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2 Departament de Fisica de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 645, E08028 Barcelona, Spain
3 Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain

4 CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lasuanne, Batochime, Avenue
Forel 2, 1015 Lausanne, Switzerland

5 Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain

Received 18 April 2017 and Received in final form 25 July 2017
Published online: 19 September 2017
c© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract. Phase-field models have been extensively used to study interfacial phenomena, from solidifica-
tion to vesicle dynamics. In this article, we analyze a phase-field model that captures the relevant physical
features that characterize biological membranes. We show that the Helfrich theory of elasticity of mem-
branes can be applied to phase-field models, allowing to derive the expressions of the stress tensor, lateral
stress profile and elastic moduli. We discuss the relevance and interpretations of these magnitudes from a
phase-field perspective. Taking the sharp-interface limit we show that the membrane macroscopic equilib-
rium equation can be derived from the equilibrium condition of the phase-field interface. We also study two
dynamic models that describe the behaviour of a membrane. From the study of the relaxational behaviour
of the membrane we characterize the relevant dynamics of each model, and discuss their applications.

1 Introduction

Biological membranes are complex objects composed by
thousands of molecules, assembled in a delicate balance.
The elastic properties of the membrane result from the
interplay between all these components, and an astound-
ing number of both passive and active processes are in-
volved in the membrane running [1]. As a consequence
of the intrisinc complexity of the membrane microstruc-
ture, the mechanical response of cell membranes presents
a complex phenomenology which, in spite of the extraor-
dinary insight gained since the beginnings of the field, is
still under continuous development. The substantial in-
crease in the quantitative data obtained in recent years
invite to a deeper understanding of the membrane func-
tioning by means of physical models, and theoretical stud-
ies have provided important information and interpreta-
tions of different aspects of the membrane [2, 3]. Among
others, some relevant examples are the elastic response of
the erythrocyte membrane under sedimentation in channel
flow [4], the deformability of erythrocytes when manipu-
lated by optical traps [5], or the effect of active processes in
the membrane fluctuations [6]. Nevertheless, the study of
membrane behaviour is complex, since it usually involves
out of equilibrium processes and generic geometries. Thus,
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it requires thermodynamically consistent models charac-
terized by a high flexibility, in order to deal with compli-
cate morphological problems.

From a theoretical perspective, membranes can be
treated as interfaces with specific elastic properties,
namely a vanishing surface tension and resistance to bend.
The dynamics of interfaces is a well-known problem in
physics, which has raised in different fields [7]. The so-
called phase-field methods have been succesfully applied
to study many of these problems, including directed solid-
ification [8], fracture dynamics [9], or roughening [10]. The
method consists in introducing an order parameter with
two equilibrium phases representing each physical domain,
with a smooth interface connecting both regions [11]. The
main advantage of the method is that it is not necessary
to trace explicitly the interface position. One simply intro-
duces a dynamic equation for the order parameter, and the
morphological evolution of the interface is inferred from
the order parameter field. The dynamics of the interface
will be therefore governed by this dynamic equation, so
that the choice of the equation is essential to capture the
correct dynamic behaviour of the particular system.

The method was extended to describe amphiphilic
systems [12, 13], in which the presence of amphiphile
molecules lower the surface tension and leads to a
more complex interfacial behaviour. Gompper and
Zschocke [12] showed that the elastic moduli of the inter-
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face can be estimated from the order parameter profile
by comparing the total free energy for simple geometries
such as spheres and cylinders. Blokhuis and Bedeaux [14]
and Blokhuis [15] demonstrated that the interface elastic
response depends on the interface curvature, showing
that the properties of curved interfaces might differ
significantly from the relaxed state. Taking advantage of
the extensive knowledge gathered in phase-field models,
it seems natural to extend this method to the modeling
of biological membranes [16]. The requirement of a zero
surface tension is nonetheless highly nontrivial [17],
and different models have been proposed [18–20]. These
models have been studied in detail [21], and especially its
convergence in a mathematical sense [22, 23]. However,
to date a proper elastic description of phase-field models
from the perspective of the membrane framework is lack-
ing. Provided that classic interfaces are much simpler than
membranes, the understanding of the elastic properties
of membrane phase-field models is essential for a precise
control and interpretation of the subsequent studies.

In this paper, we study the membrane phase-field
model of ref. [20]. We have two main goals: on the one
hand, to show that the mechanic formalism of the classic
theory of membranes [24,25] can be applied to phase-field
models, allowing to sequentially recover the expressions of
the stress tensor, lateral stress profile, and elastic moduli,
in terms of the order parameter profile. We compare the
results with those found by Gompper and Zschocke [12],
following an energetic argument, which we also show here
for completeness. By means of a sharp interface limit we
then obtain the equilibrium equation of the membrane
in the macroscopic limit. On the other hand, we aim to
characterize and discuss two different dynamic models and
show how the method can be applied to study relaxational
processes of the membrane. The paper is structured as fol-
lows. In sect. 2 we first briefly outline the Helfrich theory
of membranes, and present the specific membrane phase-
field model and dynamic equations. In sect. 3 we analyze
the relevant elastic properties of the model, obtaining the
expressions of the stress tensor, lateral stress profile and
elastic moduli. Besides, in sect. 4 we focus on the dynamic
characterization of the membrane. We perform a sharp in-
terface limit in order to obtain the macroscopic equations
of the membrane. Finally, in sect. 5 we discuss the rele-
vance of the two dynamic models studying the relaxation
of a flat membrane by means of a linear stability analysis.

2 Dynamics of membrane phase-field models

2.1 Helfrich theory of membranes

The large separation in the length scale of the mem-
brane thickness (roughly 4 nm) and typical size of the
cell (≈ μm) allows to consider the membrane as a two-
dimensional sheet. Based on this assumption, the Helfrich
theory establishes that the elasticity of lipid membranes
is governed by the resistance to bend, given that bilay-
ers present vanishing surface tension [26] and their fluidic

nature in the membrane plane implies that the shear mod-
ulus is strictly zero. Thereby, Helfrich [27] proposed the
bending free energy,

F =
κ

2

∫
(C − C0)2dA + κG

∫
GdA +

∫
γdA +

∫
ΔpdV,

(1)
where C and G are the total and Gaussian curvatures
of the membrane surface, κ and κG are, respectively, the
associated bending and Gaussian moduli, and C0 is the
so-called spontaneous curvature, which captures the pres-
ence of any asymmetry in the membrane microstructure.
γ and Δp are two Lagrange multipliers introduced to fix
constant membrane area and enclosed volume, respec-
tively. Lipid membranes are highly incompressible [2], due
to the strong hydrophobic repulsion of the lipid tails when
exposed to water molecules, so that their area remains
effectively constant. The constant volume constraint is
imposed because certain systems, such as most cells, have
specific regulatory systems which maintain the volume
(and hence the cell shape) constant. A remarkable aspect
of the bending energy (1) concerns the Gaussian term,
which remains constant if the membrane deformation
does not imply topological changes, as stated by the
Gauss-Bonnet theorem.

The Helfrich theory disregards certain aspects of cell
membranes, and complementary models have been pro-
posed to improve our physical description of membranes.
Most important examples correspond to the bilayer ar-
chitecture, as captured in the bilayer-couple and area-
difference models [28], and the presence of an under-
laying spectrin cytoskeleton in the case of red blood
cells [29, 30]. Nevertheless, the Helfrich theory has been
the basis to explain an important number of membrane
phenomena [5,31,32], and it remains largely valid in gen-
eral problems in which the cytoskeleton or the balance
between leaflets do not play a key role.

2.2 Phase-field models

From the phase-field modeling perspective, membranes
can be understood as interfaces with two main charac-
teristics: they are tensionless interfaces, and they present
resistance to bending. The main challenge in the phase-
field modeling of membranes relies on the supression of
the surface tension [17]. The bending condition requires
the addition of second derivatives of the order parame-
ter in the free energy. Thus, we will consider a general
Ginzburg-Landau free energy of the form [26,33]

F [φ] =
∫

L(φ,∇φ,∇2φ)dV

=
∫ {

f(φ) + g(φ)(∇φ)2 + c(∇2φ)2 + μΔφ
}

dV, (2)

where we have introduced μΔφ that accounts for the differ-
ence in free energy when the interfacial shape is modified
with respect to a reference one. The amplitude μΔ is fixed
to enforce that the equilibrium between the two phases
in contact through the interface is not affected when
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considering a change in the curvature of the interface.
This additional term will only be necessary to derive the
elastic coefficients associated to the free energy functional
for well-established thermodynamic conditions. For a pla-
nar interface μΔ = 0.

The equilibrium order-parameter profile that mini-
mizes the free energy equation (2) satisfies the Euler-
Lagrange equation

δF = f ′ − 2g∇2φ − g′(∇φ)2 + 2c∇2∇2φ + μΔ = 0, (3)

where χ′(u) ≡ dχ/du denotes the derivative of a generic
function χ with respect to its argument.

A phase-field membrane model

We make use of a phase-field model that meets the charac-
teristics of membranes [18,21,22], which has been success-
fully applied to study different problems regarding vesicle
and cell elasticity and morphological response [32,34–36].
This model considers the presence of two phases corre-
sponding to the inner and outer regions of the mem-
brane, and the interface separating both domains is spec-
ified as a tensionless interface with a bending contribu-
tion. Thus, it does not account explicitly for the pres-
ence of the lipid-rich phase as a third equilibrium phase,
as it is usual in amphiphilic systems [26], but treats the
membrane as a two-dimensional sheet with the prescribed
elastic behavior. The model corresponds to a free energy
of the form (2) with coefficients fb(φ) = φ2 − 2φ4 + φ6,
gb(φ) = 2ε2(3φ2 − 1), and cb = ε4, where the subscript
“b” indicates that it corresponds to a tensionless, purely
bending interface. This choice ensures that in equilibrium
the surface tension vanishes, as we will show later. The
subscript b indicates that this model corresponds to a
purely bending interface [20]. Although in principle there
are other coefficient sets that produce a vanishing surface
tension, the main advantage of this particular choice is
that it presents an analytical equilibrium solution of the
order parameter profile.

For convenience, we rewrite the free energy as

Fb[φ] =
∫ {

κ∗

2
(ψ[φ])2 + μΔφ

}
dV, (4)

where we have introduced the functional ψ[φ] = −φ+φ3−
ε2∇2φ and additionally the parameter κ∗ is incorporated
to control the bending rigidity of the interface. The equi-
librium phases of this model are φeq = 0,±1, though the
phase φeq = 0 is not macroscopically stable and hence it
is not considered in the subsequent analysis.

In addition to the bending elasticity, the inextensiblity
of the membrane can arise as an important contribution to
the mechanic response of the membrane. To introduce the
Lagrange multiplier γ one needs to compute the area of the
membrane from the order parameter field. This is achieved
exploiting the fact that in the sharp limit ε → 0, the
gradient of the order parameter behaves as a δ-function,

lim
ε→0

{
An(ε)

2
|∇nφ|2

}
= δ(x), (5)

where ∇n is the gradient in the normal direction to the
interface and An(ε) is a normalization constant which de-
pends on the specific order parameter profile. This expres-
sion allows to transform volume integrals into surface in-
tegrals, and hence providing a direct pathway to compute
the area of the isosurface φ = 0. The complete membrane
energy is given by

Fmem[φ] = Fb[φ] + An(ε)
∫

γAε2(∇φ)2dV, (6)

where the subscript “mem” indicates that this free energy
accounts both for bending and membrane incompressibil-
ity. The results presented in the next sections apply to any
free-energy of the form eq. (2), although they will allow us
to describe and characterize the elastic properties of this
phase-field membrane model.

2.3 Dynamic models

The Helfrich theory describes the mechanics of lipid mem-
branes, and it can be used to predict equilibrium shapes
of cells and vesicles or equilibrium properties of the mem-
brane. However, to study more general out-of-equilibrium
problems it must be incorporated in a dynamic framework.
The phase-field method inherently invites to introduce a
dynamic formalism. The characteristics of the interface
dynamics are dictated by the particular choice of the dy-
namic equation. In this article, we first consider a diffusive
dynamics given by the Cahn-Hilliard equation [37],

∂φ

∂t
= ∇ ·

(
M∇δF

δφ

)
, (7)

which captures the dynamic behaviour of a membrane im-
mersed in a diffusive medium. Equation (7) is conserved
(i.e. the total amount of each equilibrium phase remains
constant during the evolution), and therefore the volume
multiplier of the membrane energy (1) can be removed.
We denote this dynamic model as PF (phase-field).

The behavior of a membrane immersed in a liquid re-
quires to describe the hydrodynamics of the surrounding
medium, and thus the Navier-Stokes equation is incorpo-
rated,

∂φ

∂t
+ v · ∇φ = M∇2 δF

δφ
. (8a)

ρ

[
∂v
∂t

+ (v · ∇v)
]

= −∇P + fφ + η∇2v. (8b)

Both equations are coupled via the terms fφ, which rep-
resents the force density of the interface disrupting the
surrounding fluid, and the advective term v · ∇φ, which
describes how the fluid accelerates the membrane. The
complete Navier-Stokes phase-field model is termed as NS-
PF. The membrane accelerates locally the fluid through
the force density fφ. We will show in the next section that
the local force can be expressed in terms of the chemical
potential as

fφ = −φ∇μ. (9)
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In order to obtain a close form for the dynamics of the
system, we need to identify the stress tensor and chemical
potential associated to the phase-field.

2.4 Chemical potential

In the phase-field framework the chemical potential is ob-
tained from the variations of the free energy when a small
variation in the order parameter is introduced,

μ[φ] =
δF
δφ

=
∂L
∂φ

−∇β
∂L

∂(∇βφ)
+∇2 ∂L

∂(∇2φ)
+ μΔ. (10)

The condition μ[φ] = 0, equivalent to the Euler-
Lagrange eq. (3), determines the equilibrium profile of
the order parameter. For the particular case of the mem-
brane model, and considering a flat interface in which the
Lagrange multiplier is set to zero, the chemical potential
reads

μmem = κ∗ [
(3φ2 − 1)ψ[φ] − ε2∇2ψ[φ]

]
. (11)

From eq. (11) it is obvious that ψ = 0 represents a
solution of the equilibrium condition μmem = const. Con-
sidering the boundary conditions φ(±∞) = ±1 in the
bulk, this expression can be integrated leading to the equi-
librium profile φ0(z) = tanh(z/

√
2ε). Although the solu-

tion of (11) is not unique, this particular one represents
the minimum energy solution, as can be directly inferred
from (4). The Lagrange multiplier does not affect the equi-
librium profile of the interface, and the previous expression
of φ0 represents the equilibrium condition of both free en-
ergies (4) and (6). Once the equilibrium profile has been
identified, we can compute An(ε) = 3/(2

√
2ε2) and then

the membrane model (6) is completely specified.

2.5 Stress tensor

In order to derive the stress tensor, σαβ , from the free
energy, eq. (2), we follow a virtual work procedure. Con-
sidering a general displacement of the interface given by
δxα, the external work associated reads [38]

δF = −
∫

∇βσαβδxαdV =
∫

σαβ∇βδxαdV. (12)

The variations of the order parameter associated with
this deformation are obtained assuming that the changes
induced in the order parameter solely correspond to the
interface shift, i.e. diffusion is subdominant [39],

∂tφ + ∇ · (φv) = 0, (13)

and considering vα ≈ δxα/δt, we derive the variation of
the order parameter and, after differentiation, its deriva-

tives

δφ = −φ∇αδxα −∇αφδxα.

δ∇βφ = −∇βφ∇αδxα − φ∇β∇αδxα

−∇β∇αφδxα −∇αφ∇βδxα.

δ∇2φ = −∇2φ∇αδxα − 2∇βφ∇β∇αδxα − φ∇α∇2δxα

−∇α∇2φδxα − 2∇β∇αφ∇βδxα −∇αφ∇2δxα.

(14)

Thereby, the work required to deform the interface
reads

δF =
∫

δLdV

=
∫ (

∂L
∂φ

δφ +
∂L

∂∇βφ
δ∇βφ +

∂L
∂∇2φ

δ∇2φ

)
dV. (15)

Introducing the variations of the order parameter and its
gradients, (14), in the expression (15), and after several
straightforward integrations of those terms containing sec-
ond and third gradients of δxα, one obtains the stress ten-
sor,

σαβ =
(
L − φ

δL
δφ

)
δαβ − ∂L

∂(∇βφ)
∇αφ

+(∇αφ)∇β
∂L

∂(∇2φ)
− ∂L

∂(∇2φ)
∇α∇βφ. (16)

The force exerted by an object is defined as the diver-
gence of the stress tensor. By directly operating in eq. (16),
it can be shown that for an interface with free energy (2),
in general the force density relates with the chemical po-
tential by

fφ
α = ∇βσαβ = −φ∇αμ. (17)

For the particular case where the free energy corre-
sponds to a membrane, eq. (6), the previous general ex-
pression for the local force due to the phase-field reduces
to eq. (9).

3 Elastic properties of membrane phase-field
models

3.1 Lateral stress profile. Mechanical derivation of the
membrane elastic moduli

The lateral stress profile of an interface is obtained from
the stress tensor [40],

s(z) = σt − σn, (18)

where σt and σn denote the tangential and normal com-
ponents of the stress tensor, respectively. Assuming a flat
interface along the xy plane, these components reduce to
σn = σzz and σt = (1/2)(σxx +σyy), and the stress profile
is easily computed from (16),

sφ(z) = 2g(φ0)(φ′
0)

2 + 2c(φ′′
0)2 − 2cφ′′′

0 φ′
0. (19)
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A B

Fig. 1. (A) Scheme of a lipid bilayer. The multiple inter-
actions between the chemical groups of the lipids lead to a
complex stress profile in real cell membranes. However, bilay-
ers are invariably characterized by a balance between internal
stresses, giving rise to a vanishing surface tension. (B) Lateral
stress profile of the membrane phase-field model, sb

φ(z) (blue
line), and for a classic tension interface, st

φ(z) (red line). The
phase-field model for membranes does not account for a de-
tailed profile of the actual stresses present in the membrane,
but concentrates the interactions in two effective contributions,
a central term of repulsion and two symmetric attractions, and
their balance produces the tensionless nature of the membrane.
The lateral stress profile of a tension interface, on the contrary,
involves a single term of attraction, so that the interface tries
to minimize its surface.

The internal stresses dictate the macroscopic elastic prop-
erties of the interface [25]. In fig. 1 we show the lateral
stress profile for a tension interface (e.g., a classic water-
oil interface) and a membrane (given by the free energy
model (4)). The tension interface has a unique positive
contribution, implying that the pressure is negative and
thus the interface tends to compress, minimizing its sur-
face area. The profile of the membrane is more complex,
as it presents a central negative term (which following
an analogous argument can be interpreted as a repul-
sion) and two symmetric terms of attraction. One of the
main important aspects of this profile is that the different
stresses are balanced, so that its integral along ẑ is zero.

Lateral stress profiles have been extensively studied in
membranes, both theoretically [41] and numerically [42],
providing a deeper understanding of the interactions
between lipids or the influence of the presence of proteins
to the lateral balance of the membrane [43]. Studies at
a molecular level have shown that the lateral stresses,
even in simple homogeneous membranes, present a com-
plex profile [44], resulting from the numerous chemical
interactions, such as repulsion between polar groups,
hydrophobic attraction, repulsive effects between tails,
etc. Therefore, the stress profile of the phase-field model
of fig. 1 might be understood as an effective profile which
recovers the fundamental macroscopic properties. Still,
we offer here an alternative interpretation of this profile.
The central repulsive term can be understood as the
entropic repulsion between lipid tails at the central core
of the membrane, which try to expand the membrane.
The two lateral attractions must be associated to the
head-tail interactions, which compress the membrane.
Accordingly, the phase-field approach implicitly entails a
simple representation of the membrane internal molecular

interactions which follows the spirit of the initial simple
descriptions by Petrov and Bivas [45]. In principle, the
phase-field framework might allow to construct more
detailed models, in which the presence of the lipid phase
is considered and hence the correspondent lateral stresses
would reproduce a more realistic profile.

According to Helfrich [24], the elastic moduli that
characterize the membrane elastic energy, eq. (1), can be
obtained as moments of the lateral stress profile. Following
his approach, the surface tension, spontaneous curvature
and Gaussian curvature modulus read

γ̄mec =
∫

sφ(z)dz, (20)

−κCmec
0 =

∫
zsφ(z)dz, (21)

κmec
G =

∫
z2sφ(z)dz, (22)

where we have introduced γ̄mec = γ + (κ/2)(Cmec
0 )2. As

opposed to eqs. (20)-(21), previous studies have shown
that eq. (22) is not generally valid [46].

3.2 Energetic derivation of the elastic moduli

Alternatively, it is possible to derive the expressions for
the elastic moduli comparing the membrane free energy
in the phase-field representation with the corresponding
expressions of the Helfrich energy of spheres and cylin-
ders [12–14, 47]. We outline here the main steps of the
derivation, but the complete process is shown in ap-
pendix A. If we consider a membrane with spherical or
cylindrical shape, the Helfrich energy reads

Fc

A
= γ̄ − κC0

R
+

κ

2R2

Fs

A
= γ̄ − 2κC0

R
+

2κ + κG

R2
. (23)

If we consider a membrane with cylindrical and spher-
ical geometry in which the radius is very large, the radial
coordinate close to the interface matches the normal com-
ponent of a flat membrane, z = r − R. Exploiting this
symmetry, the membrane free energy, eq. (2) can be ex-
pressed in terms of the energy per unit area as an integral
along the radial coordinate,

Fc/s

A
=

∫
dz

(
1 +

z

R

)d

Lc/s(φ,∇φ,∇2φ), (24)

where c/s refers to the membrane geometry (cylinder
or sphere, respectively) and d = 1(2) for the cylinder
(sphere). L has units of pressure and is related to the
excess of pressure across the interface, as we will describe.

In the limit in which the radius of curvature is large
enough, we can expand the different contributions to
eq. (24) in powers of 1/R. For example, the order param-
eter can be expressed as

φc/s(r−R) = φ0(z)+
φ1,c/s(z)

R
+

φ2,c/s(z)
R2

+O(R−3), (25)
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where the coefficients of the expansion are functions that
depend on the membrane geometry, except the zeroth or-
der φ0, which corresponds to the reference, planar profile.
Analogously, for the free energy we can write

Fc/s

A
=

∫
dz

(
1 +

z

R

)d

×
[
L0 +

L1,c/s

R
+

L2,c/s

R2
+ O(R−3)

]
, (26)

where the functions L0 = L(φ0), L1,c/s = ∂Lc/s/∂(1/R),
and L2,c/s = ∂2Lc/s/∂(1/R)2 correspond to the ampli-
tudes of the free energy density in subsequent powers
of the radius of curvature. Comparing the expansion in
the free energy, eq. (26), with the Helfrich free energies,
eq. (23), when the interface forms a sphere and a cylinder,
we can express the mechanical properties of the interface
in terms of the expansion of the free energy density in the
phase-field approach. Specifically, for a cylindrical defor-
mation we obtain

γ̄ =
∫

L0dz

−κC0 =
∫

[zL0 + L1,c] dz

κ = 2
∫

[zL1,c + L2,c] dz, (27)

while for a spherical deformation we arrive at

γ̄ =
∫

L0dz

−2κC0 =
∫

[2zL0 + L1,s] dz

2κ + κG =
∫ [

z2L0 + 2zL1,s + L2,s

]
dz. (28)

The subscripts c and s indicate that the corresponding am-
plitude is obtained by an expansion of F , in the inverse of
the curvature radius for a spherical and cylindrical shape,
respectively. Since the lowest order in the expansion cor-
responds to the reference, planar interface, L0 is indepen-
dent of the deformed interface, and correspondingly, the
expression for the surface tension obtained is the same for
a spherical and cylindrical deformation, and reads

L0 = f0 + g0(φ′
0)

2 + c(φ′′
0)2. (29)

Multiplying the Euler-Lagrange expression, eq. (3), by the
gradient of the order parameter for a planar interface we
get

f0 = g0(φ′
0)

2 + c(φ′′
0)2 − 2cφ′

0φ
′′′
0 , (30)

except for a constant that we take 0 to avoid divergences in
the bulk phases. Inserting this constraint in eq. (29) shows
that the integral across the interface of the profiles L0 and
sφ are equivalent, indicating that the surface free energy
for a planar interface coincides with the excess pressure
across the interface. Hence the surface tension obtained

from eqs. (28)-(27) and eq. (20) coincide. The same holds
for the product κC0, as shown in appendix A.

A cylindrical deformation provides a relation between
the bending modulus and L1,c and L2,c. In order to an-
alyze the dependence of κ on the properties of the free
energy density one needs to perform the expansion of
the free energy density to second order in the cylin-
der curvature, and select a dividing surface. The deriva-
tions corresponding to the equimolar surface, for which∫

dz[φ(z) − φbulk(z)] = 0, is carried out in appendix A,
leading to

κ =
∫

2c(φ′
0)

2dz −
∫

[g0φ
′
0 − 2cφ′′′

0 ]φ1,cdz. (31)

The first term of this expression only depends on the
planar reference profile, and actually is proportional only
to the amplitude c in the free energy density, in agree-
ment with the result found in [12]. The second term rep-
resents the contribution to the rigidity due to the bend-
ing of the interface, as determined by the presence of the
perturbative term φ1,c. Blokhuis [15] discussed to what
extent the expression given by [12] (which we denote as
κ0 =

∫
2c(φ′

0)
2dz) is valid, or whether the whole expres-

sion eq. (31) recovers the bending rigidity. He showed that
the approximation κ0 is in general incorrect, and can lead
to large deviations from the real value. However, for some
specific free energies, such as that used by [12], the pertur-
bative term associated with φ1,c is very small, and hence
the bending rigidity calculation based only on the planar
profile is sufficiently accurate, κ ∼ κ0. For the free en-
ergy model corresponding to eq. (2) we have verified that
κ0/κ = 0.98, thus showing that κ0 constitutes a good es-
timate of the bending rigidity.

Finally, we can derive an expression for the Gaussian
curvature from the spherical deformation of the free en-
ergy model. The expression appearing in eq. (28) indi-
cates that in general we cannot recover the mechanical
expression proposed by Helfrich, depicted in eq. (22). The
mechanical expression can be recovered only if

∫
(L2,s +

2zL1,s)dz = 0. This is generically not the case. For the
particular case of a liquid interface, when c = 0 and
g(φ) = g0 this expression cancels and the mechanical and
energetic expressions for the Gaussian curvature coincide.
The Gaussian curvature can then be understood as a mo-
ment of the excess stress along the unperturbed interface.
For the general case we get

κG =
∫ (

z2
[
2g(φ)(φ′

0)
2 + 4c(φ′′

0)2
]
− 4c(φ′

0)
2
)
dz, (32)

as derived in the appendix A. The mechanical derivation
gives as obtained from eqs. (22)–(22) gives

κ
(mec)
G =

∫ (
z2

[
2g(φ)(φ′

0)
2 + 4c(φ′′

0)2
]
− 2c(φ′

0)
2
)
dz.

(33)
For a lipidic symmetric membrane, consistent with the
expected result of a purely bending interface, we re-
cover the expected results for the surface tension, spon-
taneous curvature and bending rigidity, γ = C0 = 0,
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κ = (2
√

2ε3/3)κ∗. A vanishing Gaussian curvature, ac-
cording to the theoretical model [21], is only recovered
from the energetic expression, eq. (32). Hence, there is
an inconsistency in the Gaussian rigidity between the me-
chanical expression proposed by Helfrich and the value ob-
tained from energetic arguments based on the equimolar
dividing surface Previous studies have already shown that
eq. (22) does not hold for a general phase-field model for
surfactants [46]. Although the discrepancy in the Gaussian
curvature for these models is small, this difference may ex-
plain the deviations observed when comparing Gaussian
modulus computed numerically from molecular level simu-
lations of lipidic membranes, as discussed by Hu et al. [44].
These authors compare the value of the Gaussian modu-
lus obtained from the second moment of the lateral stress
profile with the value derived when changes in the topol-
ogy of the membrane are induced, finding that the me-
chanic approach leads to unphysical results and conclud-
ing that the mechanical approach based on the moments
of the profile does not correctly capture important corre-
lations within the bilayer. A more detailed analysis of the
relationship between the stress tensor obtained from the
Ginzburg-Landau free energy and its microscopic deriva-
tion is required. In particular, it is unclear which aspects
of the details of the location of the curved interface at
a microscopic level will be crucial to identify the proper
bending rigidities.

4 Macroscopic equations

The results presented in the previous section allow to con-
nect the macroscopic mechanical properties of the inter-
face with the gradient profiles of the order parameter. This
fact can be exploited to derive the macroscopic equations
of the interface from the equations for the order param-
eter, (10) and (7). This procedure, known as the sharp
interface limit, has been extensively applied in phase-field
models to obtain the set of equations that describe the
dynamics of the interface [19, 48], allowing the study of
some important interfacial behaviour such as the Saffman-
Taylor instability [49]. The goal of this section is to apply
the sharp-interface method to a general membrane phase-
field model of the form eq. (2) and obtain the macroscopic
equations that characterize the equilibrium and dynamics
of this model.

The sharp interface limit consists in considering a
macroscopic length scale, much larger than ε, and derive
the equations that depend on the macroscopic variables,
such as the total curvature of the interface, in the limit
ε → 0. It is a singular limit, as ε must be small but strictly
nonzero. We first focus on the dynamic equation of the
order parameter without hydrodynamic coupling, PF. We
then discuss the application to the complete NS-PF model.

We only outline the sharp interface limit here, but fur-
ther details of the method can be found in appendix B.
The method is mathematically analogous to the expansion
in 1/R carried out in the previous section, but following
the standard procedure it is generalized to account for any
interface geometry, instead of being limited to cylindrical

and spherical surfaces. For that purpose, we deploy curvi-
linear coordinates. The space is separated into two regions,
the (macroscopic) outer region, and the (microscopic) in-
ner region of the interface. Both regions are described by
the coordinates r (see footnote1) and ω, respectively, re-
lated by r = ω/ε. Thus, the fast coordinate in the inner
region allows to resolve the details of the interface. In the
macroscopic scale, the interface is sharp and then ε → 0.
The starting point is a flat interface in equilibrium, sub-
jected to a weak perturbation. The interface is character-
ized by the general free energy (2). The interface must be
symmetric, c0 = 0, so that the flat interface represents an
equilibrium configuration; for strictly nonsymmetric inter-
faces the method should perturb an equilibrium configura-
tion, such as a spherical membrane of radius 1/c0, requir-
ing a more complex analytical treatment. Once the fast
coordinates are introduced, as explained in appendix B,
the dynamic equation reads

ε∂τφ − 1
ε
v∂ωφ = M

(
1
ε2

∂2
ω − C

ε
∂ω + ∂2

s + ∂2
u

)
μ, (34)

where v denotes the normal velocity of the interface.

4.1 Membrane equilibrium equation

The equilibrium equation of a Helfrich membrane was first
derived by Ou-Yang and Hefrich [50] applying a vari-
ational argument. Following a different procedure, the
sharp interface limit allows to derive this macroscopic
equation [22], imposing the condition μ = const. (Note
that this condition directly gives v = 0 in (34)). The
problem reduces then to the calculation of this constant
in terms of the macroscopic variables. For the equilibrium
flat interface, the chemical potential vanishes μ0 = 0 but
for other geometries its value is a priori unknown. As men-
tioned, the method assumes a weak perturbation of the
reference flat interface. The phase-field profile of the per-
turbed interface is expanded

φ = φ0 + εφ1 + ε2φ2 + . . . , (35)

where φ0 is the equilibrium profile. Functionals of φ
are expanded as m(φ0 + εφ1 + ε2φ2 + . . .) = m0(φ0) +
εm1(φ0, φ1) + ε2m2(φ0, φ1, φ2) + . . .. Likewise, the differ-
ential operators are expanded in terms of ε, as described
in appendix B. Using these results, the chemical poten-
tial for the free energy model introduced in eq. (2) can be
explicitly derived from eq. (10) leading to

μ0 = f ′
0 − g′0(∂ωφ0)2 − 2g0∂

2
ωφ0 + 2c∂2

ωφ0.

μ1 = f ′
1 − g′1(∂ωφ0)2 − 2g1∂

2
ωφ0 + 2Cg0∂ωφ0 − 2g0∂

2
ωφ1

+2c∂4
ωφ1 − 4cC∂3

ωφ0.

. . . , (36)
1 r represents the direction normal to the interface in the

curvilinear coordinates, as described in detail in appendix B.
For the specific case of a flat interface (such as the equilibrium
one, φ0), this coordinate agrees with z as used in sect. 3. The
coordinates along the membrane surface are (s, u).
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where f1 and g1 represent the terms of order ε1 of the
expanded functions f and g, respectively, and we use the
notation f ′ = ∂f/∂φ and f0 = f(φ0). The equilibrium
value, μ0 = 0 provides the equilibrium phases φeq and
defines the equation for φ0. The next contribution μ1 is
nonzero, and its value is evaluated by multiplying by ∂ωφ0

and integrating over the normal direction,

μ1

∫
dω∂ωφ0 =

∫
dω[f ′

1 − g′1(∂ωφ0)2 − 2g1∂
2
ωφ0

+2Cg0∂ωφ0 − 2g0∂
2
ωφ1

+2c∂4
ωφ1 − 4cC∂3

ωφ0]∂ωφ0. (37)

The right-hand side of this expression includes terms
depending solely on φ0 whereas others also depend on
φ1. We focus first on the latter. By using the relation
m′

1 = m′′
0φ1 for any polynomial function m, (37) can be

rewritten into

μ1

∫
dω∂ωφ0 =

∫
dω∂ωφ0[f ′′

0 − g′′0 (∂ωφ0)2

−2g′′0∂2
ωφ0 − 2g′0∂

2
ω + 2c∂4

ω]φ1

+
∫

dω∂ωφ0[2Cg0∂ωφ0 − 4cC∂3
ωφ0].

(38)

Let us consider now the equation that determines the equi-
librium profile, given by μ0 = 0. Applying the operator ∂ω,
we obtain the equation

[f ′′
0 − g′′0 (∂ωφ0) − 2g′′0∂ω − 2g′0∂ω + 2c∂3

ω]∂ωφ0 = 0. (39)

Thus, ∂ωφ0, known as Goldstone mode and related to
the translational invariance of the interface, is an eigen-
vector of the linear operator in brackets in (39) [49]. In-
tegrating by parts (38) and introducing (39), the term
associated to φ1 vanishes and then (37) reduces to

μ1

∫
dω∂ωφ0 =

∫
dω[2Cg0(∂ωφ0)2 − 4cC∂3

ωφ0∂ωφ0].

(40)
Integrating by parts, this equation reads

μ1φ(+∞) − μ1φ(−∞) = C

∫
dωsφ(ω), (41)

where we have introduced the lateral stress profile (19).
To relate the gradients of the chemical potential with

the corresponding pressure gradients at the two sides of
the membrane, we introduce the pressure tensor Pαβ =
−σαβ and consider eq. (17), arriving at ∂rp = φeq∂rμ (see
footnote2). Since φ = φ(±∞) is constant far from the in-
terface, in the macroscopic scale we can relate the pressure

2 This relation can be understood from the Gibbs-Duhem
equation,

V dP =
X

i

Nidμi, (42)

where Ni is the amount of matter of the species i and taking
into account that φ ∼ N/V , which leads to dP = φdμ.

and chemical potential as p1(±0) = φeqμ1(±0) [49]. Using
this relation and the expression for the surface tension,
eq. (20), in eq. (41) we arrive at

Δp1 = γC, (43)

which corresponds to the Young-Laplace equation that
provides the pressure difference sustained across the in-
terface.

By means of this procedure, the subsequent terms of
the chemical potential can be evaluated, providing high-
order contributions to the pressure difference. The ex-
plicit calculations are simple but cumbersome, and only
the main steps are shown here. By using the equation
∂wμ1 = 0 as with the Goldstone mode, evaluation of μ2

reduces to

μ2

∫
dω∂ωφ0 = (C2 − 2G)

×
∫

dωω[2g0(∂ωφ0)2 − 4c∂3
ωφ0∂ωφ0].

(44)

The term of the right-hand side of this expression van-
ishes, since s(ω) is strictly symmetric. The term Δp2 cor-
responds to the pressure contribution of the spontaneous
curvature and accordingly it vanishes for a symmetric
membrane. From the algebraic calculations shown in ap-
pendix B, and considering the final expression (B.19), the
subsequent term is given by

μ3

∫
dω∂ωφ0 = (C3 − 3GC)

∫
dωω2[2g0(∂ωφ0)2

−4c∂3
ωφ0∂ωφ0] − ΔsC

∫
dω2c(∂ωφ0)2

−1
2
C(C2 − 4G)

∫
dω2c(∂ωφ0)2. (45)

The first term in the right-hand side of (45) vanishes
due to the symmetry of the equilibrium profile, and iden-
tifying the bending rigidity from (31), we obtain

Δp3 = −1
2
κC(C2 − 4G) − κΔsC. (46)

Considering all the contributions and disregarding for
simplicity the term associated to the Gaussian curvature
modulus, the membrane equilibrium equation reads

Δp = Δp0 + εΔp1 + . . . = γC − 1
2
κC(C2 − 4G) − κΔsC.

(47)

4.2 Dynamic equations

In the previous section we have restricted our analysis
to equilibrium, disregarding the dynamics described by
eq. (7). The sharp interface limit can be extended to ob-
tain the macroscopic equations that describe the dynamic
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behaviour of the membrane. The derivation of the com-
plete dynamic model is necessary to study, among others,
the stability and relaxational properties of the interface.

Following the formalism presented in the previous sec-
tion, the space is separated in two domains, the inner cor-
responding to the interfacial region and the outer, which
corresponds to the bulk. The variables of eq. (7) are ex-
panded in terms of ε. In the inner region, the order ε−2 is
given by ∂2

ωμ0 = 0, and hence μ0 = m0 + n0ω. Since μ0

must be finite in the limit ω → ±∞, n0 vanishes and we
fix μ0 = 0. The dynamic equation at order ε−1 reads

−v0∂ωφ0 = M∂2
ωμ1. (48)

Integrating this equation across the interface profile,

∂ωμ1(+∞) − ∂ωμ1(−∞) = −v0Δφeq. (49)

We arrive at v0 = 0 introducing the matching conditions
∂ωμ1(±∞) = ∂rμ0(±0) = 0. μ1 is therefore a constant
that can be evaluated as in the previous section. The sub-
sequent order, ε0, is given by

−v1∂ωφ0 = M(∂2
ωμ2 − C∂ωμ1∂

2
sμ0). (50)

Integration by parts and using the matching conditions
lead to

−Δφeqv1 = M(∂ωμ2(+∞) − ∂ωμ2(−∞))

= M(∂rμ1(+0) − ∂rμ1(−0)). (51)

We can use again the relation between pressure and chem-
ical potential gradients, eq. (17) to arrive at an explicit
expression for the membrane velocity. Taking into ac-
count that |φeq| = 1 and introducing the permeability
B = M/(2|φeq|2), (51) can be rewritten,

v = −B(∇p+ + ∇p−). (52)

This is the continuity equation that describes the in-
terface velocity as a function of the pressure gradients at
the interface.

In the outer region, at first order μ0 = 0 due to the
matching conditions with the inner region. The subse-
quent order, however, is given by ∇2μ1 = 0 which can
be rewritten as ∇2p = 0. This expression represents the
Laplace equation in the bulk.

Taking into account the three equations obtained, the
complete macroscopic model reads

Δp = γC − (1/2)κC(C2 − 4G) − κΔsC,

v = −B(∇p+ + ∇p−),

∇2p = 0. (53)

Some remarks should be pointed out here. Although
we have included the equilibrium equation (47) for com-
pleteness, the sharp interface limit specifies that the dy-
namics is dominated by the first contribution to the pres-
sure difference. Thus, if the interface has a nonzero surface
tension, its dynamics will be generally dictated by surface
tension. For symmetric tensionless interfaces, in which the
first nonvanishing term is Δp3, bending governs the dy-
namics of the interface.

5 Membrane relaxation dynamics

The macroscopic model (53) describes the dynamics of the
membrane for the PF model. In deterministic dynamics, a
linear stability analysis can be performed to obtain infor-
mation about the properties and relaxational behaviour
of the membrane, analogous to the study of the fluctu-
ation spectrum in stochastic systems, as stated by the
Onsager’s theory of linear relaxation processes. We per-
form a linear stability analysis to study the response of
a flat interface in equilibrium when subjected to a si-
nusoidal perturbation [51]. The relaxational time of the
membrane is calculated, and the method is applied to
measure the elastic properties of the membrane. The flat
interface is weakly perturbed, and the membrane posi-
tion is then given by y = h(x, t) = ξ0e

iqx+ωt, where h is
the distance of the membrane with respect to the equi-
librium position, q is the wavelength of the perturbation
and ω is the relaxation rate. If ω > 0, the perturbation
will grow and the membrane is unstable; if ω < 0, the
membrane is stable and it recovers the initial configura-
tion in a typical relaxation time 1/ω. For the pressure
field we assume the ansatz p = p0 + Aeiqx+ky+ωt, where
1/k is the distance from the interface in which the pres-
sure converges to the bulk value. For sufficiently small
amplitudes, the curvature of the interface can expressed
as C ≈ −∂2

xξ = q2ξ. Finally, the velocity of the interface
is given by v = ∂th. Introducing all these considerations
into eq. (53), we find

A = (γq2 + κq4)ξ,

ωξ = −2BAk,

0 = −q2 + k2. (54)

And from here, the dispersion relation is obtained

ωφ(q) = −2B|q|(γq2 + κq4), (55)

where we have introduced ωφ = ω to specify that this
result corresponds to the PF model, (7).

The derivation of the macroscopic equations of the NS-
PF model is complex due to the existing coupling between
both equations. However, one can assume the hypothe-
sis of a nonuniform mobility which effectively acts as a
force propagator, mimicing the moment transfer induced
by the fluid fluxes [52]. Within this picture, the mobility
might be proportional to the Oseen tensor, M(x,x′) =
(1/2)Λ(x,x′). In the free space the Oseen tensor is given
by

Λ(x,x′) =
1

8πη|x − x′|

(
11 +

(x − x′)(x − x′)
|x − x′|2

)
, (56)

where η is the fluid viscosity. The Fourier transform of (56)
is Λ(q) = (11 − q̂q̂)/ηq2, so that combined with expres-
sion (55) the relaxation rate for the NS-PF model is pro-
portional to (γq + κq3). This is the classic result for in-
terfaces immersed in fluids, and the formal expression
reads [52,53],

ωη(q) = − 1
4η

(γq + κq3). (57)
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Fig. 2. Dispersion relation for interfaces dominated by surface tension and bending (membranes), in the PF (A) and NS-PF (B)
models. The simulations are perfomed in a box of constant dimensions, and hence q0 represents the lowest mode. w0 corresponds
to the relaxation rate of the mode q0 for each case; e.g., for the PF model of surface tension, ω0 = 2Bγq3

0 , and analogously for
the other three cases. Grey bold lines correspond to the theoretical prediction for the relaxation rate given by expressions (55)
and (57), respectively. Both models agree with the theoretical prediction, though the curves deviate at low q, probably as a
consequence of a finite-system effect (see main text). The fitting of the numerical results to the theoretical curves provides a
measure of the effective value of the elastic parameters. We obtain γφ/γth = 1.02 and κη/κth = 0.88 for the PF model, and
γη/γth = 1.17 and κη/κth = 0.85 for the NS-PF model.

In order to validate the complete NS-PF model, and
confirm that it captures the correct membrane dynamics
given by expression (57), we numerically study the re-
laxation of an interface. The numerical scheme used for
these tests consists in a lattice-Boltzmann implementa-
tion of the NS-PF model [54]. For further details of the
model see Kendon et al. [55] and Lázaro et al. [36]. The
procedure to measure the relaxation rate is analogous to
the derivation outlined above. A flat interface is perturbed
with an initial sinusoidal profile h(x, 0). The interface posi-
tion h(x, t) is tracked during the evolution and, from here,
the relaxation rate ωη can be easily obtained. The initial
amplitude must be small compared to the wavelength of
the perturbation, qξ 	 1. In fig. 2 we show the disper-
sion relation for interfaces dominated by surface tension
and bending (membranes), comparing the results for the
PF model, given by (55), and the NS-PF model, (57). In
these simulations, the size of the box is kept constant but
sweeping along an extensive range of wave vectors q; we
fix the reference mode q0 as the one corresponding to the
domain length (i.e. the minimum q studied). The relax-
ation rates are normalized by the relevant relaxation rate
ω0 of the mode q0; for instance, for the PF model of sur-
face tension, ω0 = 2Bγq3

0 , and analogously for the other
three cases. The dimensionless curves obtained are there-
fore universal for each model and type of interface.

The models reproduce the expected behaviour, though
we observe a certain deviation from the theoretical predic-
tion for the longest modes. This is likely related with the
penetration length of the perturbation, 1/k, which scales
linearly with the wavelength λ = 2π/q, so that the inter-
face effectively interacts with the boundaries of the system
in the limit of low q. By fitting the numerical results to
the relaxation rate predicted by the linear theory, the ef-

fective elastic moduli of each interface can be obtained.
Our results show a relatively good accuracy, obtaining
γφ/γth = 1.02 and κη/κth = 0.88 for the PF model, and
γη/γth = 1.17 and κη/κth = 0.85 for the NS-PF model. In
these expressions the subscript th indicates the theoreti-
cal value of the elastic modulus as introduced in the free
energy. This procedure can be extended to more complex
geometries in which the influence of the membrane curva-
ture plays an important role, a problem not well under-
stood [56].

6 Conclusions

We have analyzed a phase-field model for the study of
fluid membranes, and following the classic formalism of
the theory of elasticity we have derived the expressions for
the stress tensor, lateral stress profile and elastic moduli
in terms of the order parameter. The results presented
in this article demonstrate the robust physical basis of
the phase-field method and its conciliation with the more
familiar theory of membranes.

Once we have asserted how to relate the macroscopic
material parameters of the membrane from the internal
stresses of the diffuse interface, the macroscopic equations
can be derived. In equilibrium, the model recovers the
classic Ou Yang-Helfrich equation. Besides, we study the
out-of-equilibrium behaviour of the membrane for two dif-
ferent dynamic models, which corresponds to a membrane
immersed in a diffusive media and a membrane immersed
in a liquid. We have performed a linear stability analysis
that has allowed us to study the relaxational behaviour of
a membrane and characterize its dynamical features.
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The methodology presented here offers the necessary
tools to study membrane elastic behaviour in arbitrary ge-
ometries, showing the flexibility of the phase-field frame-
work. In addition, the phase-field model can be extended
to more general membranes (such as asymmetric or multi-
component membranes) and if a Gaussian contribution is
incorporated, the method could be used to conduct studies
about topological changes in membranes (e.g. fusion or
vesiculization).
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Appendix A. Energetic derivation of the
elastic moduli

In order to derive the expressions of the elastic moduli
following an energetic argument, we consider a membrane
with cylindrical and spherical geometry in which the ra-
dius is very large, so that the radial coordinate close to the
interface matches the normal component of a flat mem-
brane, z = r − R. Note that in this section r represents
the radial coordinate in the cylindrical/spherical geome-
try, and not the curvilinear geometry from appendix A.
We consider the general expression for the membrane en-
ergy, eq. (24), that has been expanded in powers the cur-
vature, 1/R, for a spherical and cylindrical distortion as
shown in eq. (26). Comparing the terms of the expansion
with the Helfrich free energy for the cylindrical and spheri-
cal deformations, and expanding the order parameter pro-
file in powers of 1/R as shown in eq. (25), we can express
the interfacial elastic moduli in terms of the amplitudes,
Li, (i = 0, 1, 2) as depicted in eqs. (27)-(28). To lowest
order, all the contributions in the expansion in 1/R, corre-
sponding to the planar interface, coincide for a cylindrical
and spherical deformation; for example, φ0,c = φ0,s = φ0.
For the sake of simplicity, hereafter this subscript is only
included if the geometry is relevant, whereas it is omitted
for general geometries.

In order to arrive at explicit expressions for the elastic
coefficients in terms of the order parameter profiles, we
need to relate φc and φs, which we accomplish through
the Euler-Lagrange equation, eq. (3). It can be written
down as

f ′ − 2gφ′′ − g′(φ′)2 − 2g

r
φ′ + 2cφ′′′′ +

4c

r
φ′′′ + μΔ = 0,

(A.1)

f ′ − 2gφ′′ − g′(φ′)2 − 4g

r
φ′ + 2cφ′′′′ +

8c

r
φ′′′ + μΔ = 0,

(A.2)

for cylindrical and spherical deformations, respectively. In
the previous expressions ψ′(φ) refers to the derivative of a
function ψ with respect to its variable, φ. If we make use
of the expansion of the order parameter around a planar
interface in terms of 1/R, eq. (25), at first order we get

f ′
0φ

′
1,c − 2g0φ

′′
1,c − 2g′0φ

′
1,cφ

′′
0 − 2g′0φ

′
1,cφ

′
0

−g′0φ
′
1,c(φ

′
0)

2 + 2cφ′′′′
1,c = 2g0φ

′
0 − 4cφ′′′

0 , (A.3)

for the cylindrical deformation, and

f ′
0φ

′
1,s − 2g0φ

′′
1,s − 2g′0φ

′
1,sφ

′′′
0 − 2g′0φ1,sφ

′
0

−g′0φ
′
1,s(φ

′
0)

2 + 2cφ′′′′
1,s = 2(2g0φ

′
0 − 4cφ′′′

0 ), (A.4)

for the spherical case. Comparing both equations one di-
rectly obtains 2φ1,c = φ1,s. Finally, comparing the terms
to second order one gets, 4φ2,c = φ2,s.

In order to expand a free energy in powers of the inter-
face deformation with respect to a planar shape, we must
expand both a function, ψ(φ) of the order parameter

ψ(φ)=ψ0+
1
R

ψ′
0φ1,c/s+

1
R2

[ψ′
0φ2,c/s+

1
2
ψ′′

0φ2
1,c/s] + . . . ,

(A.5)
where we have introduced the notation ψ(φ0) = ψ0, and
where c/s refers to the membrane deformation (cylinder or
sphere, respectively). Moreover, the differential operators
can be expanded as

∇φ = φ′
0 +

1
R

φ′
1,c/s +

1
R2

φ′
2,c/s + . . .

∇2φ = φ′′
0 +

1
R

[φ′′
1,c/s + dφ′

0]

+
1

R2
[φ′′

2,c/s + dφ′
1,c/s − dzφ′

0] + . . .

∇4φ = φ′′′′
0 +

1
R

[φ′′′′
1,c/s + 2dφ′′′

0 ]

+
1

R2
[φ′′′′

2,c/s+2dφ′′′
1,c/s−2dzφ′′′

0 +d(d − 2)φ′′
0 ]+ . . . ,

(A.6)

where we have used that 1/r = 1/R[1 − z/R + . . .], and
d = 1(2) for a cylindrical (spherical) deformation.

For a general free energy, as the one given in eq. (2),
inserting the expanded order parameter and differential
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operators, we can compute L1,c/s and L2,c/s for a cylin-
drical/spherical deformation,

L1,c/s =
∂Lc/s

∂(1/R)
=f ′

0φ1,c/s+g′0φ1,c/s(φ′
0)

2 + 2g0φ
′
0φ

′
1,c/s

+2c(φ′′
0φ′′

1,c/s + dφ′′
0φ′

0) + μΔ,1φ0, (A.7)

L2,c/s =
∂2Lc/s

∂(1/R)2
=f ′

0φ2,c/s+
1
2
f ′′
0 φ2

1,c/s+
1
2
g′′0φ2

1,c/s(φ
′
0)

2

+g′0φ2,c/sφ
′
0+g0(φ′

1,c/s)
2+2g0φ

′
0φ

′
2,c/s+2g′0φ

′
0φ

′
1,c/sφ1,c/s

+c
[
(φ′′

1,c/s)
2 + d2(φ′

0)
2 + 2dφ′

0φ
′′
1,c/s + 2φ′′

0φ′′
2,c/s

+ 2dφ′
1,c/sφ

′′
0 − 2zφ′′

0φ′
0 + μΔ,2φ0 + μΔ,1φ1

]
, (A.8)

where μΔ is also expanded in powers and 1/R and we
have made use of the fact that μΔ,0 = 0. The equilibrium
profiles for the distorted interface must satisfy the Euler-
Lagrange equation, eq. (3). Expanding it in powers of 1/R,
we get

f ′′
0 φ1,c/s−2g0φ

′′
1,c/s−2dg0φ

′
0−2g′0φ1,c/sφ

′′
0−g′′0 (φ′

0)
2φ1

−2g′0φ
′
0φ

′
1,c/s + 2c(φ′′′′

1,c/s + 2dφ′′′
0 ) + μΔ,1 = 0. (A.9)

We have already shown that to lowest order, L0 is
equivalent to the excess pressure and hence that the me-
chanical and energetic expressions for the surface tension
coincide, independently of the deformation applied to the
interface. Accordingly, the expressions for the surface ten-
sion obtained for both deformations coincide, as shown in
eqs. (27)-(28).

The explicit expressions for the elastic moduli will de-
pend, in general, on the choice of the dividing interface.
We will consider the equimolar surface as the dividing sur-
face, located at z = 0,∫

dz [φ(z) − φbulk(z)] = 0. (A.10)

For this choice, the reference bulk densitiy reads

φbulk(z) = φ−∞θ(−z) + φ∞θ(z),

where φ∞ and φ−∞ are the values of the concentration
in the bulk regions at z = ±∞, while θ(z) stands for
the Heaviside function. Expanding in the inverse of the
radius of curvature R, the choice of the equimolar dividing
surface introduces integral relations between the density
fields at different powers in the expansion in the inverse
of the membrane deformation. To lowest order in powers
of 1/R one finds
∫

[φ0(z) − φ0,bulk(z)] dz =0
∫

[φ1(z)−φ1,bulk(z)] dz =−d

∫
dz [z(φ0(z)−φ0,bulk(z))] .

(A.11)

The expressions for the spontaneous curvature, and bend-
ing and Gaussian moduli require some algebra. Introduc-
ing (3) and (A.9) in (A.7) and (A.8), the elastic moduli

can be rewritten. The spontaneous curvature reduces to

−κC0 =
∫

zL0dz, (A.12)

which amounts to stating that
∫
L1dz = 0, showing that

the expression for κC0 coincides for a spherical and cylin-
drical deformation and with the expression obtained me-
chanically. For the bending rigidity we must focus on the
cylindric geometry, as bending and Gaussian rigidities are
coupled in the spherical case. Integrating the expressions
for the energy coefficients (A.7) and (A.8), it can be shown
that the bending rigidity takes the form

κ =
∫ (

zL1,c + 3cφ′2
0

)
dz, (A.13)

where the term associated with φ1,c/s represents a pertur-
bative contribution due to the bending of the interface.

The bending rigidity (A.13) must be introduced in the
expression for the Gaussian rigidity in (28), and also con-
sidering the relations between φs and φc one obtains

κG =
∫

[z2L0 − 2c(φ′
0)

2]dz. (A.14)

It can be shown that, to leading order,
eqs. (A.12), (A.13), (A.14) agree with the results
found by Gompper and Zschocke [12]. The link between
the reference free energy density L0 and the lateral stress
profile (19) requires computing of the first integral of
the Euler-Lagrange equation. Making use of eq. (30), the
relation between L0 and sφ is easily deduced∫

L0dz =
∫

[f0 + g0(φ′
0)

2 + c(φ′′
0)2]dz

=
∫

[2g0(φ′
0)

2 + 2c(∂′′
0 )2 − 2cφ′

0φ
′′
0 ]dz

=
∫

sφ(z)dz. (A.15)

Multiplying by φ′
0 eq. (A.9), and integrating over

space, one can show that all terms proportional to φ1 van-
ishes, leading to and expression for

μΔ,1c

∫ ∞

−∞

dφ0

dz
dz = γ (A.16)

and comparing the expression for the spontaneous cur-
vature for the spherical and cylindrical deformations,
μΔ,1s = 2μΔ,1c. The derivations shows that the change
in the reference thermodynamic state as the interface is
curved, quantified by μΔ, does not affect the expressions
for the elastic coefficients.

Appendix B. The sharp interface limit

The sharp interface limit is a classic method for deter-
mining the macroscopic equations of diffuse interface mod-
els [48]. It exploits the separation between the length scale
of the interface, given by ε, and the typical length of the
interface, which can be defined from the total curvature
as l ∼ 1/C. The limit applies only in the low-curvature
limit, εC 	 1.
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Fig. 3. Scheme of the sharp interface method. The interface
has a normal direction at each point given by the coordinates
r in the outer region and the fast coordinate ω = r/ε in the
inner region. In the inner region, each isosurface φ = const. has
an associated mean curvature C′(u, s), whereas the isosurface
φ = 0 is associated to C.

Appendix B.1. The inner and the outer region

The interface is described by the curvilinear coordi-
nates (r, s, u) [19]. These coordinates represent a näıve
parametrization of the membrane surface. The vector ba-
sis is chosen as follows. At each position of the surface,
the normal vector n is defined. From the tangential plane
we choose two vectors forming an orthonormal trihedron,
t2 = n × t1. We define a vector position n that can be
decomposed into the vector position in the surface and
the normal projection, r = R(s, u) + rn(s, u), where r
is the coordinate in the direction of n and (s, u) are the
coordinates in the directions of t1 and t2, respectively.
Hence, (r, s) are orthogonal coordinates on the membrane
surface, and describe arclengths of the curve formed by
the intersection of the membrane surface and the planes
(r, s) = const. and (r, u) = const. r is normal to the inter-
face at each point (s, u) on the surface. A scheme of the
interface decomposition is provided in fig. 3.

The space is separated into two different regions. The
interfacial region, called here inner region, is described by
a fast coordinate ω = r/ε. Thus, the interfacial region is
zoomed up in order to resolve the details of the smooth
interface, although in the outer region the interface is ef-
fectively sharp in the limit ε → 0. The starting point is
a flat interface in equilibrium, with relaxed profile φ0. If
a small perturbation is induced, the deviations from the
equilibrium profile can be expanded in terms of ε,

a(ω, s, u)=a0(ω, s, u) + εa1(ω, s, u) + ε2a2(ω, s, u) + . . . ,

A(r, s, u)=A0(r, s, u) + εA1(r, s, u) + ε2A2(r, s, u) + . . . ,

(B.1)

where capital letters denote variables in the outer region,
and lower case letters indicate variables in the inner re-
gion. In the limit ω → ±∞ both regions meet, and the

matching conditions read

a0(ω, s, u) = A0(0±, s, u),
a1(ω, s, u) = a1(0±, s, u) + ω∂ra0(0±, s, u),
a2(ω, s, u) = a2(0±, s, u) + ω∂ra1(0±, s, u)

+
ω2

2
∂2

rra1(0±, s, u), · · · . (B.2)

The dynamic equation (7) is analogously decomposed
in the two regions, with the corresponding inner and
outer variables. The differential operators must be also
expanded in terms of ε. We also assume that the interface
motion is much larger than the characteristic timescale
of order parameter diffusion, and hence the time is also
rescaled τ = εt, where τ is the time in the inner region.
Hence, in this quasiestatic approximation we can write

∂tφ(r) = ε∂τφ(ω) − 1
ε
∂τω∂ωφ(ω) (B.3)

and, defining the normal velocity of the interface v =
−∂τω, the dynamic equation reads

ε∂τφ − 1
ε
v∂ωφ = M∇2μ, (B.4)

where the Laplacian must be expanded, as shown below.
The method does not allow for finding explicit solutions of
the fields, but provide a set of equations that in the limit
ε → 0 represent the macroscopic equations of the model.

Appendix B.2. Differential operators

As previously stated, the differential operators must be
also expanded in terms of ε. In the inner coordinates,
∇φ = (ε−1∂ωφ, ∂sφ, ∂uφ), and thus at leading order only
the normal coordinate contributes. This means that the
variations of φ along the coordinate directions (s, u) are
disregardable with respect to variations in ω. For simplic-
ity, in the subsequent calculations we deliverately neglect
some derivatives of the tangential coordinates, which do
not contribute after the expansion, in order to simplify the
expressions obtained. Additionally, for the sake of clarity
we perform all the calculations in terms of the coordinate r
and only introduce ω at the end of the calculations. Some
useful identities are [22]

n̂ = ∇r,

C = −∇ · n̂ = −∇2r,

G = −(1/2)[2 tr((∇α∇βr)2) − (tr(∇α∇βr))2], (B.5)

for the normal vector and total curvature, respectively.
Note that, because the normal vector is unitary, (∇r)2 =
1, and consequently

nα∇βnα = (1/2)∇β(nαnα) = 0. (B.6)

We suppose that at each point of the isosurface φ =
const., there is a local coordinate system given by the
coordinate r(x), normal to the surface, and the tangential
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coordinates (s(x), u(x)). We suppose that there exists a
solution for the order parameter profile of the form φ =
φ(r, s, u). We can write the gradient and Laplacian as

∇φ = ∂rφ∇r + ∂sφ∇s + ∂uφ∇u.

∇2φ = ∂2
rφ(∇r) + ∂rφ∇2r + ∂2

sφ(∇s)2 + ∂sφ∇2s

+∂2
uφ(∇u)2 + ∂uφ∇2u. (B.7)

For simplicity, we only consider the terms associated to
the higher derivative, e.g., ∂2

s in the Laplacian. Introduc-
ing these considerations, the expression for the Laplacian
can be rewritten as

∇2φ = ∂2
rφ − C ′∂rφ + ∂2

sφ + ∂2
uφ + · · · . (B.8)

Here, C ′ corresponds to the local total curvature of
the isosurface at each point of the space (r, u, s). However,
in the interface region it is convenient to write the local
curvature of the isosurface φ = const. expressed in terms
of the curvature of the isosurface φ = 0, which we denote
C, given that in the sharp interface limit C ′ → C. The
relation between the curvature of the two isosurfaces is
given by

C ′ = C

[
2rG/C − 1

1 − rC + r2G

]
. (B.9)

Introducing this expression in (B.8), the expression for
the Laplacian is given by

∇2φ = ∂2
rφ −

[
2rG − C

1 − rC + r2G

]
∂rφ + ∂2

sφ + ∂2
uφ + · · · .

(B.10)
At low curvatures, the term in brackets associated with

∂rφ can be expanded, obtaining

∇2φ=∂2
rφ − C+[r(C2 − 2G)+r2(C3 − 3GC + · · · )]∂rφ

+∂2
s + ∂2

u + · · · . (B.11)

If the fast coordinate ω is introduced, the expression
reads

∇2φ = ε−2∂2
ωφ − ε−1

[
C + εω(C2 − 2G)

+ ε2ω2(C3−3GC + . . .)
]
∂ωφ+∂2

sφ+∂2
uφ + · · · .

(B.12)

The derivation of the fourth derivative, ∇4 = ∇2∇2,
is more complicated. By taking the derivative of the ex-
pression of the Laplacian (B.7), one obtains

∇2∇2φ = ∂4
rφ + 2∇2r∂3

rφ + 2∇αr∇α∇2r∂2
rφ

+(∇2r)2∂2
rφ + ∇2∇2r∂rφ. (B.13)

In this expression, several terms can be readily iden-
tified in terms of the total curvature (e.g. C ′2 = (∇2r)2),
but particularly the physical meaning of ∇αr∇α∇2r is not
straightforward.

For convenience, we perform below some algebraic ma-
nipulations that will be useful in the derivation of the
equilibrium condition in sect. 4. Let us consider first the

fourth term in the right-hand side of (B.13). Multiplying
by ∂rφ and (∇αr)(∇αr) = 1, and integrating by parts∫

∇αr∇αr∂rφ∂2
rφ(∇2r)2dx =

−1
2

∫
[(∇2r)3 + 2∇αr∇α∇2r∇2r](∂rφ)2dx. (B.14)

The interpretation of this expression requires to con-
sider the identity C ′2 − 4G′ = 2 tr(∇2r)2 − (∇2r)2, as can
be obtained from identities (B.5). Then, it is straightfor-
ward to show the equivalence:

C ′(C ′2 − 4G′) = −∇2r(2 tr(∇α∇βr)2 − (∇2r)2)

= −2∇α(∇2r∇βr∇α∇βr)

+2(∇α∇2r∇βr∇α∇βr)

+2∇2r∇αr∇αr∇2r + (∇2r)3

= (∇2r)3 + 2∇αr∇2r∇α∇2r, (B.15)

where, in the last equality, we have used (B.6). The com-
parison between eqs. (B.14) and (B.15) demonstrates that
the fourth term in (B.13) relates with −(1/2)C ′(C ′2 −
4G′).

Considering now the third term in the right-hand side
of (B.13), multiplying by ∂rφ and (∇βr)(∇βr) = 1,∫

∇βr∇βr∇αr∇α∇2r∂2
rφ∂rφdx=−1

2

∫
[∇βr∇β∇2r∇2r

+∇βr∇α∇βr∇α∇2r + ∇βr∇αr∇α∇β∇2r](∂rφ)2dx.

(B.16)

Note that the second term in the expression in brackets
vanishes by (B.6). From the expression for the gradient op-
erator projected over the surface S, ∇S

α = ∇α − nαnβ∇β ,
the Laplace-Beltrami operator over the surface reads

ΔS = ∇S
α∇S

α = ∇2 + C ′nα∇α − nαnβ∇α∇β . (B.17)

Manipulating this expression, and using nα = ∇αr,
leads to,

ΔSC ′ = ∇2C ′ + C ′nα∇αC ′ − nαnβ∇α∇βC ′

= −∇2∇2r+∇2r∇αr∇α∇2r+∇αr∇βr∇α∇β∇2r.

(B.18)

Hence, our calculations show that the third and fifth
terms of (B.13) are equivalent to the surface variations of
the curvature, ΔSC ′. As a summing up, introducing the
fast coordinate ω and multiplying equation (B.13) by ∂ωφ
we obtain the relation∫

∂ωφ∇2∇2φdx =
∫ {

ε−4∂4
ωφ∂ωφ

+2[C + ω(2G − C2) + ω2(C3 − 3GC) + . . .]∂3
ωφ∂ωφ

−1
2
ε−1C(C2 − 4G)(∂ωφ)2 − ε−1ΔSC(∂ωφ)2

}
dx.

(B.19)

Note that the terms associated with the first deriva-
tive, ∂ωφ, correspond to the highest order considered in
the expansion and at this order C = C ′.
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