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Abstract The recently developed method (Paper 1)
enabling one to investigate the evolution of dynamical sys-
tems with an accuracy not dependent on time is developed
further. The classes of dynamical systems which can be
studied by that method are much extended, now includ-
ing systems that are: (1) non-Hamiltonian, conservative;
(2) Hamiltonian with time-dependent perturbation; (3) non-
conservative (with dissipation). These systems cover various
types of N-body gravitating systems of astrophysical and cos-
mological interest, such as the orbital evolution of planets,
minor planets, artificial satellites due to tidal, non-tidal per-
turbations and thermal thrust, evolving close binary stellar
systems, and the dynamics of accretion disks.

1 Introduction

The typical procedure used in simulations of N-body gravi-
tating systems [1] is the numerical iterative integration of the
equations of motion, but this has a well-known difficulty: the
inevitable accumulation of errors as the number of iterations
increases and hence beginning from a distinct time further
computations become meaningless. The difficulty is serious
in the case of typical nonlinear and/or many-dimensional sys-
tems covering, as now is understood, most of the physical sys-
tems. The systems of N gravitating bodies involving various
astrophysical problems possess chaotic properties (e.g. [2—
71), which make their long term simulations rather complex.

Recently a method of numerical investigation was devel-
oped [8], providing a principal possibility for the determina-
tion of the evolution of dynamical systems with an accuracy
not dependent on time: an example of the evolution of each
parameter of a system at given accuracy was exhibited in [8].
This method was here shown to be applicable for Hamiltonian
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systems with a small periodic perturbation not dependent on
time [9],

H(I,9,p) = Hy(I) + BH\(I, D), ey

where Hy(I) is the integrable Hamiltonian, I, ¢ are the
action-angle variables, and B is the small parameter of the
non-integrable Hamiltonian H;.

Here we represent a further development of that method,
extending the class of dynamical systems which can be inves-
tigated, paying mainly attention to the systems of primary
physical and astrophysical interest. We show that systems of
rather general classes can be principally studied, including
systems that are:

1. non-Hamiltonian, conservative;
2. non-conservative (with dissipation);
3. Hamiltonian, with time-dependent perturbation.

In our analysis we essentially use a result by Chernoff [10]
concerning the properties of operators on a complete Rie-
mannian manifold.

Our initial aim is to investigate a rather general type of
first order differential equations:

x4 = f4x). @

The main idea of the method developed in [8] was the
reduction of this equation to the following one:

iin+Lu=0, 3

where L is a differential operator. The solution of this equa-
tion by means of the computation of the resolvent using com-
puter algebraic analytical codes gives the evolution of the
function u(¢) in time. Then the functions x“(¢), being deter-
mined by the function u(¢) and describing the initial system,
can be found (see [8]).
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2 The resolvent

Let M be a d-dimensional complete Riemannian manifold
with a metric g. Denote by F' (M) the set of smooth functions
determined on M. Let Fg(M) be the subset of F'(M) which
includes functions having a compact support. On Fo(M) one
has the operation of the inner product

(u,v) = / w*(x)v(x)(det g)'/?d’x, 4)
M

where u and v are elements of Fy(M). Denote by L2(M ) the
completion of Fop(M) with respect to that product.
Consider the operator

L:F(M)= F(M)

in the form

d
Lu=—i Zf”(x)g—ua = —if%qu, (5)
X
a=1

where f“(x) are smooth functions.
One can show that the following relation for this operator
is fulfilled [9]:
(u,Lv):/ u*(x)Lv(x)(det g)'/?d?x
M

- i[ w* () v(x)(divf)(det g)'/?d% + (Lu, v),
M

(6)
where u, v € Fo(M),
divf = (det g)~29,((det 9)'/? ) = f%: a.
When
divf =0, 7
then
(u, Lv) = (Lu, v), ®)

i.e. L is a formal self-adjoint operator.
In our case the velocity of the propagation c(x) introduced
by Chernoff [10] is equal to

c(x) = I fF ) = (gan F1F)V2. )

According to Chernoff (Theorem 2.2 in [10]), if M is a
complete Riemannian manifold and

/ dr/c(r) = +o0,
where c(r) = sup{c(x);x € S(y,r)}, S(y,r) is a ball of

radius r with center y, then the operator L defined on the
space L2(M) with domain Fo(M) is essentially self-adjoint.
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Consider now Eq. (3), to which, as mentioned above, Eq.
(2) is reduced.

The solution of that equation can be found by means of
the Laplace transform [8],

u(x, 1) = — / exp(—iAt) R (B)u(x, 0) (10)
r 2mi

={o+is,—0 <0 <+4+00,s =59 > 0}, (11)
where R; (B) is the resolvent,
R =0—-L)"", Im) >0. (12)

Let us first consider the case when

[ =&+ B (x) (13)
and
divE =0 =div¢, B =const L 1; (14)

then the resolvent is well approximated by the formula [8]

N
Ri(B) =Y B*(Ri(0)BY* R,.(0) + o(BY), (15)

k=0

where

Ri=0—Ly™ ",
LO == _igj_aaa s
B = —it%y,.

In the case when for the dynamical system defined on M
divf #0, (16)

we shall consider another one, having in local coordinates
the form

X = [0,
y=—ydiv f.
Here the manifold M is reduced to M x R with the metric
g +dy*. (17)
In the particular case that
MY=Tork x R*F={o!, ..., 9%y x {11, ..., I;_x} (18)
and

P =e"(D,a=1,...,k,
1"=0,b=1,...,d —k,

the resolvent R; () can be found as in [8].
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3 Conclusions

Let us summarize the dynamical systems covered by the
above analysis.
The systems represented by equations

X4 =fx),

include:
1. Systems for which the Liouville theorem is fulfilled,
divf =0.

This problem is reduced to finding the resolvent R; (0),
including the case when:

(a) the numbers of action-angle variables do not equal
each other. The calculations of R, (0) should be con-
sidered separately in each given case. For example,
R;.(0) is easily found and therefore the method is
trivially applicable when

(b) f¢is aperiodic function.

2. Systems with perturbed Hamiltonian
H(1,9,t, ) = Ho(I) + BH (I, D, 1). (19)

When H(I, 9,1, B) is a periodic function of time the
resolvent is trivially represented via a Fourier series (cf.
[8]). In other cases the R;(0) must be calculated sepa-
rately.

3. Non-conservative systems, when

divf #0.

This case is reduced to P.1, as shown above.

The evolution of all these dynamical systems can be
investigated by the method developed in [8] with an accu-
racy not dependent on the value of time. Evidently, now
the classes of physical and astrophysical problems are far

extended. Namely, besides traditional astrophysical nonlin-
ear dynamical systems—N-body gravitating systems—now
this will include an entire bunch of problems, e.g. the non-
Hamiltonian motion of minor planets and space probes at
tidal, non-tidal perturbation modes, and thermal thrust; these
are particularly important, for example, for accurately test-
ing of frame dragging, e.g. [11]. Other examples of non-
conservative dissipative systems include e.g. the orbital evo-
lution of close binary stellar systems due to evolving tidal
effects and the magnetohydrodynamical evolution of non-
stationary accretion disks near black holes, see e.g. [12—-14].
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