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We will constructively prove the existence of a Nash equilibrium in a finite strategic game with sequentially locally nonconstant
payoff functions. The proof is based on the existence of approximate Nash equilibria which is proved by Sperner’s lemma. We
follow the Bishop-style constructive mathematics.

1. Introduction

It is often said that Brouwer’s fixed-point theorem cannot be
constructively proved.

Refernce [1] provided a constructive proof of Brouwer’s
fixed-point theorem. But it is not constructive from the
viewpoint of constructive mathematics á la Bishop. It is suf-
ficient to say that one-dimensional case of Brouwer’s fixed-
point theorem, that is, the intermediate value theorem, is
nonconstructive. See [2] or [3]. On the other hand, in [4]
Orevkov constructed a computably coded continuous func-
tion f from the unit square to itself, which is defined at
each computable point of the square, such that f has no
computable fixed point. His map consists of a retract of the
computable elements of the square to its boundary followed
by a rotation of the boundary of the square. As pointed out
by Hirst in [5], since there is no retract of the square to its
boundary, Orevkov’s map does not have a total extension.

The existence of a Nash equilibrium in a finite strategic
game also cannot be constructively proved. Sperner’s lemma
which is used to prove Brouwer’s theorem, however, can
be constructively proved. Some authors have presented a
constructive (or an approximate) version of Brouwer’s the-
orem using Sperner’s lemma. See [3, 6]. Thus, Brouwer’s
fixed-point theorem can be constructively proved in its
constructive version. Also van Dalen in [3] states a conjecture
that a uniformly continuous function f from a simplex to

itself, with property that each open set contains a point x
such that x /= f (x), which means |x − f (x)| > 0, and also
at every point x on the boundaries of the simplex x /= f (x),
has an exact fixed point. We call such a property of functions
local nonconstancy. Further, we define a stronger property
sequential local nonconstancy. In another paper [7], we have
constructively proved Dalen’s conjecture with sequential
local nonconstancy.

In this paper, we present a proof of the existence of a
Nash equilibrium in a finite strategic game with sequentially
locally nonconstant payoff functions. In the next section,
we present Sperner’s lemma for an n-dimensional simplex
whose constructive proof is omitted indicating references.
In Section 3, we present a proof of the existence of a Nash
equilibrium in a finite strategic game with sequentially
locally nonconstant payoff functions. The proof is based on
the existence of approximate Nash equilibria which is proved
by Sperner’s lemma. We follow the Bishop-style constructive
mathematics according to [2, 8, 9].

2. Sperner’s Lemma

Let Δ denote an n-dimensional simplex. n is a finite natural
number. For example, a 2-dimensional simplex is a triangle.
Let us partition or triangulate the simplex. Figure 1 is an
example of partitioning (triangulation) a 2-dimensional
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Figure 1: Partition and labeling of 2-dimensional simplex.

simplex. In a 2-dimensional case, we divide each side of
Δ in m equal segments and draw the lines parallel to the
sides of Δ. m is a finite natural number. Then, the 2-dimen-
sional simplex is partitioned into m2 triangles. We consider
partition of Δ inductively for cases of higher dimension.
In a 3-dimensional case, each face of Δ is a 2-dimensional
simplex, and so it is partitioned into m2 triangles in the
above-mentioned way, and draw the planes parallel to the
faces of Δ. Then, the 3-dimensional simplex is partitioned
into m3 trigonal pyramids. And this is similar to cases of
higher dimension.

Let K denote the set of small n-dimensional simplices of
Δ constructed by partition. Vertices of these small simplices
of K are labeled with the numbers 0, 1, 2, . . . ,n subject to the
following rules.

(1) The vertices of Δ are, respectively, labeled with 0
to n. We label a point (1, 0, . . . , 0) with 0, a point
(0, 1, 0, . . . , 0) with 1, a point (0, 0, 1 . . . , 0) with 2, . . .,
and a point (0, . . . , 0, 1) with n. That is, a vertex whose
kth coordinate (k = 0, 1, . . . ,n) is 1 and all other
coordinates are 0 is labeled with k.

(2) If a vertex of K is contained in an n− 1-dimensional
face of Δ, then this vertex is labeled with some
number which is the same as the number of one of
the vertices of that face.

(3) If a vertex of K is contained in an n− 2-dimensional
face of Δ, then this vertex is labeled with some
number which is the same as the number of one of
the vertices of that face, and so on for cases of lower
dimension.

(4) A vertex contained inside of Δ is labeled with an
arbitrary number among 0, 1, . . . ,n.

A small simplex of K which is labeled with the numbers
0, 1, . . . ,n is called a fully labeled simplex. Sperner’s lemma is
stated as follows.

Lemma 1 (Sperner’s lemma). If one labels the vertices of K
following the rules (1)∼(4), then there are an odd number of
fully labeled simplices, and so there exists at least one fully
labeled simplex.

Proof. About constructive proofs of Sperner’s lemma, see
[10] or [11].

Since n and partition of Δ are finite, the number of small
simplices constructed by partition is also finite. Thus, we can
constructively find a fully labeled n-dimensional simplex of
K through finite steps.

3. Nash Equilibrium in Strategic Game

Let p = (p0, p1, . . . , pn) be a point in an n-dimensional sim-
plex Δ, and consider a function ϕ from Δ to itself. Denote the
ith components of p and ϕ(p) by pi and ϕi(p) or ϕi.

The definition of local nonconstancy of functions is as
follows.

Definition 2 (local nonconstancy of functions). (1) At a point
p on the faces (boundaries) of a simplex ϕ(p) /=p, this means
that ϕi(p) > pi or ϕi(p) < pi for at least one i.

(2) In any open set in Δ, there exists a point p such that
ϕ(p) /=p.

Next, by reference to the notion of sequentially at most
one maximum in [12], we define the property of sequential
local nonconstancy.

First, we recapitulate the compactness (total bounded-
ness with completeness) of a set in constructive mathematics.
Δ is compact in the sense that for each ε > 0, there exists a
finitely enumerable ε-approximation to Δ (a set S is finitely
enumerable if there exist a natural number N and a mapping
of the set {1, 2, . . . ,N} onto S). An ε-approximation to Δ is a
subset of Δ such that for each p ∈ Δ, there exists q in that
ε-approximation with |p − q| < ε. Each face (boundary)
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of Δ is also a simplex, and so it is compact. According to
Corollary 2.2.12 of [9], we have the following result.

Lemma 3. For each ε > 0, there exist totally bounded sets H1,
H2, . . . ,Hn, each of diameter less than or equal to ε, such that
Δ = ⋃n

i=1 Hi.

The definition of sequential local nonconstancy is as fol-
lows.

Definition 4 (sequential local nonconstancy of functions).
There exists ε with the following property. For each ε > 0 less
than ε, there exist totally bounded sets H1,H2, . . . ,Hm, each
of diameter less than or equal to ε, such that Δ = ⋃m

i=1 Hi, and
if for all sequences (pn)n≥1, (qn)n≥1 in eachHi, |ϕ(pn)−pn| →
0 and |ϕ(qn)− qn| → 0, then |pn − qn| → 0.

We show the following lemma.

Lemma 5. Let ϕ be a uniformly continuous and sequentially
locally nonconstant function from Δ to itself. Assume that
inf p∈Hiϕ(p) = 0 for Hi ⊂ Δ defined above. If the following
property holds: for each ε > 0, there exists δ > 0 such that if
p, q ∈ Hi, |ϕ(p)−p| < δ, and |ϕ(q)−q| < δ, then |p−q| ≤ ε,
then there exists a point r ∈ Hi such that ϕ(r) = r.

Proof. Choose a sequence (pn)n≥1 in Hi such that |ϕ(pn) −
pn| → 0. Compute N such that |ϕ(pn) − pn| < δ for all
n ≥ N . Then, form,n ≥ N , we have |pm−pn| ≤ ε. Since ε > 0
is arbitrary, (pn)n≥1 is a Cauchy sequence inHi and converges
to a limit r ∈ Hi. The continuity of ϕ yields |ϕ(r) − r| = 0,
that is, ϕ(r) = r.

Now, we look at the problem of the existence of a Nash
equilibrium in a finite strategic game according to [13]. A
Nash equilibrium of a finite strategic game is a state where
all players choose their best responses to strategies of other
players.

Consider an n-players strategic game with m pure
strategies for each player. n and m are finite natural numbers
not smaller than 2. Let Si be the set of pure strategies of player
i, and denote each of his pure strategies by si j . His mixed
strategy is defined as a probability distribution over Si and
is denoted by pi. Let pi j be a probability that player i chooses
si j , then we must have

∑m
j=1pi j = 1 for all i. A combination of

mixed strategies of all players is called a profile. It is denoted
by p. Let πi(p) be the expected payoff of player i at profile p,
and let πi(si j , p−i) be his payoff when he chooses a strategy
si j at that profile, where p−i denotes a combination of mixed
strategies of players other than i at profile p. πi(p) is written
as follows:

πi
(

p
) = πi

(
pi, p−i

) =
∑

{ j:pi j>0}
pi jπi

(
si j , p−i

)

. (1)

Assume that the values of payoffs of all players are finite,
then since pure strategies are finite, and expected payoffs are
linear functions about probability distributions over the sets
of pure strategies of all players, πi(p) is uniformly continuous
about p.

For each i and j, let

vi j = pi j + max
(
πi
(
si j , p−i

)
− πi

(
p
)
, 0
)

, (2)

and define the following function:

ψij
(

p
) = vi j

vi1 + vi2 + · · · + vim
, (3)

where
∑m

j=1ψij = 1 for all i. Let ψi(p) = (ψi1,ψi2, . . . ,ψim),
ψ(p) = (ψ1,ψ2, . . . ,ψn). Since each ψi is an m-dimensional
vector such that the values of its components are between
0 and 1, and the sum of its components is 1, it represents
a point on an m − 1-dimensional simplex. ψ(p) is a
combination of vectors ψi’s. It is a vector, such that its
components are components of ψi(p) for all players. Thus,
it is a vector with n ×m components, but since the number
of independent components is n(m−1), the range of ψ is the
n-times product ofm−1-dimensional simplices. It is convex,
and homeomorphic to an n(m − 1)-dimensional simplex.
p = (p1, p2, . . . , pn) is also a vector with n ×m components,
and the number of its independent components is n(m− 1).

Let us consider a homeomorphism between an n(m −
1)-dimensional simplex and the space of players’ mixed
strategies which is denoted by P. Figure 2 depicts an example
of a case of two players with two pure strategies for each
player. Vertices D, E, F, and G represent states where two
players choose pure strategies, and points on edges DE, EF,
FG, and GD represent states where one player chooses a
pure strategy. Vertices of the simplex and points on faces
(simplices whose dimension is lower than n(m − 1)) of the
simplex correspond to the points on faces of P. For example,
in Figure 2, A, B and C correspond, respectively, to I , J , and
H . On the other hand, each vertex of P, D, E, F, and G
corresponds, respectively, to itself on a face of the simplex
which contains it.

Next, we assume the following condition.

Definition 6 (sequential local nonconstancy of payoff func-
tions). There exists ε with the following property. For each
ε > 0 less than ε, there exist totally bounded sets H1,
H2, . . . ,Hm, each of diameter less than or equal to ε, such that
P = ⋃m

i=1 Hi, and if for all sequences (pn)n≥1, (qn)n≥1 in each
Hi, max(πi(si j , (pn)−i)−πi(pn), 0) → 0, max(πi(si j , (qn)−i)−
πi(qn), 0) → 0 for all si j ∈ Si for all i, then |pn − qn| → 0.

By the sequential local nonconstancy of payoff functions
we obtain the following result.

For each ε > 0 less than ε, there exist totally bounded sets
H1,H2, . . . ,Hm, each of diameter less than or equal to ε, such
that P = ⋃m

i=1 Hi, and if for all sequences (pn)n≥1, (qn)n≥1

in each Hi, |ψ(pn) − pn| → 0 and |ψ(qn) − qn| → 0, then
|pn − qn| → 0.
Thus, ψ is sequentially locally nonconstant.

Let us replace n by n(m− 1). We show the following the-
orem.

Theorem 7. In any finite strategic game with sequentially lo-
cally nonconstant payoff functions, there exists a Nash equilib-
rium.
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Figure 2: Homeomorphism between simplex and combination of strategies.

Proof. Let us prove this theorem through some steps.
(1) First we show that we can partition an n(m − 1)-

dimensional simplex Δ, so that the conditions for Sperner’s
lemma are satisfied. We partition Δ according to the method
in the proof of Sperner’s lemma and label the vertices of
simplices constructed by partition of Δ. It is important how
to label the vertices contained in the faces of Δ. Let K be
the set of small simplices constructed by partition of Δ, let
p = (p0, p1, . . . , pn(m−1)) be a vertex of a simplex of K , and
denote the ith coordinate of ψ(p) by ψi or ψi(p). We label a
vertex p according to the following rule:

if pk + τ > ψk, we label p with k. (4)

τ is an arbitrary positive number. If there are multiple k’s
which satisfy this condition, we label p conveniently for the
conditions for Sperner’s lemma to be satisfied.

For example, let p be a point contained in an n(m− 1)−
1-dimensional face of Δ such that pi = 0 for one i among
0, 1, 2, . . . ,n(m− 1). With τ > 0, we have fi > 0 or fi < τ (in
constructive mathematics for any real number x we can not
prove that x ≥ 0 or x < 0, that, x > 0, x = 0, or x < 0. But for
any distinct real numbers x, y, and z such that x > z, we can

prove that x > y or y > z). When ψi > 0, from
∑n(m−1)

j=0 p j = 1,
∑n(m−1)

j=0 ψj = 1, and pi = 0,

n(m−1)∑

j=0, j /= i
p j >

n(m−1)∑

j=0, j /= i
ψj . (5)

Then, for at least one j (denote it by k), we have pk > ψk, and
we label p with k, where k is one of the numbers which satisfy
pk > ψk. Since ψi > pi = 0, i does not satisfy this condition.

Assume that ψi < τ. pi = 0 implies
∑n(m−1)

j=0, j /= ip j = 1. Since
∑n(m−1)

j=0, j /= iψj ≤ 1, we obtain

n(m−1)∑

j=0, j /= i
p j ≥

n(m−1)∑

j=0, j /= i
ψj . (6)

Then, for a positive number τ, we have

n(m−1)∑

j=0, j /= i

(
p j + τ

)
>

n(m−1)∑

j=0, j /= i
ψj . (7)

There is at least one j( /= i) which satisfies p j +τ > ψj . Denote
it by k, and we label p with k. k is one of the numbers other
than i such that pk + τ > ψk is satisfied. i itself satisfies this
condition (pi + τ > ψi). But, since there is a number other
than i which satisfies this condition, we can select a number
other than i. We have proved that we can label the vertices
contained in an n(m − 1) − 1-dimensional face of Δ such
that pi = 0 for one i among 0, 1, 2, . . . ,n(m − 1) with the
numbers other than i. By similar procedures, we can show
that we can label the vertices contained in an n(m − 1) − 2-
dimensional face of Δ such that pi = 0 for two i’s among
0, 1, 2, . . . ,n(m − 1) with the numbers other than those i’s,
and so on.

Consider the case where pi = pi+1 = 0. We see that when
ψi > 0 or ψi+1 > 0,

n(m−1)∑

j=0, j /= i,i+1

p j >
n(m−1)∑

j=0, j /= i,i+1

ψj , (8)

and so for at least one j(denote it by k), we have pk > ψk,
and we label p with k. On the other hand, when ψi < τ and
ψi+1 < τ, we have

n(m−1)∑

j=0, j /= i,i+1

p j ≥
n(m−1)∑

j=0, j /= i,i+1

ψj. (9)

Then, for a positive number τ, we have

n(m−1)∑

j=0, j /= i,i+1

(
p j + τ

)
>

n(m−1)∑

j=0, j /= i,i+1

ψj. (10)

Thus, there is at least one j( /= i, i+ 1) which satisfies p j + τ >
ψj . Denote it by k, and we label p with k.
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Next, consider the case where pi = 0 for all i other than
n(m−1). If for some i ψi > 0, then we have pn(m−1) > ψn(m−1)

and label p with n(m − 1). On the other hand, if ψj < τ for
all j /=n(m− 1), then we obtain pn(m−1) ≥ ψn(m−1). It implies
pn(m−1) + τ > ψn(m−1). Thus, we can label p with n(m− 1).

Therefore, the conditions for Sperner’s lemma are satis-
fied, and there exists an odd number of fully labeled simplices
in K .

(2) Suppose that we partition Δ sufficiently fine so that
the distance between any pair of the vertices of simplices
of K is sufficiently small. Let δn(m−1) be a fully labeled
n(m − 1)-dimensional simplex of K , and let p0, p1, . . . and
pn(m−1) be the vertices of δn(m−1). We name these vertices so
that p0, p1, . . . , pn(m−1) are labeled, respectively, with 0, 1,. . .,
n(m−1). The values of ψ at these vertices are ψ(p0),ψ(p1), . . .
and ψ(pn(m−1)). The jth coordinates of pi and ψ(pi), i =
0, 1, . . . ,n(m−1), are, respectively, denoted by pij and ψj(pi).

About p0, from the labeling rules, we have p0
0 + τ > ψ0(p0).

About p1, also from the labeling rules, we have p1
1 + τ >

ψ1(p1). Since n and m are finite, by the uniform continuity
of ψ there exists δ > 0 such that if |pi − p j| < δ, then
|ψ(pi) − ψ(p j)| < ε/2n(m − 1)[n(m − 1) + 1] for ε > 0 and
i /= j. |ψ(p0) − ψ(p1)| < ε/2n(m − 1)[n(m − 1) + 1] means
ψ1(p1) > ψ1(p0)− ε/2n(m− 1)[n(m− 1) + 1]. On the other
hand, |p0 − p1| < δ means that p0

1 > p1
1 − δ. We can make δ

satisfy δ < ε/2n(m− 1)[n(m− 1) + 1]. Thus, from

p0
1 > p1

1 − δ, p1
1 + τ > ψ1

(
p1),

ψ1
(

p1) > ψ1
(

p0)− ε

2n(m− 1)[n(m− 1) + 1]
,

(11)

we obtain

p0
1 > ψ1

(
p0)− δ − τ − ε

2n(m− 1)[n(m− 1) + 1]

> ψ1
(

p0)− ε

n(m− 1)[n(m− 1) + 1]
− τ.

(12)

By similar arguments, for each i other than 0,

p0
i > ψi

(
p0)− ε

n(m− 1)[n(m− 1) + 1]
− τ. (13)

For i = 0, we have

p0
0 > ψ0

(
p0)− τ. (14)

Adding (13) and (14) side by side except for some i (denote
it by k) other than 0,

n(m−1)∑

j=0, j /= k
p0
j >

n(m−1)∑

j=0, j /= k
ψj
(

p0)

− [n(m− 1)− 1]ε
n(m− 1)[n(m− 1) + 1]

− n(m− 1)τ.

(15)

From
∑n(m−1)

j=0 p0
j = 1,

∑n(m−1)
j=0 ψj(p0) = 1, we have 1 − p0

k >

1− ψk(p0)− ([n(m− 1)− 1]ε/(n(m− 1)[n(m− 1) + 1]))−
n(m− 1)τ, which is rewritten as

p0
k < ψk

(
p0) +

[n(m− 1)− 1]ε
n(m− 1)[n(m− 1) + 1]

+ n(m− 1)τ.

(16)

Since (13) implies p0
k > ψk(p0)−ε/(n(m−1)[n(m−1)+1])−τ,

we have

ψk
(

p0)− ε

n(m− 1)[n(m− 1) + 1]
− τ

< p0
k < ψk

(
p0) +

[n(m− 1)− 1]ε
n(m− 1)[n(m− 1) + 1]

+ n(m− 1)τ.

(17)

Thus,
∣
∣
∣p0

k − ψk
(

p0)
∣
∣
∣ <

[n(m− 1)− 1]ε
n(m− 1)[n(m− 1) + 1]

+ n(m− 1)τ

(18)

is derived. On the other hand, adding (13) from 1 to n(m−1)
yields

n(m−1)∑

j=1

p0
j >

n(m−1)∑

j=1

ψj
(

p0)− ε

n(m− 1) + 1
− n(m− 1)τ.

(19)

From
∑n(m−1)

j=0 p0
j = 1,

∑n(m−1)
j=0 ψj(p0) = 1, we have

1− p0
0 > 1− ψ0

(
p0)− ε

n(m− 1) + 1
− n(m− 1)τ. (20)

Then, from (14) and (20), we get

∣
∣p0

0 − ψ0
(

p0)∣∣ <
ε

n(m− 1) + 1
+ n(m− 1)τ. (21)

From (18) and (21), we obtain the following result:
∣
∣
∣p0

i − ψi
(

p0)
∣
∣
∣ <

ε

n(m− 1) + 1
+ n(m− 1)τ ∀i.

(22)

Thus,
∣
∣p0 − ψ(p0)∣∣ < ε + n(m− 1)[n(m− 1) + 1]τ. (23)

Since ε and τ are arbitrary, we have inf p∈Δ|ψ(p)− p| = 0.
(3) Since, by Lemma 3, Δ = ∑n

i=1Hi, where each Hi is a
totally bounded set whose diameter is less than or equal to
ε, we have inf p∈Hi|ψ(p) − p| = 0 for at least one Hi. Choose
a sequence (rn)n≥1 such that |ψ(rn) − rn| → 0 in such Hi.
In view of Lemma 5, it is enough to prove that the following
condition holds.

For each ε > 0, there exists δ > 0 such that if p, q ∈ Hi,
|ψ(p)− p| < δ, and |ψ(q)− q| < δ, then |p− q| ≤ ε.

Assume that the set

T = {(p, q
) ∈ Hi ×Hi :

∣
∣p− q

∣
∣ ≥ ε

}
(24)

is nonempty and compact (see Theorem 2.2.13 of [9]). Since
the mapping (p, q) → max(|ψ(p) − p|, |ψ(q) − q|) is uni-
formly continuous, we can construct an increasing binary se-
quence (λn)n≥1 such that

λn = 0 =⇒ inf
(p,q)∈T

max
(∣
∣ψ
(

p
)− p

∣
∣,
∣
∣ψ
(

q
)− q

∣
∣
)
< 2−n,

λn = 1 =⇒ inf
(p,q)∈T

max
(∣
∣ψ
(

p
)− p

∣
∣,
∣
∣ψ
(

q
)− q

∣
∣
)
> 2−n−1.

(25)
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Table 1: Example of game 1.

Player 2

X Y

Player 1
X 2, 2 0, 3

Y 3, 0 1, 1

It suffices to find n such that λn = 1. In that case, if |ψ(p) −
p| < 2−n−1, |ψ(q) − q| < 2−n−1, we have (p, q) /∈ T and
|p− q| ≤ ε. Assume that λ1 = 0. If λn = 0, choose (pn, qn) ∈
T such that max(|ψ(pn)−pn|, |ψ(qn)−qn|) < 2−n, and if λn =
1, set pn = qn = rn. Then, |ψ(pn) − pn| → 0 and |ψ(qn) −
qn| → 0, so |pn − qn| → 0. Computing N such that |pN −
qN | < ε, we must have λN = 1. We have completed the proof
of the existence of a point which satisfies ψ(p) = p.

(4) Denote one of the points which satisfy ψ(p) = p by
p̃ = ( p̃1, p̃2, . . . , p̃n) and the components of p̃i by p̃i j . Then,
we have

ψij = p̃i j , ∀i, j. (26)

By the definition of ψij ,

p̃i j + max
(
πi
(
si j , p̃−i

)
− πi

(
p̃
)
, 0
)

1 +
∑m

k=1 max
(
πi
(
sik, p̃−i

)− πi
(

p̃
)
, 0
) = p̃i j . (27)

Let λ =∑m
k=1 max(πi(sik, p̃−i)− πi(p̃), 0), then

max
(
πi
(
si j , p̃−i

)
− πi

(
p̃
)
, 0
)
= λp̃i j , (28)

where p̃−i denotes a combination of mixed strategies of
players other than i at profile p̃.

Since πi(p̃) = ∑{ j: p̃i j>0} p̃i jπi(si j , p̃i), it is impossible that
max(πi(si j , p̃−i) − πi(p̃), 0) = πi(si j , p̃−i) − πi(p̃) > 0 for all
j satisfying p̃i j > 0. Thus, λ = 0, and max(πi(si j , p̃−i) −
πi(p̃), 0) = 0 holds for all si j ’s whether p̃i j > 0 or not, and
it holds for all players. Then, strategies of all players in p̃ are
the best responses to each other, and a state where all players
choose these strategies is a Nash equilibrium.

Consider two examples. See a game in Table 1. It is an
example of the so-called Prisoners’ Dilemma. Pure strategies
of players 1 and 2 are X and Y . The left-side number in
each cell represents the payoff of player 1, and the right-side
number represents the payoff of player 2. Let pX and 1 − pX
denote the probabilities that player 1 chooses, respectively, X
andY , and qX and 1−qX denote the probabilities for player 2.
Denote the expected payoffs of players 1 and 2 by π1(pX , qX)
and π2(pX , qX), then

π1
(
pX , qX

) = 2pXqX + 3
(
1− pX

)
qX +

(
1− pX

)(
1− qX

)

= 1− pX + 2qX ,

π2
(
pX , qX

) = 2pXqX + 3pX
(
1− qX

)
+
(
1− pX

)(
1− qX

)

= 1− qX + 2pX.
(29)

Table 2: Example of game 2.

Player 2

X Y

Player 1
X 2, 1 0, 0

Y 0, 0 1, 2

Denote the payoff of player 1 when he choosesX by π1(X , qX)
and that when he chooses Y by π1(Y , qX). Do similarly for
Player B, then

π1
(
Y , qX

) = 1 + 2qX > π1
(
pX , qX

)
for any qX , pX > 0,

π2
(
pX ,Y

) = 1 + 2pX > π2
(
pX , qX

)
for any pX , qX > 0.

(30)

Consider two sequences of pX , (pX(m))m≥1 and
(p′X(m))m≥1, such that pX(m) > 0 and p′X(m) > 0.
If max(max(π1(X , qX),π1(Y , qX)) − π1(pX(m), qX), 0) =
max(π1(Y , qX)−π1(pX(m), qX), 0) → 0 and max(max(π1(X ,
qX),π1(Y , qX)) − π1(p′X(m), qX), 0) = max(π1(Y , qX) −
π1(p′X(m), qX), 0) → 0, then pX(m) → 0, p′X(m) → 0, and
|pX(m)− p′X(m)| → 0.

Consider two sequences of qX , (qX(m))m≥1 and
(q′X(m))m≥1, such that qX(m) > 0 and q′X(m) > 0.
If max(max(π2(pX ,X),π2(pX ,Y)) − π2(pX , qX(m)), 0) =
max(π2(pX ,Y)−π2(pX , qX(m)), 0) → 0 and max(max(π2(pX ,
X),π2(pX ,Y)) − π2(pX , q′X(m)), 0) = max(π2(pX ,Y) −
π2(pX , q′X(m)), 0) → 0, then qX(m) → 0, q′X(m) → 0, and
|qX(m)− q′X(m)| → 0.

Therefore, the payoff functions are sequentially locally
nonconstant.

Let us consider another example. See a game in Table 2.
It is an example of the so-called Battle of the Sexes Game.
Notations are the same as those in the previous example. The
expected payoffs of players are as follows:

π1
(
pX , qX

) = 2pXqX +
(
1− pX

)(
1− qX

)

= 1 + pX
(
3qX − 1

)− qX ,

π1
(
X , qX

) = 2qX ,

π1
(
Y , qX

) = 1− qX ,

π2
(
pX , qX

) = pXqX + 2
(
1− pX

)(
1− qX

)

= 2 + qX
(
3pX − 2

)− 2pX ,

π2
(
pX ,X

) = pX ,

π2
(
pX ,Y

) = 2− 2pX.

(31)

Then,

(i) when qX > 1/3, π1(X , qX) > π1(pX , qX) for pX < 1,

(ii) when qX < 1/3, π1(Y , qX) > π1(pX , qX) for pX > 0,

(iii) when pX > 2/3, π2(pX ,X) > π2(pX , qX) for qX < 1,

(iv) when pX < 2/3, π2(pX ,Y) > π2(pX , qX) for qX > 0.

Consider sequences (pX(m))m≥1, (p′X(m))m≥1, (qX(m))m≥1,
and (q′X(m))m≥1.
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(1) When pX > 2/3, qX > 1/3, if max(π1(X , qX) −
π1(pX(m), qX), 0) → 0 and max(π1(X , qX)−π1(p′X(m),
qX), 0) → 0, then pX(m) → 1, p′X(m) → 1, and
|pX(m)− p′X(m)| → 0.

If max(π2(pX ,X)− π2(pX , qX(m)), 0) → 0 and
max(π2(pX ,X) − π2(pX , q′X(m)), 0) → 0, then
qX(m) → 1, q′X(m) → 1, and |qX(m) −
q′X(m)| → 0.

(2) When pX < 2/3, qX < 1/3, if max(π1(Y , qX) −
π1(pX(m), qX), 0) → 0 and max(π1(Y , qX) −
π1(p′X(m), qX), 0) → 0, then pX(m) → 0, p′X(m) →
0, and |pX(m)− p′X(m)| → 0.

If max(π2(pX ,Y)− π2(pX , qX(m)), 0) → 0 and
max(π2(pX ,Y) − π2(pX , q′X(m)), 0) → 0, then
qX(m) → 0, q′X(m) → 0, and |qX(m) −
q′X(m)| → 0.

(3) When pX < 2/3, qX > 1/3, there exist no pair of
sequences (pX(m))m≥1 and (qX(m))m≥1 such that
max(π1(X , qX) − π1(pX(m), qX), 0) → 0 and
max(π2(pX ,Y)− π2(pX , qX(m)), 0) → 0.

(4) When pX > 2/3, qX < 1/3, there exist no pair of
sequences (pX(m))m≥1 and (qX(m))m≥1 such that
max(π1(Y , qX)−π1(pX(m), qX), 0) → 0 and max(π2(pX ,
X)− π2(pX , qX(m)), 0) → 0.

(5) When (2/3) − ε < pX < (2/3) + ε, (1/3) − ε < qX <
(1/3) + ε with 0 < ε < 1/3, if max(π1(X , qX)−
π1(pX(m), qX), 0) → 0, max(π1(Y , qX) − π1(pX(m),
qX), 0) → 0, max(π2(pX ,X) − π2(pX , qX(m)), 0) →
0, and max(π2(pX ,Y) − π2(pX , qX(m)), 0) → 0,
then (pX(m), qX(m)) → (2/3, 1/3) for all sequences
(pX(m))m≥1 and (qX(m))m≥1.

The payoff functions are sequentially locally
nonconstant.

4. Concluding Remarks

In this paper, we have presented a constructive procedure
to prove the existence of Nash equilibrium in finite strategic
games from the viewpoint of constructive mathematics á la
Bishop, that is, mathematics based on intuitionistic logic.
As a future research program, we are studying the following
themes:

(1) an application of the method of this paper to eco-
nomic theory, in particular, the problem of the exis-
tence of an equilibrium in competitive economy with
excess demand functions which have the property
that is similar to sequential local nonconstancy;

(2) a generalization of the result of this paper to Kaku-
tani’s fixed-point theorem for multivalued functions
with property of sequential local nonconstancy and
its application to economic theory.

For other researches about computability of Nash equi-
librium, see [14–18].
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[9] D. Bridges and L. Vı̂ţã, Techniques of Constructive Mathematics,
Springer, Berlin, Germany, 2006.

[10] F. E. Su, “Rental harmony: Sperner’s lemma in fair division,”
The American Mathematical Monthly, vol. 106, no. 10, pp. 930–
942, 1999.

[11] Y. Tanaka, “Equivalence between the existence of an approx-
imate equilibrium in a competitive economy and Sperner’s
lemma: a constructive analysis,” ISRN Applied Mathematics,
vol. 2011, Article ID 384625, 15 pages, 2011.

[12] J. Berger, D. Bridges, and P. Schuster, “The fan theorem and
unique existence of maxima,” Journal of Symbolic Logic, vol.
71, no. 2, pp. 713–720, 2006.

[13] J. Nash, “Non-cooperative games,” Annals of Mathematics.
Second Series, vol. 54, pp. 286–295, 1951.

[14] S. Takahashi, “The number of pure Nash equilibria in a
random game with nondecreasing best responses,” Games and
Economic Behavior, vol. 63, no. 1, pp. 328–340, 2008.

[15] P. G. Spirakis, “A note on proofs of existence of Nash equilibria
in finite strategic games, of two players,” Computer Science
Review, vol. 3, no. 2, pp. 101–103, 2009.

[16] N. G. Pavlidis, K. E. Parsopoulos, and M. N. Vrahatis, “Com-
puting Nash equilibria through computational intelligence
methods,” Journal of Computational and Applied Mathematics,
vol. 175, no. 1, pp. 113–136, 2005.

[17] W. Stanford, “On the number of pure strategy Nash equilibria
in finite common payoffs games,” Economics Letters, vol. 62,
no. 1, pp. 29–34, 1999.



8 ISRN Computational Mathematics

[18] V. Conitzer and T. Sandholm, “New complexity results about
Nash equilibria,” Games and Economic Behavior, vol. 63, no. 2,
pp. 621–641, 2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


