prediction
should be used to assess the validity of the model, using data
obtained separately from that used in model fitting.

It should be noted that the relationships between burn
area and the variables examined here are purely empirical,
based solely on observations within this 6-year period at
this particular location in Indonesia. It is likely that these
relationships will change over time, and one might object
that a 6-year time frame is not sufficiently long to account for
longer-term climatic variations such as those associated with
ENSO events. In addition, it would certainly be imprudent to
infer that the observed relationships between wildfire activity
and weather variables should necessarily apply in other
locations, or to extrapolate beyond the scope of our data,
to significantly higher or lower temperatures or pressures,
and so forth. The exponential relationships, in particular,
between burn area and sea level pressure, temperature, and
wind speed, should certainly be expected to taper off after
some point.

In addition to these shortcomings, many important
variables are excluded from the model. Only six weather
variables are used, while other important factors such as
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vegetation, land use, and other various human interaction
variables are not included in the model. Nevertheless, model
(1) could potentially be used as a baseline for assessing more
complex wildfire forecasting schemes for Tanjung Puting
National Park, such as those proposed by de Groot et al. [6].
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