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Abstract We show that the renormalizable SO(4)×U(1)×
SU(2)× SU(3) Yang–Mills coupled to matter and the Higgs
field fits all the experimentally observed differential cross
sections known in nature. This extended Standard Model
reproduces the experimental gravitational differential cross
sections without resorting to the graviton field and instead by
exchanging SO(4) gauge fields. By construction, each SO(4)
generator in quantum gravitodynamics does not commute
with the Dirac gamma matrices. This produces additional
interactions absent to non-Abelian gauge fields in the Stan-
dard Model. The contributions from these new terms yield
differential cross sections consistent with the Newtonian and
post-Newtonian interactions derived from General Relativ-
ity. Dimensional analysis of the Lagrangian shows that all
its terms have total dimensionality four or less and there-
fore that all physical quantities in the theory renormalize by
finite amounts. These properties make QGD the only renor-
malizable four-dimensional theory describing gravitational
interactions.

1 Introduction

The structure and success of General Relativity have lead us
to the belief that the spin-2 graviton field mediates quantum
gravitational interactions; but to date this belief has eluded
experimental detection. Furthermore, the quantum limit of
General Relativity fails to renormalize properly, forcing us
to further believe that General Relativity comes from a clas-
sical projection of a 10 dimensional string. On the other
hand, we know that the geometrical object that describes
the geodesics in General Relativity is the connection and not
the metric which enters that construction only after arbitrar-
ily imposing the metric compatibility constraint. Then we
can in practice construct a quantum theory of gravity where
the fundamental field is the connection as in [1] or a similar
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object as we do here. Nothing but experimental observation
constrains these possibilities. Therefore, we should not force
the graviton upon ourselves and instead focus on matching
the proposed model’s differential cross sections to experi-
mental evidence; the more so, when we must yet detect the
particle mediating gravitational interactions.

Here we present quantum gravitodynamics, QGD, the
only renormalizable four-dimensional theory that reproduces

the interactions in General Relativity to O
(

v2

c2

)
and couples

to the Standard Model through a covariant derivative like the
other three interactions in nature. As we show below, all dia-
grams in QGD match those of its counterpart in General Rel-

ativity to O
(

v2

c2

)
and the potential that determines a test par-

ticle’s classical trajectories, are identical for both theories to
that same order. As opposed to General Relativity, which does
not renormalize, QGD has a metric void of any dynamics,
explicitly lacks a graviton field or any spin-2 state, and instead
uses SO(4) Yang–Mills fields coupled to spinor singlets to
mediate the gravitational interactions. Furthermore, QGD

reproduces all diagrams in General Relativity to O
(

v2

c2

)

and therefore all experimental evidence to that same order.
However, as opposed to General Relativity, the terms in the
QGD Lagrangian involve products of fields and their deriva-
tives with total dimensionality of at most four and therefore
renormalization follows [2]. Thus, QGD is renormalizable,
and, like General Relativity, constructed in four dimensions.
Because QGD is defined in terms of Yang–Mills fields, it also
couples naturally to the Standard Model to produce a Unified
Model with SO(4)×U(1)×SU(2)×SU(3) gauge symmetry
that reproduces all the experimentally observed differential
cross sections in nature, including those produced by gravita-

tional interactions to O
(

v2

c2

)
. QGD also has the ability to fit

those diagrams contributions from gravity that may become
available in the future such as Higgs–gluon gravitational scat-
tering. In addition, QGD has gravitational SU(2) Yang Mills
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BPS states that match the entropy of black holes and type-II
strings.

Pure Yang’s gravity [1] has similar classical equations to
those of Einstein’s Relativity and includes Schwarzschild-
like solutions, whose singularity at the horizon, as opposed
to black hole solutions, cannot be removed through a coor-
dinate transformation [3]. QGD and Yang’s gravity are both
constructed in terms of the same connection defined over a
fiber bundle, However, Yang’s gravity is not renormalizable
because it couples its Yang–Mills field directly to the energy-
momentum tensor. Instead, in QGD, the Yang–Mills fields
couple to matter through a SO(4)×U(1) covariant derivative,
in the same manner as the other forces in nature and which
preserves renormalization. Therefore, the couplings in QGD
ensure that all terms in the Lagrangian have dimensionality
four or less which guarantees renormalization [2].

String theory is the only other theory, besides QGD, to
incorporate gravitational interactions while preserving renor-
malization. It has been a successful gravitational theory,
because like QGD, scattering processes associated with the
β-function constrain the metric to be a solution of Einstein’s
equation. Therefore, like QGD it reproduces all General Rel-

ativity tests to O
(

v2

c2

)
. Like strings, QGD has the necessary

BPS states to resolve the black hole entropy problem. How-
ever, unlike QGD, string theory cannot be defined without
ambiguity in four dimensions and neither can it couple to the
Standard Model which instead must be reformulated along
side gravity.

The QGD connection defined on the SO(4) fiber bundle
can be projected to the connection defined on the SO(1,3)
tangent bundle. This projection allows the generators of the
SO(4) gauge fields to be defined in terms of the Dirac gamma
matrices,

T ab = − i

4
[γ a, γ b], (1)

and therefore these generators do not commute with the
spacetime Dirac γμ matrices. This non-commutativity con-
trasts QGD from the other gauge theories in the Standard
Model because it introduces terms proportional to [γμ, T ab]
which couple to fermionic matter fields with arbitrary cou-
plings. The map from the SO(4) gravitational gauge field,
ωab

μ , to the spin-connection defined in [4] motivates calling
ωab

μ the connecton.
In order to test QGD, we must reproduce the experimen-

tal evidence supporting General Relativity. As discussed at
the end of Sect. 4, this also suffices to show that QGD will

reproduce all effects of General Relativity to O
(

v2

c2

)
. The

procedure used to fit QED to experimental evidence, see
for example [5], transfers well to QGD and permits the fit-
ting of all the QGD parameters to experimental observation.
The T-matrix calculation in [5] associated with the tree-level

e−e− → e−e− scattering process produces a differential
cross section; comparison of that differential cross section
with the one obtained from the Schroedinger equation with
a Coulomb potential allows the fitting of the electron cou-
pling found in QED to the experimentally measured charge
used in the Coulomb potential. This procedure extends to
the quantized but non-renormalizable General Relativity the-
ory. In [6] the tree-level scattering process for two bosons,
b b′ → b b′, produces a differential scattering matrix which
fits the Schroedinger equation with a Newton potential while
the 1-loop scattering correction fits the differential cross sec-
tion produced by the Schroedinger equation with the lead-
ing classical post-Newtonian correction to the potential. The
strategy implemented in [5,6] was also successfully imple-
mented to the gravitational sector in string theory [7–10].
Thus, matching the model’s differential cross sections to
experimental/expected differential cross sections allows us
to test if a model correctly describes nature.

Here we follow the same strategy as that used in [5–10]
to show that QGD coupled to the Standard Model fits all
the known experimental differential cross sections, includ-
ing those gravitational in nature. Section 2 details the sym-
metries and action derived for a single matter field and the
U(1) electromagnetic field, both coupled to gravity. In Sect. 3
we calculate the propagators and vertices of the model pre-
sented in Sect. 2. In Sect. 4 we calculate T-matrix elements to
produce differential cross sections which are then fitted to the
differential cross section of the Schroedinger equations with
the Coulomb, the Newtonian and post-Newtonian potentials
as well as the differential cross section for the deflection of
light by a point particle in the small angle approximation
found in General Relativity. Section 5 presents the full QGD
coupling to the Standard Model, while Sect. 6 fits the differ-
ential cross sections to experimentally observed differential
cross sections. Section 7 moves outside the realm of exper-
imental observation and shows that QGD can include the
expected gravitational interactions of the SU(2) and SU(3)
gauge bosons as well as the Higgs doublet. In Sect. 8 we
consider the isomorphic SU(2) × SU(2) Yang–Mills repre-
sentation of QGD, which when N = 2 supersymmetrized has
BPS states whose entropy corresponds to that of a black hole,
and that can bridge to type-II strings [13]. The conclusions
appear in Sect. 9.

2 Symmetries and actions

The fundamental geometrical object of General Relativity,
the connection on the tangent bundle, does not require a met-
ric to describe a particle’s geodesics. Consistent with General
Relativity and in the spirit of [1], QGD chooses a connection
over the metric as the fundamental field. QGD does not use
a yet to be detected graviton field or spin-2 particle and it
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uses instead a constant metric void of any dynamics. Instead,
connections defined on the SO(4) fiber bundle mediate all
gravitational interactions; these SO(4) gauge fields alone
mediates all the gravitational interactions between particles.
These fields suffice to obtain all the differential cross sections
expected from General Relativity for a single matter–photon
system. More importantly, this construction does not have
any experimental impediments because we have yet to detect
the graviton or any other spin-2 particle.

We present the Lagrangian

L = Lgauge + L f (2)

Lgauge = 1

4
FμνF

μν + 1

4
�ab

μν�
ab
μν (3)

L f = i

2
ψ̄{γ μ, Dμ}ψ + g′

g
ψ̄[γ μ, Dμ]ψ. (4)

We use the following conventions. The diagonal and flat
spacetime metric, ημν , does not carry any dynamics and
has signature (+,−,−,−). εμνρσ represents the Levi-Civita
tensor in four dimensions. The vielbeins eaρ connect space-
time coordinates (Greek indices) with the SO(4) fiber bundle
coordinates (Latin indices). In particular eaρe

bρ = ηab and
eaρeσ

a = ηρσ . The metric ηab, defined on the fiber bundle,
has signature (+,+,+,+).

We define the field strengths appearing in (3)

Fμν = 1

β
(∂μAν − ∂ν Aμ), (5)

�ab
μν =

(
∂μωab

ν + α

β
ε
abρ
ν ∂μAρ

)
−
(

∂νωab
μ + α

β
ε
abρ
μ ∂ν Aρ

)

−gCab
cde f

(
ωcd

μ + α

β
ε
cdρ
μ Aρ

)(
ω
e f
ν + α

β
ε
e f σ
ν Aσ

)
.

(6)

Aμ represents the U(1) electromagnetic gauge field and the
SO(4) gauge field ωab

μ , the connecton, mediates of gravi-
tational interactions. The couplings e, g, g′ and α denote
coupling constants and β = √

1 + 6α2. With ω̃μab defined
as a copy of a textbook SO(N = 4) gauge field necessarily
antisymmetric in indices a and b, then

ωμab = ω̃μab + ecμe
ν
aω̃νcb, (7)

so that the indispensable property

ωμabe
a
νe

b
ρεμνρσ = 0 (8)

holds.
The covariant derivative operator Dμ defined in (4) acts

on a four-dimensional Dirac spinor field ψ

Dμψ =
(

∂μ + ie

β
Aμ + ig

(
ωab

μ + α

β
εabνμ Aν

)
Tab

)
ψ (9)

and depends on the SO(4) generators T ab defined in (1).
The U(1) local gauge transformation � = exp(iλ), with

λ a scalar function, acts on the following fields:

ψ ′ = �ψ, (10)

A′
μ = Aμ − β

e
∂μλ, (11)

ω
′ab
μ = ωab

μ + α

e
εabνμ ∂νλ, (12)

which also transforms the covariant derivative in the standard
way,

D′
μ = Dμ − i∂μλ, (13)

but leaves (2) unchanged.
The SO(4) local gauge transformations with �̂ = exp

(i�abTab) and �ab a 2-Tensor, act on the following fields:

ψ ′ = �̂ψ, (14)

A′
μ = Aμ, (15)

ω
′ab
μ = ωab

μ − 1

g
∂μ�ab + Cab

cde f �
cd
(

ωe f
μ + α

β
εe f νμ Aν

)
,

(16)

which also transforms the covariant derivative in the standard
way,

D′
μ = Dμ − iTab

[
∂μ�ab −Cab

cde f �
cd(ωe f

μ + α

β
εe f νμ Aν)

]
,

(17)

but also leaves (2) unchanged.
The SO(1,3) local gauge transformations acting on the

fermions have the same effect as the SO(4) transformation
because

�̂ = ei�
abTab = e−i�abTcde

μ
a e

ν
be

c
μe

d
ν = ei�

μνTμν . (18)

However, the SO(1,3) gauge transformations cannot act on
the pure Yang–Mills Lagrangian because the Cartan–Killing
metric for that gauge group, given by the trace over two
group elements, is not positive definite which yields states
not bounded from below [2]. This property therefore distin-
guishes theories defined over the tangent bundle with local
SO(1,3) symmetry from those defined over the fiber bun-
dle with local SO(4) symmetry. The former cannot be used
to define Yang–Mills theories even when the fiber bundles
can be projected to the tangent bundle. For the avoidance of
doubt, gravitational theories like spin-gravity can be defined
over the tangent bundle only because, as a result of the dif-
ferent construction from Yang–Mills, their spectrum does
not become unbounded from below when the Cartan–Killing
metric is not positive definite.
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The Lorenz gauge fixings

∂μA
μ = 0, (19)

∂μωμab = 0, (20)

and property (7) simplify the quadratic component in (3) to

L(2)
gauge = 1

2
∂μA

ν∂μAν + 1

2
∂μωνab∂μωνab. (21)

The structure constant defined in [4],

Cabcde f = −ηa f ηceηbd +ηadηceηb f −ηaeηcbηd f +ηacηebηd f ,

(22)

simplifies the relevant terms of the cubic terms in (3) to

L(3)
gauge = 2g

(
∂μωab

ν − ∂νωab
μ

)
ω

μ
ca ωνc

b

− 4g
α2

β2

(
Aμ∂ρ Aνe

ν
ae

ρ
bωμab + ∂ν AμAρe

μ
a e

ρ
bωνab

)
.

(23)

The terms in (23) take the form ωω∂ω and ∂AAω. In the low
energy limit the photon momentum, r , and the connecton
momentum, k, satisfy

r � k, (24)

or equivalently

∂A � ∂ω. (25)

This condition accounts for the omission of all other terms.
For example, for matter–photon scattering the vertex gener-
ated by Aω∂ω would only participate at 1-loop level, would
necessarily appear twice and thus takes values proportional
to the square of the connecton momentum. Instead, the ver-
tices produced by the second term in (23) would appear first
at tree level and then at 1-loop level where it would contribute
terms proportional to the photon momentum and its square,
respectively.

Dimensional analysis of General Relativity shows that it
does not renormalize properly. However, it follows from (9)
that the connecton has the same dimensionality as the U(1)
gauge field. Therefore, the terms in the Lagrangian (21) and
(23) involve products of fields and their derivatives with total
dimensionality four or less. Renormalization then follows as
shown in [2].

Since [γμ, Tab] �= 0, we use the relation

γ μγ νγ λ = ημνγ λ + ηνλγ μ − ημλγ ν − iεσμνλγσ γ 5, (26)

to express

i

2
ψ̄{γ μ, Dμ}ψ = iψ̄

(
∂/ + ie

β
A/ + 3ig

α

β
Aμγ 5γμ

)
ψ, (27)

iψ̄[γ μ, Dμ]ψ = gψ̄ω̄μa
μγaψ. (28)

Note that (28) does not depend on ∂μ. This means that gauge
invariance constrains (27) but not (28). Thus the rescaling of
(27) by a constant redefines the coupling. However, the redef-
inition guarantees gauge invariance only after a subsequent
redefinition of the spinor ψ . On the other hand, a recalling by
a constant, even a complex one, of (28) does not affect gauge
invariance. This contrasts with SU(2) of SU(3) couplings
where the Dirac matrices commute with their generators and
therefore (28) necessarily vanishes.

The relations (27) and (28) simplify the Lagrangian (4) to

L f = ψ̄

(
i

(
∂/ + ie

β
A/ + 3ig

α

β
Aμγ 5γμ + g′ωμa

μγa

)
− m

)
ψ.

(29)

Here the real coupling constants e, g, α and g′ adjust the
theory to observation. In particular e represents the electric
charge and gauge invariance constrains g and coincides with
the coupling constant found in the purely bosonic sector (23).
Instead, gauge invariance does not constrain g′ which can
take any value, real, purely imaginary or complex.

Again, the terms in the Lagrangian (29) involve products
of fields and their derivatives with total dimensionality four
or less. Therefore, the terms in the Lagrangians (21), (23)
and (29), and thus Lagrangian (2), involve products of fields
and their derivatives with total dimensionality four or less.
Renormalization then follows as shown in [2].

The Lagrangian L f has a complex coupling constant g′

while L(3)
gauge has a real coupling constant g. Then self energy

corrections can have imaginary contributions and therefore
it would be tempting to assume that the probability density
determined by the wavefunction decreases over time and uni-
tarity is lost. This is not the case.

We choose a pure real g and a pure imaginary g′ and will
show when fitting theory to experiment in the subsequent
sections that

g ∼ g′ ∼ O(
√
G). (30)

where G represents the gravitational constant.
The self-energy contributions to O(G2) for both bosons

Aμ and ωab
μ come from purely bosonic diagrams and those

with fermionic loops. We construct the purely bosonic dia-
grams with vertex (c) and vertex (d) defined in Sect. 3. There-
fore, the diagrams depend only on the real valued coupling
constant g

�
(G)
A ∝ g2, �

(G2)
A ∝ g4, (31)

�(G)
ω ∝ g2, �(G2)

ω ∝ g4. (32)
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Thus, those diagrams always contribute real amounts to the

self energies �
(G)
A , �

(G)
ω , �

(G2)
A and �

(G2)
ω . As we show

below, real contributions to the self energy do not affect uni-
tarity.

The diagrams involving fermionic loops always involve
an even number of vertices (a) or an even number of vertices
(b) defined in Sect. 3. Therefore, corrections to O(G2) to
the self energies of both Aμ and ωab

μ always contribute even
powers of g′

�
(G)
A ∝ g

′2, �
(G2)
A ∝ a1g

′4 + a2g
′2g2, (33)

�(G)
ω ∝ g

′2, �(G2)
ω ∝ a1g

′4 + a2g
′2g2 (34)

for some real constants a1 and a2. Even though the coupling
g′ is imaginary, all corrections to the self energies for both
bosons Aμ and ωab

μ contribute real amounts to O(G2), Even
more, because fermions always appear in loops regardless of
the order of perturbation, the self energy corrections to the
bosons Aμ and ωab

μ always remain real.
On the other hand, the contributions to the self energies

of the fermion contribute real amounts to O(G) but com-
plex amounts to O(G2). The contribution to the fermion self
energy to O(G) comes from diagrams constructed from a
pair of vertices (a) or a pair of vertices (b). Therefore

�
(G)
f ∝ b1g

′2 + b2g
2 (35)

for some real constants b1 and b2. The first imaginary contri-
bution comes from the diagram involving one vertex (c) and
three vertices (a). Therefore

�
(G2)
f ∝ g

′3g ∼ iG2. (36)

Therefore, the leading imaginary correction to the fermion
self energy contributes at most of O(G2).

The time evolution of the wavefunction for the fermion

|ψ(tout) >= e−i H(tout−tin)|ψ(tin) >

= e−i(m+Re(� f )+i Im(� f ))(tout−tin)|ψ(tin) >, (37)

where |ψ(tin) > describes the wavefunction at the emitter
and |ψ(tout) > represents the wavefunction at the detec-
tor, implies that the probability density at time tout, <

ψ(tout)|ψ(tout) >, decays as

〈ψ(tout)|ψ(tout)〉 = e−2Im(� f (tout−tin) 〈ψ(tin)|ψ(tin)〉
= e−2Im(�

(G2)
f )(tout−tin) 〈ψ(tin)|ψ(tin)〉

+O(G3). (38)

When 〈ψ(tout)|ψ(tout)〉 < 〈ψ(tin)|ψ(tin)〉 particles are lost
as they travel between emitter and detector. This experimen-
tally unobserved reduction in flux prevents large imaginary

values of �p. However, when Im(� f ) satisfies

Im(� f )(tout − tin) ≪ 1, (39)

then the self energy � f can take on imaginary values without
loss of unitarity. Since the leading imaginary correction to
the self energy of the fermion contributes at most O(G2), we
have

−2�
(G2)
f (tout − tin) ≪ 1 (40)

whenever tout − tin < 1034 years. Bearing in mind that the
universe has existed less than 1011 years and that estimates
put the proton’s half life at 1032 years, QGD can take imag-
inary couplings without affecting unitarity. This contrasts
with other theories where the coupling constants are much
larger than g′ leading to a loss of unitarity if not of gauge
invariance as well since g′ �= g. This conclusion is further
supported by the absence of diagrams contributing to O(G2)

to the self energies constructed with vertex (a) and vertices
involving the electromagnetic field.

3 Propagators and vertices

The Lagrangian densities (21) and (29) yield the following
propagators:

k

ab
μ

cd
ν

Propagator (a)

− igμνηabηcd

k2+

p
α β

Propagator (b)

iδαβ

/p−m+

r
μ ν

Propagator (c)

− igμν

r2+

For the avoidance of doubt, in the limit considered here

m � ∂A � ∂ω (41)

or equivalently m � r � k. The Lagrangian densities (23)
and (29) generate the following vertices:
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α

β

ab
μ

Vertex (a)

−g eμaeνbγν

α

β

μ

Vertex (b)

− i
β (eγμ + 3gαγ5γμ)

p

q r

ab
μ

cd
ν

ed
ρ

Vertex (c)

g(haf hcehbd + hadhcehbf − haehcbhdf + hachebhdf )·
·((p − q)ρgμν + (q − r)μgνρ + (r − p)νgμρ)

r

r
q

α

β

ab
μ

Vertex (d)

g 4α2

β2 (gμαea
βr

b+gμβe
a
αrb+ea

αeb
βrμ+ea

βe
b
αrμ)

In the following section we relate the tree- and 1-loop-
level diagrams to physical processes in order to determine
the four parameters in QGD.

4 Tree and 1-loop diagrams and their relationship to
observed quantities

In this section we calculate four scattering amplitudes: the
tree-level photon exchange between two particles with equal
mass, the tree-level connecton exchange and the 1-loop con-

necton exchange between two particles with equal mass and
the tree-level connecton exchange between a photon and a
particle with mass. These scattering amplitudes yield a total
of four differential cross sections; we equate the first 3 to
the differential cross section for a Schroedinger equation
with 3 different potentials: the Coulomb potential, the New-
ton potential and the post-Newtonian potential while the last
cross section matches the cross section for gravitational lens-
ing of a photon by a massive point particle. The Lagrangian
provides four coupling constants: e, g, g′, and α. Therefore by
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the end of this section, the four coupling constants appearing
in the differential cross sections calculated from QGD match
those of the Schroedinger equation as well as that obtained
from gravitational lensing in General Relativity.

p p

p + q q p − q

Diagram (a)

p p

p + q q p − q

Diagram (b)

The contribution from the photon exchange between two
mass particles in diagram (a) produces the T-matrix

TQED = 4im2 e
2/β2

−q2 + 4ieg
3α

β

pμ J ′
Aμ + p

′μ JAμ

−q2

+ 4ig2 9α2

β

Jμ
A J ′

Aμ

−q2 (42)

with JAμ = ψ̄γμγ5ψ and J ′
Aμ = ψ̄ ′γμγ5ψ

′. The property

pμ J ′
Aμ + p

′μ JAμ ∼ O(m) � O(m2) (43)

suppresses the second term in (42). A further limiting to the
spinless Schroedinger limit requires summation over the spin
of all in-states and out-states so that < JAμ >=< J ′

Aμ >=
0. Thus, in the non-relativistic quantum limit, the third term
in (42) vanish exactly reducing (42) to

TQED = 4im2 e
2/β2

−q2 . (44)

This T-matrix yields the differential cross section

dσQED

d�
= m2

q4 e
4/(16π2β4), (45)

while the Schroedinger equation with a Coulomb potential,

VC = e2
exp

4πR
, (46)

with eexp, the measured electric charge, and R, the distance
between the two particles, produces a differential cross sec-
tion

dσC

d�
= m2

q4 e
4
exp/16π2. (47)

Comparing the differential cross section (45) and (47) yields

eexp = e

β
. (48)

Diagram (b) contributes to the differential scattering cross
section of the connecton exchange between two mass parti-
cles. The T-matrix element

TQGD,N = −4im2 4g
′2

−q2 (49)

produces the quantum gravitodynamic differential cross sec-
tion

dσQGD,N

d�
= m2

q4

g
′4

π2 . (50)

The Schroedinger equation with a Newtonian potential,

VN = −G
m2

exp

R
, (51)

with G representing the gravitational constant, mexp repre-
senting the measured mass and R representing the distance
between the two particles, produces a differential cross sec-
tion

dσN

d�
= m2

exp

q4 G2m4
exp. (52)

Comparing the differential cross section (50) and (52) yields

g
′ = (πG)1/2mexp (53)

and

m = mexp. (54)
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p

p

p − k

k

p + q

−(k + q)
q

p − q

cd
ν

ef
ρ

ab
μ

Diagram (c)

p

p

p − k

k

p − q

−(k − q)
−q

p + q

cd
ν

ef
ρ

ab
μ

Diagram (d)

The post-Newtonian correction comes from diagrams (c)
and (d). All other 1-loop diagrams contribute to either ana-
lytic terms, or quantum corrections of order O(ln(−q2))

and do not contribute to the low energy limit considered
here [6]. In addition, diagrams involving photons and con-
nectons simultaneously do not contribute because the trans-
formation ω

′ab
μ = ωab

μ − α
β
εabνμ Aν leaves the contribution

of the above diagram unchanged while all terms but the first
two in (23) remain present in the action. These two diagrams
contribute to the quantum gravitodynamic post-Newtonian
T-matrix

TQGD,E = −4im2 27gπ3/2G3/2m2

16
√−q2

. (55)

This result as those below requires the following steps. First,
we focus only on the “electric” form factor which means that

ψ̄γμγνψ = 2mgμν. (56)

Equivalently, we disregard terms proportional to [γμ, γν] that
contribute to the “magnetic” form factor. Second, the on-shell
external momenta imply the relations

p · q = −1

2
q2, (57)

p′ · q = 1

2
q2. (58)

Third, we suppress terms of O(q4) using the low energy
limit property q � p. Fourth, we use the approximation
ψ̄γμψ = 2pμ and ψ̄ ′γμψ ′ = 2p′

μ. Finally, we use the
appendix in [6] with the expressions for the several Feynman
integrals.

The T-matrix (55) produces the differential scattering
cross section

dσQGD,E

d�
= m2

|q|2
(

27

16

)2

π3 g
2G3m4

16π2 . (59)

The Schroedinger equation with a post-Newtonian correction
to the gravitational potential (see equation (39) of [6]),

VE = −2a
G2m3

exp

R2 , (60)

where the constant a depends on the post-Newtonian expan-
sion, produces, after using (53) and (54), the differential scat-
tering cross section

dσE

d�
= m2

|q|2 4π2a2G4m6. (61)

Comparing the differential cross section (59) and (61) yields

g = 128

27
a
√

πGm. (62)

Therefore, by fixing e, g, and g′ through Eqs. (48), (53),
and (62), QGD reproduces the low energy limit of General
Relativity for the matter sector. Therefore, the SO(4) Yang–
Mills theory coupled to matter and an inert metric is a valid
renormalizable relativistic quantum field theory to describe
gravity’s experimental observations.

r p

r + q

q

p − q

ρ

ρ

Diagram (e)
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Diagram (e) describes the scattering of a fermion f with
a photon γ that produces the T-matrix

T f γ→ f γ = 2im
40g′gα2

β2

Eγ

−q2 , (63)

which in turn, in the small angle approximation where q =
rsin(θ/2), yields the differential cross section

dσ f γ→ f γ

d�
= g2g

′2

64π2

(
40α2

β2

)2 E2
γ

(r2sin2(θ/2))2
, (64)

where the photon energy, Eγ , satisfies

Eγ � m. (65)

Derivation of (64) requires the photon on-shell conditions,

r · q = q2

2
, (66)

r ′ · q = −q2

2
, (67)

along with the steps used for the matter-matter scattering
above. Substitution of (53) and (62) into (64) yields

dσp γ→p γ

d�
=
(

16

27

)2(40α2

β2

)2

a2G2m2 m2E2
γ

(r2sin2(θ/2))2
.

(68)

In the low energy limit, Eq. (68) describes the Rutherford
scattering of a mass m projectile off of a mass Eγ target.

In the small angle deflection approximation and after set-
ting the speed of light to 1, the gravitational lensing of a
photon by a point particle of mass m in General Relativity
relates the impact parameter bL with the deflection angle θ1

bL = 4Gm

θ
= 2Gm cot(θ/2). (69)

The relation between the impact parameter, bL , and the
differential cross section,

dσL

d�
= bL

sin θ

∣∣∣∣
dbL
dθ

∣∣∣∣ , (70)

simplifies the latter to

dσL

d�
= G2m2

sin4(θ/2)
, (71)

1 See [11] for an overview of that calculation.

or equivalently

dσL

d�
= G2E2

γ

m2E2
γ

(r2sin2(θ/2))2
. (72)

Equation (72) describes the Rutherford scattering of mass
Eγ projectile off of a mass m target. The exchange m ↔ Eγ

modifies this differential cross section to

(
dσL

d�

)

m↔Eγ

= G2m2 m2E2
γ

(r2sin2(θ/2))2
, (73)

which then describes the scattering of a mass m particle of a
photon target with energy Eγ .

Equating (68) with (73) requires that

16

27

40α2

1 + 6α2 a = 1, (74)

which determines α as a function of the known constant a.
With (74) satisfied, Fourier transform in the Born approx-

imation of (68) yields the low energy potential

V = −G
mEγ

r
, (75)

which describes the motion of a photon as if it had a mass
equal to its energy in the Newtonian approximation.

Diagram (e) also describes the gravitational redshift.
When the impact parameter vanishes, a photon starting at
−∞ approaches the mass target and experiences the poten-
tial (75) which accelerates the photon and blueshifts its fre-
quency. Thus the energy of the photon at point r1 reads

h̄ω1 = E∞ + GMh̄ω1

r1
, (76)

and when ω1 � ω2 − ω1

ω2 − ω1

ω1
=
(
GM

r2
− GM

r1

)
+ O(G2), (77)

as required.
Diagram (e) has the same value as its counterpart diagram

in General Relativity obtained following the methods of [6],
which produces the exact same potential. However, renor-
malization aside, it does so in the frame of reference where
the photon scatters off the fermion, and again confirms that
we can model photons as particles with mass Eγ and (75).
Like the gravitational redshift, the Shapiro delay also stems
from diagram (e) and it is just the length of the path traveled
by the photon when bending about a mass particle and after
reflection from some other body retraces its path back to the
source.
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This feature transpires the quantum limit were diagrams in

General Relativity match the diagrams for QGD to O
(

v2

c2

)
.

In the classical limit, the trajectories of General Relativity on
a Schwarzschild background also follow from consideration
of a particle moving about a potential. Therefore, since we
have shown that both theories have the same potential to

O
(

v2

c2

)
, any classical or quantum test that General Relativity

passes will also be passed by QGD to that same order.
The QGD Lagrangian (2) has four free parameters e, g, g′

and α. Equations (48), (53), (62) and (74), repeated here:

eexp = e

β
, (78)

g
′ = (πG)1/2mexp, (79)

g = 128

27
a
√

πGm, (80)

16

27

40α2

1 + 6α2 = 1

a
, (81)

fix these parameters to experimentally observed quantities
from QED, and General Relativity: the electric charge, the
Newtonian mass and gravitational constant, the precession of
a mass particle about another mass particle and the gravita-
tional lensing of light by mass particles. Therefore, QGD suf-
fices to describe the gravitational effects observed in nature
without resorting to a spin-2 particle and using instead a
quantum connection defined over an SO(4) fiber bundle.

The dimensionality of the connecton is the same as that of
the U(1) gauge field. Therefore, the terms in the Lagrangians
(21), (23) and (29) involve products of fields and their deriva-
tives with total dimensionality four or less. Then all scattering
amplitudes considered in this section renormalize by finite
amounts [2].

The matching of the above four differential cross sections
with those of General Relativity coupled to matter and light
are more than simple tests. By matching the differential cross
sections we have, at least for two particle interactions, shown
that the equations of motion for matter and light coupled to

General Relativity exactly match those for QGD to O
(

v2

c2

)
.

This is manifested by the fact that the Schroedinger equation
for both theories are the same. Therefore, any test that fol-
lows from General Relativity coupled to matter and light will

be reproduced by QGD to order O
(

v2

c2

)
. While it may very

well be the case that General Relativity and QGD diverge

beyond O
(

v2

c2

)
, the reader is reminded that QGD needs to

replicate nature and not General Relativity. We know that
because QGD and General Relativity are indistinguishable

to O
(

v2

c2

)
, it replicates nature to that order. But General Rel-

ativity, safe for [12], has not been experimentally proven
beyond that order, and therefore it may very well be that

if QGD and General Relativity diverge beyond O
(

v2

c2

)
, it

will be up to nature to judge which most closely resembles
it, always taking into account that General Relativity is at
best and effective theory because it is not renormalizable
like QGD.

It should be further noted that while the differential cross
sections pertain two particle interactions and omit single
particle and three-, four-particle interactions, these do not
impose further constraints. The single particle diagrams
involve loops which General Relativity cannot handle due
to lack of renormalization. Furthermore, three and four par-
ticle interactions are constrained by two particle scattering;
see [6] for the diagrams used in General Relativity. Therefore,
by considering only the equivalency of two particle scatter-
ing processes, we fix the equations of motions for all other
scattering processes in both theories.

5 The standard model

Lack of evidence supporting the existence of a spin-2 particle
along with the existence of a mapping between an SO(4) fiber
bundle to an SO(1,3) tangent bundle motivate the formula-
tion of a gravitational theory based on the SO(4) connecton
instead of one based on the graviton. Without a graviton field
and with a constant diagonal metric void of any dynamics,
QGD again incorporates all the necessary gravitational inter-
actions to the Standard Model using instead N × M SO(4)
gauge fields ω

(i,m)
μab . The inclusion of the fields ω

(i,m)
μab suffices

to obtain all the experimentally verified differential cross sec-
tions, and those expected from General Relativity.

The experimental evidence for General Relativity exists
only for the matter and U(1) gauge sector. At present,
no experimental evidence exists supporting that the SU(2),
SU(3) and the Higgs sectors of the Standard Model couple
to gravity; however, here we show that QGD can incorporate
such couplings to satisfy the intuitive expectation of General
Relativity.

The Lagrangian

L = Lgauge + L f + LH , (82)

Lgauge = 1

4
BμνB

μν + 1

4
Wa

μνW
aμν

+ 1

4
Ga

μνG
aμν + 1

4

m=M∑
i,m=1

�
(i,m)
μνab�

(i,m)μνab,

(83)

L f = i

2NM

∑
j im

ψ̄( j){γ μ, D(i,m)
μ }ψ( j)

+
∑
j im

g jim

gim
ψ̄( j)[γ μ, D(i,m)

μ ]ψ( j), (84)

LH = 1

2β2
Higgs

Dμφ · Dμφ − V (φ · φ), (85)
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remains invariant under SO(4) transformations as well as
U(1) × SU(2) × SU(3) transformations. There are N × M
covariant derivatives D(i,m)

μ in (84). This new artifice allows
us to introduce enough parameters to fit all the gravitational
scattering amplitudes.

The U(1) gauge field Bμ, the SU(2) gauge field Wa
μ and

the SU(3) gauge field Ga
μ along with the SO(4) gauge fields

ω
(i,m)ab
μ define the strength fields in (83)

Bμν = 1

βU(1)
[∂μBν − ∂νBμ], (86)

Wa
μν = 1

βSU(2)

[
∂μW

a
ν − ∂νW

a
μ − gSU(2)

βSU(2)
CabcWb

μW
c
ν

]
,

(87)

Ga
μν = 1

βSU(3)

[
∂μG

a
ν − ∂νG

a
μ − gSU(3)

βSU(3)
CabcGb

μG
c
ν

]
,

(88)

�
(i,m)ab
μν =

(
∂μω

(i,m)ab
ν + αim

βim
ε
abρ
ν ∂μAmρ

)

−
(

∂νω
(i,m)ab
μ + αim

βim
ε
abρ
μ ∂ν A

m
ρ

)

− gi mC
ab
cde f

(
ω

(i,m)cd
μ

+ αim

βim
ε
cdρ
μ Amρ

)(
ω

(i,m)e f
ν + αim

βim
ε
e f σ
ν Amσ

)
.

(89)

We define each ω̃
(i,m)
μab as a copy of a textbook SO(4) gauge

field necessarily having antisymmetry in indices a and b,
then

ω
(i,m)
μab = ω̃

(i,m)
μab + ecμe

ν
aω̃

(i,m)
νcb , (90)

so that

ω
(i,m)
μab eaνe

b
ρεμνρσ = 0. (91)

Since

Am
μ =

(
Bμ,W 1

μ,W 2
μ,W 3

μ,G1
μ,G2

μ,G3
μ,G4

μ,G5
μ,G6

μ,G7
μ,G8

μ, φμ

)
,

(92)

where φμ = eaμφa and φa, a = 1, . . . , 4 describes the Higgs
in the fundamental of SO(4), the constant couplings αim must
take the form

αim =

⎧
⎪⎪⎨
⎪⎪⎩

αiU(1) m = 1,

αiSU(2) m = 2, . . . , 4,

αiSU(3) m = 5, . . . , 12,

αi Higgs m = 13,

⎫
⎪⎪⎬
⎪⎪⎭

(93)

so that

βim =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

βiU(1) =
√
N (1 + 6α2

iU(1)) m = 1

βiSU(2) =
√
N (1 + 6α2

iSU(2)) m = 2, . . . , 4

βiSU(3) =
√
N (1 + 6α2

iSU(3)) m = 5, . . . , 12

βi Higgs =
√
N (1 + 6α2

i Higgs) m = 13.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(94)

and
1

β2
U(1)

=
∑
i

1

β2
iU(1)

,
1

β2
SU(2)

=
∑
i

1

β2
iSU(2)

,
1

β2
SU(3)

=
∑
i

1

β2
iSU(3)

. (95)

When representing a quark doublet, the spinors ψ( j),

(
uL
dL

)
(96)

transform in the irreducible representation of U(1)×SU(2)×
SU(3) while when representing a lepton doublet, the spinors
ψ( j),

(
νL
eL

)
(97)

transform in the irreducible representation of U(1)× SU(2).
Then each of the covariant derivatives D(i,m),

D(i,m)
μ =

[
∂μ + igU(1)

βU(1)

Bμ + igSU(2)

βSU(2)

Wa
μτ a + igSU(3)

βSU(3)

Ga
μT

a

+ i ĝim�
(i,m)
μab T ab

]
, (98)

acting on a quark doublet ψ( j) transforms covariantly under
SO(4) × U(1) × SU(2) × SU(3). The U(1) transformation
generated by � = eiλ acts on the following fields:

ψ ′( j) = �ψ ′( j), (99)

B ′
μ = Bμ − βU(1)

gU(1)

∂μλ, (100)

ω(i,m)′ab
μ = ω(i,m)ab

μ + αU(1)

gU(1)

εabνμ ∂νλ, (101)

and leaves (82) invariant while each D(i,m)
μ ψ( j) transforms

covariantly. Since

[T a, T ab] = [τ a, T ab] = [T a, τ a] = 0, (102)

SU(3) transformations generated by � = ei�
aT a

act on the
following fields:

ψ ′( j) = �ψ ′( j), (103)
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G
′a
μ = Ga

μ − 1

gSU(3)

∂μ�a + Ca
bc�

bGc
μ, (104)

where Ca
bc represents the SU(3) structure constant, to leave

(82) invariant, while each D(i,m)
μ ψ( j) transforms covariantly.

Similarly, SU(2) transformations generated by � = ei�
aτa

act on the following fields:

ψ ′( j) = �ψ ′( j), (105)

W
′a
μ = Ga

μ − 1

gSU(2)

∂μ�a + Ca
bc�

bWc
μ, (106)

where Ca
bc represents the SU(2) structure constant, and they

also leave (82) invariant, while each D(i,m)
μ ψ( j) transforms

covariantly.
SO(4) transformations generated by � = ei�abT ab

act on
the following fields:

ψ ′ = �̂ψ, (107)

ω′(i,m)ab
μ = ω(i,m)ab

μ − 1

g
∂μ�ab

+Cab
cde f �

cd
(

ω(i,m)e f
μ + α

β
εe f νμ Am

ν

)
, (108)

and also leave (82) invariant while each D(i,m)
μ ψ( j) trans-

forms covariantly. Under SO(4)×U(1)×SU(2) transforma-
tions, (98) acting on a lepton doublet ψ( j) transforms covari-
antly, while (82) remains invariant.

The bosonic component of the Lagrangian, (83), has
quadratic terms2

L(2)
gauge = 1

2
∂μBν∂

μBν + 1

2
∂μW

a
ν ∂μWaν + 1

2
∂μG

a
ν∂

μGaν

+ 1

2

m=M∑
i,m=1

∂μω(i,m)
ν ∂μω(i,m)ν . (109)

The dimensionality of the connecton is the same as that of
the U(1) gauge field. Therefore, the terms in the Lagrangian
(109) involve products of fields and their derivatives with
total dimensionality four.

The pure Standard Model SU(2) and SU(3) cubic and
quartic bosonic interactions present in (83) do not mix with
the SO(4) gauge fields and do not merit further treatment
here. For the same reasons presented for (23), the relevant
cubic terms in Lagrangian (83) include

L(3)
gauge =

m=12∑
i,m=1

2gi m
(
∂μω(i,m)ab

ν − ∂νω
(i,m)ab
μ

)
ω(i,m)μ
ca ω

(i,m)νc
b

− 4gi m
α2
im

β2
im

(
Am

μ∂ρ A
m
ν e

ν
ae

ρ
bω(i,m)μab

+ ∂ν A
m
μ Am

ρ e
μ
a e

ρ
bω(i,m)νab

)
. (110)

2 We omit terms with A13
μ which are included in (111) instead.

As in (23), the terms in (110) take the form ωω∂ω and ∂AAω.
In the low energy limit the gauge boson momentum, r , and
the connecton momentum, k, satisfy r � k.

The terms in the Lagrangian (110) also involve products
of fields and their derivatives with total dimensionality four.
Therefore any diagrams constructed from the terms in (110)
will renormalize by finite amounts [2].

After adding the contributions from (83) dependent on
A13 to (85) we obtain the Standard Model Higgs Lagrangian
along with QGD interactions,

LHiggs = 1

2
∂μφ∂μφ − V (|φ|2)

−4
∑
i

α2
i,Higgs

β2
i,Higgs

gi 13
(
φμ∂ρφνe

ν
ae

ρ
bω(i,13)μab

+∂νφμφρe
μ
a e

ρ
bω(i,13)νab)

+ 1

βHiggs

[
i(φ+

d (gU(1)Bμ + gSU(2)W
a
μτ a)∂φd + h.c.

+φ+
d

(
gU(1)Bμ + gSU(2)W

a
μτ a

)
(gU(1)Bμ + gSU(2)W

a
μτ a)φd

]
,

(111)

where φd describes the Higgs in the SU(2) doublet represen-
tation instead of the SO(4) vector representation and

1

β2
Higgs

=
∑
i

1

β2
iHiggs

. (112)

The dual representation of the Higgs further strengthens the
proposal of the SO(4) connecton as the carrier of quantum
gravitational interactions.

The terms in the Lagrangian (111) again involve prod-
ucts of fields and their derivatives with total dimensionality
four. Thus, any corrections involving only these terms will
renormalize by finite amounts [2].

When ψ( j) represents a quark doublet, the Lagrangian
(84) simplifies to

L f = iψ̄( j)

⎡
⎣∂/ + i

βU(1)

(
e(u)

e(d)

)
Bμγ μ + i

g2

βSU(2)

Wa
μτ aγ μ

+i
g3

βSU(3)

Ga
μT

aγ μ

+
∑
i,m

(
g(u)im

g(d)im

)
ω(i,m)μa

μ γa + 3i
∑
i,m

gi
αim

βim
Am

μγ 5γ μ

⎤
⎦ψ( j),

(113)

where e(u) and e(d) are the electric charges of each respective
quark and

g1 = gU(1)

βU(1)

, g2 = gSU(2)

βSU(2)

, g3 = gSU(3)

βSU(3)

, (114)

g(q)im = g jim ∈ C. (115)
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Similarly, when ψ( j) represents a lepton doublet, the
Lagrangian (84) simplifies to

L f = iψ̄( j)

⎡
⎣∂/ + i

βU(1)

(
e(ν)

e(e)

)
Bμγ μ + i

g2

βSU(2)

Wa
μτ aγ μ

+ i
g3

βSU(3)

Ga
μT

aγ μ +
∑
i,m

(
g(ν)im

g(e)im

)
ω(i,m)μa

μ γa

+3i
∑
i,m

gi
αim

βim
Am

μγ 5γ μ

⎤
⎦ψ( j), (116)

where e(ν) and e(e) are the electric charges of each respective
lepton.

In addition to the transformation of the terms in the pure
Standard Model, the electroweak rotation which produces the
U(1) gauge field Aμ only transforms the last term in (113)
and (116)

3i
∑
i,m

gi
αim

βim
Am

μγ 5γ μ

= 3i
∑
i

gi

(
αi1

βi1
cos(θw) + αi4

βi4
sin(θw)

)
Aμγ 5γ μ

+ 3i
∑
i

gi (−αi1

βi1
sin(θw) + αi4

βi4
cos(θw))Zμγ 5γ μ

+ 3i
∑

i,m �=1,4

gi
αim

βim
Am

μγ 5γ μ, (117)

where θw describes the Weinberg mixing angle and takes the
same values as in the pure Standard Model. Thus, for a quark
doublet

L f = L f,sm + ψ̄( j)

⎡
⎣∑

i,m

(
g(u)im

g(d)im

)
ω(i,m)μa

μ γa

+ 3i
∑
i

gi

(
αi1

βi1
cos(θw) + αi4

βi4
sin(θw)

)
Aμγ 5γ μ

+ 3i
∑
i

gi (−αi1

βi1
sin(θw) + αi4

βi4
cos(θw))Zμγ 5γ μ

+ 3i
∑

i,m �=1,4

gi
αim

βim
Am

μγ 5γ μ,

⎤
⎦ψ( j), (118)

with L f,sm representing the fermionic sector of the pure Stan-
dard Model after the rotation between Bμ and W 3

μ. A similar
expression follows for the lepton doublet.

The dimensionality of the connecton is the same as
that of the U(1) gauge field. Therefore, the terms in
the Lagrangian (118) involve products of fields and their
derivatives with a total dimensionality of at most four.
Renormalization then follows [2]. More importantly, the
whole Lagrangian, the sum of (109), (110), (111), and
(118), involves products of fields and their derivatives

also with total dimensionality at most four and therefore
any corrections involving their terms renormalize by finite
amounts [2].

The electroweak rotation transforms L(2)
gauge into

L(2)
gauge = 1

2
∂μAν∂

μAν + 1

2
∂μW

1
ν ∂μW 1ν + 1

2
∂μW

2
ν ∂μW 2ν

+1

2
∂μZν∂

μZν +

+1

2
∂μG

a
ν∂

μGaν + 1

2

m=M∑
i,m=1

∂μω(i,m)
ν ∂μω(i,m)ν,

(119)

and it transforms L(3)
gauge into

L(3)
gauge =

m=12∑
i,m �=1,4

2gi m
(
∂μω(i,m)ab

ν − ∂νω
(i,m)ab
μ

)
ω(i,m)μ
ca ω

(i,m)νc
b

− 4gi m
α2
im

β2
im

(
Am

μ∂ρ A
m
ν e

ν
ae

ρ
bω(i,m)μab

+ ∂ν A
m
μ Am

ρ e
μ
a e

ρ
bω(i,m)νab)

+ 2
∑
i

gio
(
∂μω(i,0)ab

ν − ∂νω
(i,0)ab
μ

)
ω(i,0)μ
ca ω

(i,0)νc
b

− 4
∑
i

gio
α2
i0

β2
i0

(
Aμ∂ρ Aνe

ν
ae

ρ
bω(i,0)μab

+ ∂ν AμAρe
μ
a e

ρ
bω(i,0)νab)

− 4
∑
i

gio
α2
i0

β2
i0

(
Zμ∂ρ Zνe

ν
ae

ρ
bω(i,0)μab

+ ∂ν ZμZρe
μ
a e

ρ
bω(i,0)νab)

+ terms mixing Zμ and Aμ, (120)

after choosing gi 1 = gi 4 = √
2gi 0, αi1 = αi4 = αi0 and

ω(i,1)μab = ω(i,4)μab = 1√
2
ω(i,0)μab.

At this point we can apply the Higgs mechanism by select-
ing the usual VEV for the Higgs field which will produce
the same effects that take place in the Standard Model.
The rotation between the fields does not affect the dimen-
sionality of the fields. Therefore, the rotated terms in the
Lagrangian involve products of fields and their derivatives
with total dimensionality at most four. Renormalization then
follows [2].

6 The U(1) gauge boson and matter sectors of the
standard model

The experimental evidence for gravitational interactions
only includes observations for the U(1) gauge fields and
the fermionic matter fields. Thus, while the model can
include gravitational interactions with the SU(2), SU(3)
and Higgs sectors, we limit ourselves in this section to
the study of the U(1) gauge fields and the fermionic

123



4 Page 14 of 23 Eur. Phys. J. C (2017) 77 :4

matter fields. This removes all terms in (109), (118),
and (120) which carry the index m as well and allows
us to drop altogether the Higgs sector (111). Then the
Lagrangian (118) expressed in terms of true fermions reduces
to

L f =
J∑
j

ψ̄( j)

[
(i∂/ − m) − e j Aμγ μ + i

∑
i

g jiω
(i)μa

μ γa

−3
∑
i

gi
αi

βi
(cos(θw)sin(θw))Aμγ 5γ μ

]
ψ( j),

(121)

with j = 1, . . . , J running over the number of singlet
spinors, gi = gi0 and αi = αi0. The Lagrangian (119)
reduces to

L(2)
gauge = 1

2
∂μAν∂

μAν + 1

2

∑
i

∂μω(i)
ν ∂μω(i)ν, (122)

and the Lagrangian (120) reduces to

L(3)
gauge =

∑
i

2gi
(
∂μω(i)ab

ν − ∂νω
(i)ab
μ

)
ω(i)μ
ca ω

(i)νc
b

− 4gi
α2
i

β2
i

(
Aμ∂ρ Aνe

ν
ae

ρ
bω(i)μab + ∂ν AμAρe

μ
a e

ρ
bω(i)νab

)
.

(123)

The dimensionality of the connecton is the same as that of
the U(1) gauge field. Therefore, the terms in the Lagrangian
(121), (122) and (123) involve products of fields and their
derivatives with total dimensionality four. Renormalization
then follows as shown in [2].

In Sects. 2–4 we considered a single particle, like the
electron, and successfully reproduced the necessary post-
Newtonian corrections to fit theory to experiment. Expanding

the particle spectrum increases the number of scattering cross
sections well beyond four; this leads to a lack of solution
when a single connecton describes the gravitational interac-
tions. Instead we introduced N connectons to increase the
number of couplings from g′ ∈ I to g ji ∈ C and from g ∈ R

to gi ∈ R. With this increase in the number of connectons the
number of parameters in the model also increases sufficiently
to fit all these differential cross sections.

The Lagrangian densities (121)–(123) yield the following
propagators:

k

(i)ab
μ

(i)cd
ν

Propagator (d)

− igμνηabηcd

k2+

p
α
j

β
j

Propagator (e)

iδαβ

/p−m+

r
μ ν

Propagator (f)

− igμν

r2+

For the avoidance of doubt, in the low energy limit

m � ∂A � ∂ω (124)

such that m � r � k. These same Lagrangian densities
generate the following vertices:
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α
j

β
j

(i)ab
μ

Vertex (e)

−gji eμaeνbγν

α
j

β
j

μ

Vertex (f)

− i
β (eγμ + 3giαiγ5γμ)

p

q r

(i)ab
μ

(i)cd
ν

(i)ed
ρ

Vertex (g)

gi(hafhcehbd + hadhcehbf − haehcbhdf + hachebhdf )·
·((p − q)ρgμν + (q − r)μgνρ + (r − p)νgμρ)

r

r
q

α
j

β
j

(i)ab
μ

Vertex (h)

gi
4α2

i

β2
i
(gμαea

βr
b + gμβe

a
αrb + ea

αeb
βrμ +

ea
βe

b
αrμ)

p p

p + q q p − q

j

j

k

k

Diagram (f)

p p

p + q q p − q

j

j

k

k

Diagram (g)
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After assuming as before that the axial current vanishes,
the scattering process in diagram (f) describing the photon
exchange between particle j and k produces a T-matrix ele-
ment,

T jk
QED = −4im jmk

e j ek
−q2 , (125)

which in turn yields a differential cross section contribution,

dσ
jk

QED

d�
= 4μ2

jk(e j ek/(4π))2

−q2 , (126)

with μ jk defined as the reduce mass of particles j and k.
On the other hand, the Schrodinger equation for a Coulomb
potential

VC = e j,expek,exp

4πR
, (127)

with e j,exp and ek,exp describing the particles measured elec-
tric charge and R describing the distance between the two
particles, yields the differential cross section

dσ
jk
C

d�
= 4μ2

jk(e j,expek,exp/(4π))2

−q2 . (128)

Comparing the differential cross section (126) and (128) con-
strains the parameters e j and ek to

e j = e j,exp, ek = ek,exp. (129)

Diagram (g), exchanging a connecton between particle j
and k, produces the T-matrix,

T jk
QGD,N = −4im jmk

4
∑N

i g ji gki
−q2 , (130)

which in turn produces the differential cross section,

dσ
jk

QGD,N

d�
=

4μ2
jk

∣∣∣∣
∑N

i g ji gki

∣∣∣∣
2

/π2

q4 . (131)

On the other side, the differential cross section obtained from
the Schrodinger equation for a Newton potential,

VN = −G
m j,expek,exp

R
, (132)

wherem j,exp andmk,exp describe the particles measured mass
and R the distance between them, produces the differential
cross section,

dσ
jk
N

d�
= 4μ2

jk(Gm j,expmk,exp)
2

q4 . (133)

Comparing the differential cross sections (131) and (133)
imposes the constraint

∣∣∣∣∣
N∑
i

g ji gki

∣∣∣∣∣ = πGm j,expmk,exp. (134)

p

p

p − k

k

p + q

−(k + q)
q

p − q

j

j

k

k

cd
ν

ef
ρ

ab
μ

Diagram (h)

p

p

p − k

k

p − q

−(k − q)
−q

p + q

k

k

j

j

cd
ν

ef
ρ

ab
μ

Diagram (i)
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Diagrams (h) and (i) produce the 1-loop correction to
the connecton exchange between particles j and k to the
T-matrix,

T jk
QGD,E = −4im jmk

3

64

×
∑N

i gi g ji gki (g ji (m j + 17mk) + gki (17m j + mk))

m jmk

√−q2
,

(135)

after using the same steps used in Sect. 4, and in turn it
produces the differential cross section,

σ
jk

QGD,E

d�
= 4μ2

jk

|q|2

×
⎛
⎝ 3

64

∣∣∣∑N
i gi g ji gki (g ji (m j + 17mk) + gki (17m j + mk))

∣∣∣
16π2m jmk

⎞
⎠

2

.

(136)

The Schroedinger equation with the Einstein correction to
the gravitational potential between two particles,

VE = −aG2 m j,expmk,exp(m j,exp + mk,exp)

R2 , (137)

yields the differential scattering cross section

σE

d�
= 4μ2

jk

|q|2 4π2a2G4(m j,expmk,exp(m j,exp + mk,exp))
2.

(138)

Comparing the differential cross section (138) and (136)
yields
∣∣∣∣∣

N∑
i

gi g ji gki (g ji (m j + 17mk) + gki (17m j + mk))

∣∣∣∣∣

= 163π3

6
aG2m2

j,expm
2
k,exp(m j,exp + mk,exp). (139)

r p

r + q

q

p − q

ρ

ρ

j

j

Diagram (j)

The T-matrix contribution from diagram (j) scattering a
mass particle off of a photon simplifies to

T f j γ→ f j γ = 2im j
40α2

i

β2
i

∑
i

gi g ji
Eγ

−q2 . (140)

After using the small angle approximation, the differential
cross section obtained from this T-matrix equates to

dσ f j γ→ f j γ

d�
= 1

64π2

∣∣∣∣∣∣
∑
i

(
40α2

i

β2
i

)2

gi g ji

∣∣∣∣∣∣

2
E2

γ

(r2sin2(θ/2))2
.

(141)

In the low energy limit, Eq. (141) describes the Rutherford
scattering of a mass m j projectile off of a mass Eγ target.

For a small angle deflection in General Relativity the grav-
itational lensing of a photon by a point particle of mass m j ,
the differential cross section calculation follows in the same
manner as for two fermions above and resulting in

dσL

d�
= G2E2

γ

m2
j E

2
γ

(r2sin2(θ/2))2
. (142)

The exchange m j ↔ Eγ transforms the differential cross
section to describe the scattering of a particle of mass m j

from a photon target with energy Eγ and as a result takes the
form

(
dσL

d�

)

m↔Eγ

= G2m2
j

m2
j E

2
γ

(r2sin2(θ/2))2
. (143)

Equating (141) and (143) requires that

1

8πGm2
j

∣∣∣∣∣
∑
i

40α2
i

N (1 + 6α2
i )
gi g ji

∣∣∣∣∣ = 1. (144)

Renormalization follows by construction because the
structure added to the Standard Model is just N standard
Yang–Mills gauge fields with SO(4) symmetry. Dimensional
analysis of the Standard Model coupled to QGD shows that
the connectons ω

(i,m)ab
μ have the same dimension as the U(1),

SU(2) and SU(3) gauge fields. Therefore, all integrands in the
Standard Model coupled to QGD, including those involving
the connectons ω(i,m) have the dimension four or less, which
guarantees renormalization of all corrections to the physical
quantities [2].

If a solution also exists for the system of equations (134),
(139) and (144), then the renormalizable Lagrangian (121),
(122) and (123) correctly describes experimental observation
without resorting to the graviton and instead using SO(4)

gauge fields.
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If a solution exists to the system of equations

N∑
i

g ji gki = πGm j,expmk,exp, (145)

N∑
i

gi g ji gki (g ji (m j + 17mk) + gki (17m j + mk))

= 163π3

6
aG2m2

j,expm
2
k,exp

(
m j,exp + mk,exp

)
,

(146)

1

8πGm2
j

∑
i

40α2
i

N (1 + 6α2
i )
gi g ji = 1, (147)

then a solution also exists for the system of equations (134),
(139) and (144).

Equation (145) is a stricter for of (134), (146) is a stricter
for of (139) and (147) is a stricter for of (144). While (134),
(139) and (144) are all real, the complex system of equations
(145), (146) and (147) require their imaginary components
to vanish. Then the solution to the real components of the
system of equations (145), (146) and (147) also solves the
system of equations (134), (139) and (144).

We require the complex system of equations (145) with
g j ∈ C

N , g j = (g j1, . . . , g jN ) instead of (134) because
solutions to (145) ensure that the O(G) correction to the j-
fermion self energy,

�
(G)
j ∝

N∑
i

g2
j i , (148)

does not have an imaginary component, so that �
(G)
j does

not affect unitarity to O(G).
To show existence of a solution to the system (145), (146)

and (147) first note that (146) and (147) is a complex linear
equation system in gi ∈ R and then assume that αi = 1. Our
model contains 12 fermions with j = 1, . . . , J = 12, so that
the linear system (146) has (12 × 13)/2 real equations and
(12×13)/2 imaginary equations. The linear system (147) has
12 real and 12 imaginary equations. We can also represent
the complex linear system (146) and (147) instead as a real
system of 180 linear equations,

A · g = b, (149)

where g = (g1, . . . , gN ) and A represents a square matrix
with dimension N=180. Then a solution to (149) exists when-
ever the determinant(A) �= 0 or equivalently when the vec-
tor rows in A are not parallel among themselves. A simple
inspection of the coefficients of A produced by (146) and
(147) shows that when the complex vectors g j are not paral-
lel among themselves, the different vector rows in A are not
parallel. A solution to the complex system of equations (145)

can be obtained for the set g j ∈ C/180, j = 1, . . . , 12 fol-
lowing these steps: (1) assign a real random number between
0 and 1 to each Re(g ji ) and Im(g ji ), j = 1, . . . , 12; i =
1, . . . , N , (2) use the Fletcher–Reeves–Polak–Ribiere algo-
rithm to minimize the equation

12∑
jk

⎛
⎝

N∑
i

Re(g ji )Re(gki ) − Im(g ji )Im(gki ) − πGm jmk

⎞
⎠

2

+
⎛
⎝

N∑
i

Im(g ji )Re(gki ) + Im(gki )Re(g ji )

⎞
⎠

2

. (150)

This method produces a minimum of zero for this equation
which amounts to solving (145). Note that the first squared
term in (150) is the real part of (145) while the second squared
term is the imaginary part of (145). It is not surprising that a
minimum of zero exists for (150); there are 12× (180+180)

variables and only 88 equations. Furthermore, the vectors
produced by this method are not parallel and explicit calcu-
lation of A shows that its determinant does not vanish.3

Therefore, a solution can always be found to the system
of 12 fermions and one U(1) gauge boson provided there
are 180 connectons. This does not preclude the existence of
solutions whenever N < 180, specially after abandoning the
assumption that αi = 1.

The reader should be concerned by the number of param-
eters necessary to fit QGD coupled to the Standard Model
when compared with General Relativity. However, two points
should be kept in mind. First, the intention of this section was
to show the existence of a solution rather than to find a solu-
tion with the smallest possible number of couplings. Given
the non-linear nature of the system of equations, it is very
likely that non-linear solutions with a significantly smaller
number of couplings exist; for example solutions obtained
through the gradient method or simulated annealing. Second,
QGD should only be compared with theories that success-
fully incorporate gravity and more importantly renormalize.
Thus, when compared with heterotic strings, which have 496
gauge fields before even considering compactification, the
number of gauge fields required by QGD is similar. Or, alter-
natively, like string theory, the gauge fields may represent
some compactification of M-theory.

Nevertheless, we can cast QGD in a more symmetric man-
ner where each of the 25 particles, whether a fermion or a
gauge boson, couples to 25 different connectons; each par-
ticle carries charge with respect to 25 non-Abelian gauge
fields; each particle connects to a different particle through
a unique connecton, including one which self couples. Then

3 The number of couplings can be further reduced in the limit that
gi=1 = 0. Then we can choose g ji=1 ∈ I, g ji �=1 ∈ R effectively
reducing the number of couplings to matter and the number of connec-
tons by half.
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in this construction a picture emerges where each of the 325
connectons mediates the interaction between two particular
particles only (for example between a Higgs and a ντ ). Then
the number, 25 × 13 + 25 × 13 = 650, of differential cross
sections to O

(
v2

c2

)
is smaller than the number of couplings

which, when omitting the α’s, counts to 25×25+325 = 950:
the first term counts the covariant derivative couplings and
the second term counts the Yang–Mills couplings.

7 Bending the remaining bosons

Experimental data evidencing the gravitational interactions
does not yet exist for the W±, the Z and the Higgs parti-
cles or the gluons. However, we expect for them to become
available in the future. Nevertheless, QGD can incorporate
gravitational interactions for all these particles through the
second term in (110). We present the propagators for the
remainder of the bosonic sector

r
m, μ m , ν

Propagator (g)

− igμνδmm

r2+ , m = 5, ..., 12

r
m, μ m , ν

Propagator (h)

− igμνδmm

r2−M2
m+ , m = W, Z

r
a b

Propagator (i)

− iδab

r2−M2
H+

where the first propagator describes the gluons, the second
describes the electroweak vector bosons W and Z , and the
third describes the Higgs in the SO(4) representation.

Lagrangian (110) produces the following vertices:

r

r
q

m , α

m, β

(i,m)ab
μ

Vertex (i)

δmm gim
4α2

i,SU(3)

β2
i,SU(3)

(gμαea
βr

b+gμβe
a
αrb+

ea
αeb

βrμ + ea
βe

b
αrμ)

r

r
q

m , α

m, β

(i,m)ab
μ

Vertex (j)

δmm gim
4α2

iSU(2)

β2
iSU(2)

(gμαea
βr

b + gμβe
a
αrb +

ea
αeb

βrμ + ea
βe

b
αrμ), m = W, Z

r

r
q

c

d

(i,H)ab
μ

Vertex (k)

giH
4α2

iH

β2
iH

(gμce
a
dr

b+gμde
a
cr

b+ea
ce

b
drμ+

ea
de

b
crμ)
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In general we expect that gluon couplings satisfy gim =
gi,SU(3), m = 5, . . . , 12; but, due to the mass difference
between the W and Z particles, we expect giW �= gi Z and
g jiW �= g ji Z .

These additional vertices produce the following tree-level
and O(G) diagrams:

r p

r + q

q

p − q

g, ρ

g, ρ

j

j

Diagram (k)

r p

r + q

q

p − q

W, Z, ρ

W, Z, ρ

j

j

Diagram (l)

r p

r + q

q

p − q

c

c

j

j

Diagram (m)

These diagrams produce the T-matrix elements,

T f j g→ f j g = 2im j

∑
i

40α2
iSU(3)

β2
iSU(3)

gi,SU(3)g ji,SU(3)

Egluon

−q2 ,

(151)

TQGD,N ,W = 2im j

∑
i

40α2
iSU(2)

β2
iSU(2)

gi,Wg ji,W
EW

−q2 , (152)

TQGD,N ,Z = 2im j

∑
i

40α2
iSU(2)

β2
iSU(2)

gi,Z g ji,Z
EZ

−q2 , (153)

TQGD,N ,H = 2im j

∑
i

40α2
i H

β2
i H

gi,Hg ji,H
EH

−q2 , (154)

which in turn produce the differential cross sections,

dσ f j g→ f j g

d�
= 1

64π2

∣∣∣∣
∑
i

40α2
iSU(3)

β2
iSU(3)

gi,SU(3)g ji,SU(3)

∣∣∣∣
2

× E2
gluon

(r2sin2(θ/2))2
(155)

and

dσQGD,N , jW

d�
= (2μ jW )2

64π2q4

∣∣∣∣∣
∑
i

40α2
iSU(2)

β2
iSU(2)

gi,Wg ji,W

∣∣∣∣∣
2

,

(156)

dσQGD,N , j Z

d�
= (2μ j Z )2

64π2q4

∣∣∣∣∣
∑
i

40α2
iSU(2)

β2
iSU(2)

gi,Z g ji,Z

∣∣∣∣∣
2

,

(157)

dσQGD,N , j H

d�
= (2μ j H )2

64π2q4

∣∣∣∣∣
∑
i

40α2
i H

β2
H

giH g ji,H

∣∣∣∣∣
2

, (158)

after using the low energy limit EW,Z ,H ≈ MW,Z ,H .
Although these differential cross sections have little differ-
ence among themselves they represent different scattering
processes: the gluon does not carry mass, while the W, Z
and Higgs do carry mass. Therefore, (155) must match the
small angle deflection calculated in General Relativity, which
requires

∣∣∣∣∣
∑
i

40α2
iSU(3)

8πN (1 + 6α2
iSU(3))

gi,SU(3)g ji,SU(3)

Gm2
j

∣∣∣∣∣ = 1, (159)

and whose derivation follows exactly along the lines in Sect. 6
above. On the other hand the W, Z, and Higgs bosons are
all massive and therefore we must compare their differential
cross sections to those obtained from the Schroedinger equa-
tion with a standard Newtonian potential. These constraints
yield the following conditions:

∣∣∣∣∣
∑
i

40α2
i H

8πN (1 + 6α2
i H )

gi,Hg ji,H

∣∣∣∣∣ = Gm jMH , (160)

∣∣∣∣∣
∑
i

40α2
iSU(2)

8πN (1 + 6α2
iSU(2))

gi,Wg ji,W

∣∣∣∣∣ = Gm jMW , (161)

∣∣∣∣∣
∑
i

40α2
iSU(2)

8πN (1 + 6α2
iSU(2))

gi,Z g ji,Z

∣∣∣∣∣ = Gm jMZ . (162)
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r
p

r + q

q
k

−(k + q)

p − k

p − q

m, ρ

m, ρ

j

j

ab
μ

cd
ν

ef
ρ

Diagram (o)

r
p

r + q

q
k

−(k + q)

p − k

p − q

c

c

j

j

ab
μ

cd
ν

ef
ρ

Diagram (p)

p
r

p − q

q
k

−(k + q)

r − k

r − q

j

j

m, ρ

m, ρ

ab
μ

cd
ν

ef
ρ

Diagram (r)

p
r

p − q

q
k

−(k + q)

r − k

r − q

j

j

c

c

ab
μ

cd
ν

ef
ρ

Diagram (q)

Finally, diagrams (o)–(q) above give the desired correction
to O(G2) for the W, Z, and Higgs particles interacting with
fermions: In the low energy limit, these diagrams produce
the T-matrix elements,

TQGD,E,B = 2i
m j MB√−q2

[∑
i

α2
i B

8β2
i B

(
51

g2
i,Bg

2
j i,B

m j

+ α2
i B

β2
i B

g ji,Bg3
i,B(45M2

B + 2MBm j − 201m2
j )

m2
j MB

)]
,

(163)

with B = W, Z , H . These T-matrices in turn produce the
following differential cross sections:

dσ

d� QGD,E,B
= 4μ2

j B

|q|2
∣∣∣∣∣
∑
i

α2
i B

64πβ2
i B

(
51

g2
i,Bg

2
j i,B

m j

+ α2
i B

β2
i B

g ji,Bg3
i,B(45M2

B + 2MBm j − 201m2
j )

m2
j MB

)∣∣∣∣∣
2

. (164)

Comparison with the differential cross sections derived for a
Schrodinger with a post-Newtonian potential (138) imposes

∣∣∣∣∣
∑
i

α2
i B

64πβ2
i B

(
51

g2
i,Bg

2
j i,B

m j

+ α2
i B

β2
i B

g ji,Bg3
i,B(45M2

B + 2MBm j − 201m2
j )

m2
j MB

)∣∣∣∣∣
= 2πaG2m j,expMB,exp(m j,exp + MB,exp). (165)

Inclusion of these differential cross sections further increases
the number of differential cross section by 12 + 2 × (12 ×
3) = 84 for a total of 252 differential cross sections with a
consequent increase in the total number of equations to be
fitted. However, a solution can be shown to exist following
the method in the previous section.

We could go on and construct the O(G) amplitude for the
scattering described by the exchange of a connecton between
different bosons as well as theO(G2) amplitude for the corre-
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sponding 1-loop corrections. This requires modifying �
(i,m)
μab

in (82) to read

�
(i,m)
μab = ω

(i,m)
μab + K (i)

mm′εν
μab A

m′
ν . (166)

The requirement that the quadratic Lagrangian (109) remain
invariant requires that the constant real symmetric matrices
K (i)
mm′ satisfy

∑
m

K (i)
mm′K

(i)
mm′′ ∼ δm′m′′ . (167)

The vertices (h)–(k) for bosons emitting a connecton will then
have a quadratic dependence on the matrices K (i). Then the
diagrams for fermion–fermion scattering remain unchanged;
diagrams for fermion–boson scattering will produce tree-
level T-matrices with quadratic dependence on the matri-
ces K (i); their 1-loop corrections will produce T-matrices
with quadratic and quartic dependence on the matrices K (i);
diagrams for boson–boson scattering will produce tree-level
T-matrices with quartic dependence on the matrices K (i);
their 1-loop corrections will produce T-matrices with sextic
dependence on the matrices K (i). The coefficients of these
matrices will be determined in the same manner as in the pre-
vious section: equating the differential cross sections of QGD
to those obtained from the Schroedinger equation and grav-
itational lensing. Given the lack of experimental evidence,
the task of writing each equation which reproduce General
Relativity expectations is left as a curiosity for the reader.
However, we note that it may very well turn out that some pro-
cesses not described by General Relativity, like those anal-
ogous to s-channel Bhabha scattering produced by the term
ω(i,m)KmbKmaWbGa , are confirmed through experiment or
that some processes described by General Relativity, like
those produced by the term ω(i,m)KmaKmaGaGa , are con-
firmed to be absent through experiment. We stress that the
matrices K (i) allow all these possible experimental scenarios.

8 Black hole entropy and strings

QGD also explains the black hole entropy problem in the
same way that strings do. To construct the map between
QGD and strings we need first break down SO(4) into its
isomorphic representation SU(2) × SU(2).

We N = 2 supersymmetrize at least one of QGD’s SU(2)
gauge groups and consider for example a K3 spacetime man-
ifold. Each SU(2) Yang–Mills theory then has BPS states
which have the same moduli space as that of a supersym-
metric sigma model, which in turn can be used to calculate
the degeneracy of BPS states for large energy states [13].
The degeneracy thus obtained determines the entropy which
coincides with that of certain black hole solutions in string

theory [13]. Thus QGD has states whose entropy is that of
certain black hole solutions, and therefore, those states rep-
resent the quantum description of the black hole solutions in
the exact same way they do in string theory.

The solution for SU(2) Yang–Mills found in [3] differs
from the Schwarzschild black hole solution because the sin-
gularity of its horizon cannot be removed through a coor-
dinate transformation. However, both singularities can be
located at 2GM . Therefore in SU(2) Yang–Mills, the horizon
area and the black hole mass are related in the same way as
for the Schwarzschild black hole: A = 16πM2. This result
implies that the SU(2) Yang–Mills black hole has the same
entropy as the Schwarzschild black hole which in turn can
be expressed in terms of BPS solutions. Therefore one has a
dual representation of the same physical objects in the N = 2
supersymmetric limit: the macroscopic system is described
by black hole solution found in [3], while the microscopic
system is described by BPS states.

9 Conclusions

QGD, as presented here, reproduces the expected Newto-
nian and post-Newtonian interaction evidenced by experi-
mental measurements for both matter fields and photon fields.
In addition to matching the differential cross sections from
QGD to those of the Schroedinger equation with Newtonian
and post-Newtonian corrections as well as the differential
cross section for the deflection of light by a point mass parti-
cle in General Relativity, QGD couples to the Standard Model
in a straightforward and natural manner. Thus, QGD does not
require us to re-invent the Standard Model to have a unified
theory. This contrasts other attempts at describing quantum
gravity which require a recasting of the already successful
Standard Model.

The fundamental theory, a straightforward SO(4) Yang–
Mills, couples to matter in the same manner as SU(3) and
SU(2) theories describe the other fundamental forces and thus
bears a high degree of symmetry with the non-gravitational
forces found in nature. Dimensional analysis of QGD and
QGD coupled to the Standard Model show that all terms in the
Lagrangians have dimensionality four or less and therefore
renormalization follows [2].

QGD accommodates the full particle spectrum currently
known and yields in the low energy limit the expected rela-
tivistic forces provided a sufficiently large number of SO(4)

symmetries exists. The absence in QGD or QGD coupled to
the Standard Model of the graviton should not concern the
reader; after all, we have yet to detect such a particle.

The theory here proposed not only reproduces the observed
experimental results of General Relativity, exhibits renor-
malization and couples in a straightforward manner to the
Standard Model, it also incorporates yet to be observed, but
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highly expected, gravitational interactions between matter
and the SU(3), SU(2) and Higgs bosons as well as those
between these bosons. These features make QGD coupled to
the Standard Model with SO(4) × U(1) × SU(2) × SU(3)

local symmetry the most attractive theory to describes all
interactions in nature.
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