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Abstract We construct the chiral Lagrangians relevant in
studies of the ground-state octet baryon masses up to O(a2)

by taking into account discretization effects. We calculate the
masses up to O(p4) in the extended-on-mass-shell scheme.
As an application, we study the latest n f = 2+1 LQCD data
on the ground-state octet baryon masses from the PACS-CS,
QCDSF-UKQCD, HSC, and NPLQCD Collaborations. It is
shown that the discretization effects for the studied LQCD
simulations are at the order of 1–2 % for lattice spacings up
to 0.15 fm and the pion mass up to 500 MeV.

1 Introduction

Over the past decade, lattice quantum chromodynamics
(LQCD) has become an indispensable tool in studies of the
non-perturbative regime of QCD from first principles [1,2].
As a numerical solution of QCD in the discrete Euclidean
space-time in a finite hypercube, its main input parameters
are the quark masses mq , the lattice box size L , and the
lattice spacing a. Because computing time increases dra-
matically with decreasing quark masses, most past simula-
tions have been performed with larger-than-physical light-
quark masses. As a result, LQCD simulations require mul-
tiple extrapolations to the continuum (a → 0), to infinite
space-time (L → ∞), and to the physical point with phys-
ical quark masses (mq → mphys.

q ). For many observables,
these extrapolations have led to uncertainties comparable
to or even larger than the inherent statistical uncertainties.
Recently, simulations with physical light-quark masses have
become available (see, e.g., Refs. [3,4]), which (will) largely
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reduce the systematic uncertainties related to chiral extrapo-
lations to the physical light-quark masses.

Chiral perturbation theory (ChPT), as a low-energy effec-
tive field theory of QCD, provides another indispensable tool
to understand QCD in the non-perturbative regime [5–16].
It has long been employed to perform chiral extrapolations
of and to study finite-volume corrections to LQCD simula-
tions. Both of them are important for LQCD simulations.
On the other hand, LQCD simulations with varying light-
quark masses and lattice volume are extremely useful to help
to fix the (sometimes many) unknown low-energy constants
(LECs) of ChPT, which otherwise are difficult if not impos-
sible to be determined. To apply ChPT to the study of LQCD
simulations, in principle, one should first take the continuum
limit of LQCD data, since ChPT describes the continuum
QCD and is not valid for nonzero lattice spacing. However,
nowadays it is a common practice to assume that lattice spac-
ing artifacts for current LQCD setups of a ≈ 0.1 fm are small
and can be treated as systematic uncertainties.

In order to study discretization effects on LQCD simula-
tions, one can first write down Symanzik’s effective field the-
ory [17–20], a continuum effective field theory (EFT) which
describes the lattice field theory close to the continuum limit,
and then one can extend ChPT to be consistent with this EFT
with additional symmetry breaking parameters. In this way,
the chiral expansion results can naturally encode lattice spac-
ing effects (see, e.g. Ref. [21]). Sharpe and Singleton [22] and
Lee and Sharpe [23] first extended ChPT to include finite
lattice spacing effects up to O(a) for Wilson fermions [1]
(WChPT) and staggered fermions [24,25] (SChPT), respec-
tively. Later, Munster and Schmidt [26] applied WChPT to
the study of discretization artifacts of twisted mass fermions
(tmChPT) [27,28].
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In the past decade, discretization effects on the ground-
state meson/baryon properties, such as masses, decay con-
stants, electromagnetic form factors, etc., have been exten-
sively studied in WChPT.1 In the mesonic sector, the masses
and decay constants of the Nambu–Goldstone mesons were
first studied up to O(m2

q) and O(a) for the Wilson action [44]
and for the mixed action [45], where Wilson sea quarks and
Ginsparg–Wilson valence quarks are employed. These stud-
ies were subsequently extended to next-to-leading order (up
to O(a2)) [46,47]. In the one-baryon sector, a systematic
study of the nucleon properties up to O(a) was first per-
formed by Beane and Savage for both the mixed and the
unmixed action [48]. The electromagnetic properties of the
octet mesons as well as of the octet and decuplet baryons
were also studied up to O(a) for both the mixed and the
unmixed action [49]. Discretization effects on the nucleon
and δmasses [50] as well as on the vector meson masses [51]
were also studied up to O(a2). The EFT for the anisotropic
Wilson lattice action has been formulated up to O(a2) [52]
as well. In this context, it is interesting to note that recently
several attempts have been made to determine the unknown
LECs of the WChPT [53–57].

In the past few years, fully dynamical n f = 2 + 1
simulations in the one-baryon sector have become avail-
able. The ground-state octet baryon masses might be one
of the simplest observables to simulate in such a setting and
serve as a benchmark for more sophisticated studies [58–66].
Many theoretical studies have been performed not only to
understand the chiral extrapolations of and the finite-volume
corrections to these simulations, but also to determine the
many unknown LECs appearing in ChPT up to next-to-next-
to-next-to-leading order (N3LO) [60,67–76]. In Ref. [75],
it is shown that the covariant baryon chiral perturbation
theory (BChPT) together with the extended-on-mass-shell
(EOMS) scheme [77,78] can describe reasonably well all the
n f = 2 + 1 LQCD data. Nevertheless, discretization effects
are ignored in all these studies, with the argument that they
should be small.2

In this work, we aim to study the discretization effects
of the LQCD simulations of the ground-state octet baryon
masses up to O(a2) in covariant BChPT with the EOMS
renormalization scheme. Although most of the LQCD sim-
ulations are performed at a single lattice spacing, a combi-
nation of the results from different collaborations enables
one to examine finite lattice spacing effects by performing a

1 We focus in this work on WChPT, but it should be noted that similar
studies have been performed in SChPT [29–36] and tmChPT [37–43].
2 In Ref. [79], Alvarez-Ruso et al. performed a phenomenological study
of the continuum extrapolation of the LQCD simulations of the nucleon
mass by considering only O(a2) terms, and they showed that finite-
volume corrections and finite lattice spacing effects are of similar size.
In our present work we will see that they are indeed of similar size, but
the O(amq ) contributions are larger than the O(a2) ones.

global study. We limit ourselves to the unmixed action and,
therefore, we will study those simulations based on the O(a)-
improved Wilson action [19], i.e., those of the PACS-CS [59],
QCDSF-UKQCD [65], HSC [61], and NPLQCD [66] Col-
laborations.

The paper is organized as follows. In Sect. 2, the Symanzik
action up to O(a2) is briefly introduced and the a-dependent
chiral Lagrangians relevant to the study of the ground-state
octet baryon masses are constructed. In Sect. 3, the discretiza-
tion effects on the ground-state octet baryon masses are for-
mulated up to O(a2) for Wilson fermions. As an application,
we then perform a simultaneous fit of the LQCD octet baryon
masses and study the discretization effects. A short summary
is given in Sect. 4.

2 BChPT at finite lattice spacing

In this section, we briefly review the continuum effective
action up to and including O(a2). We will follow closely the
procedure and notations of Ref. [50] and construct for the
first time the chiral Lagrangians incorporating a finite lattice
spacing for the Wilson action in the u, d, and s three-flavor
one-baryon sector.

2.1 Continuum effective action

Close to the continuum limit, LQCD can be described by
an effective action, the ‘Symanzik action’ [17,18], which is
expanded in powers of the lattice spacing a as

Seff = S0 + aS1 + a2S2 + · · ·
=
∫

d4x(L(4) + aL(5) + a2L(6) + · · · ), (1)

where L(4) is the normal (continuum) QCD Lagrangian and
the two new terms L(5) and L(6) are introduced to include the
discretization effects of LQCD. The Lagrangian L(5) con-
tains chiral breaking terms only, while L(6) contains both
chiral invariant and breaking terms. In the u, d, and s three-
flavor sector, the QCD Lagrangian is

L(4) = ψ̄(i /D − M)ψ, (2)

where the quark masses are encoded in a diagonal matrix
M = diag(ml ,ml ,ms) in the isospin limit (mu = md ≡
ml ), and /D = Dμγ μ with Dμ the covariant derivative.

At O(a), there is only the Pauli term left by using the
equations of motion to redefine the effective fields [20]

aL(5) = acSWψ̄σ
μνGμνωqψ, (3)

where Gμν = [Dμ, Dν] and cSW is the Sheikholeslami–
Wohlert (SW) [19] coefficient, which must be determined
numerically. The ωq (q = u, d, s) is a constant which
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is determined by the kind of lattice fermions employed in
LQCD simulations: ωq = 1 for Wilson fermions [1] and
ωq = 0 for Ginsparg–Wilson (GW) fermions [80]. Similar to
the quark masses, theωq ’s are usually collected in the Wilson
matrix W = diag(ωl , ωl , ωs) with conserved isospin sym-
metry (ωu = ωd ≡ ωl ). This term breaks chiral symmetry in
precisely the same way as the quark mass term. It should be
noted that the Pauli term can be canceled by adding the clover
term to the lattice action [47], resulting in the O(a)-improved
Wilson fermion action [19,20,81,82].

Up to O(a2), the Symanzik action for Wilson fermions
has been extensively studied in Refs. [19,46,47]. In total,
there are 18 operators appearing in L(6). They can be clas-
sified into operators of the following five types according
to whether or not they break chiral symmetry and the O(4)
rotation symmetry [50]:

• L(6)1 : quark bilinear operators that conserve chiral sym-
metry,

ψ̄ /D3
ψ, ψ̄(DμDμ /D + /DDμDμ)ψ, ψ̄Dμ /DDμψ.

(4)

• L(6)2 : quark bilinear operators that break chiral symmetry,

ψ̄mq DμDμψ, 〈mq〉ψ̄DμDμψ, ψ̄mqiσμνGμνψ,

〈mq〉ψ̄ iσμνGμνψ. (5)

• L(6)3 : four-quark operators that conserve chiral symmetry,

(ψ̄γμψ)
2, (ψ̄γμγ5ψ)

2, (ψ̄ taγμψ)
2, (ψ̄ taγμγ5ψ)

2,

(6)

where ta are the SU(3) generators, a = 1, . . . , 8.
• L(6)4 : four-quark operators that break chiral symmetry,

(ψ̄ψ)2, (ψ̄γ5ψ)
2, (ψ̄σμνψ)

2, (ψ̄ taψ)2,

(ψ̄ taγ5ψ)
2, (ψ̄ taσμνψ)

2. (7)

• L(6)5 : quark bilinear operators that break the O(4) rotation
symmetry,

ψ̄γμDμDμDμψ. (8)

It should be noted that fermionic operators that conserve
chiral symmetry first appear at O(a2).

2.2 Wilson chiral Lagrangians

In order to construct the chiral Lagrangians of WChPT, one
has to write down the most general Lagrangians that are
invariant under the symmetries of the continuum EFT. This

can be done by following the standard procedure of spurion
analysis [46,47]. In practice, in order to obtain the corre-
sponding a-dependent chiral Lagrangians, one only needs to
know which symmetries are broken and how [50]. Before
writing down the chiral Lagrangians up to O(a2), one has to
first specify a chiral power-counting scheme, which should
be enlarged to include lattice spacing a. In LQCD simula-
tions, the following hierarchy of energy scales is satisfied:

mq � ΛQCD � 1

a
. (9)

If one assumes that the size of the chiral symmetry breaking
due to the light-quark masses and the discretization effects
are of comparable size, as done in Refs. [47,48,50], one has
the following expansion parameters:

p2 ∼ mq

ΛQCD
∼ aΛQCD, (10)

where p denotes a generic small quantity and ΛQCD ≈
300 MeV denotes the typical low energy scale of QCD. Up
to O(a2), the a-dependent chiral Lagrangians contain terms
of O (a, amq , a2) and can be written as

Leff
a = L(1)a + L(2)a , (11)

where

L(1)a = LO(a) + LO(amq ), (12)

L(2)a = LO(a2)
1 + LO(a2)

2 + LO(a2)
3 + LO(a2)

4 + LO(a2)
5 ,

(13)

and LO(a2)
i (i = 1, . . . , 5) are the five classes of chiral

Lagrangians corresponding to the previous five types of oper-
ators appearing in the Symanzik action at O(a2).

The chiral Lagrangian at O(a) can be written as

LO(a) = b̄0〈B̄ B〉〈ρ+〉+ b̄D〈B̄[ρ+, B]−〉+ b̄F 〈B̄[ρ+, B]+〉,
(14)

where b̄0, b̄D , and b̄F are the unknown LECs of dimen-
sion mass−1, 〈X〉 stands for the trace in flavor space, ρ+ =
u†ρu† + uρ†u with u = √

U = exp(iφ/(2Fφ)),3 φ and B
are the usual SU(3) matrix representation of the pseudoscalar
mesons and of the octet baryons, respectively. The coefficient
Fφ is the pseudoscalar decay constant in the chiral limit. The
matrix ρ is related to the Wilson matrix via [44]

ρ = 2acSWW0W, (15)

3 The operator ρ+ transforms under chiral rotation (R), parity transfor-
mation (P), charge conjugation transformation (C) and hermitic con-

jugation transformation in the following way: ρ+
R−→ hρ+h† with

h ∈ SU(3)V , ρ+
P−→ ρ+, ρ+

C−→ ρT+ , and ρ+
h.c.−−→ ρ+.
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which introduces explicit chiral symmetry breaking because
of the finite lattice spacing a. The constant W0 = −〈0|q̄σμν
Gμνq|0〉/F2

φ is an unknown dimensional quantity that is
related to the scale Λχ .

The O(amq) Lagrangian has the following form:

LO(amq ) = b̄1〈B̄χ+ρ+B〉 + b̄2〈B̄χ+Bρ+〉
+ b̄3〈B̄ρ+ Bχ+〉 + b̄4〈B̄ Bχ+ρ+〉
+ b̄5〈B̄χ+〉〈ρ+ B〉 + b̄6〈B̄ρ+〉〈χ+ B〉
+ b̄7〈B̄[χ+, B]〉〈ρ+〉 + b̄8〈B̄{χ+, B}〉〈ρ+〉
+b̄9〈B̄[ρ+, B]〉〈χ+〉 + b̄10〈B̄{ρ+, B}〉〈χ+〉
+ b̄11〈B̄ B〉〈χ+〉〈ρ+〉 + b̄12〈B̄ B〉〈χ+ρ+〉, (16)

where b̄1,...,12 are unknown LECs of dimension mass−3 and
χ+ = u†χu† + uχ†u, where χ = 2B0M accounts for
explicit chiral symmetry breaking with B0 = −〈0|q̄q|0〉/F2

φ .

One can eliminate the b̄3 term by use of the following iden-
tity valid for any 3 × 3 matrix A derived from the Cayley–
Hamilton identity [83]:

∑
perm=6

〈A1 A2 A3 A4〉 −
∑

perm=8

〈A1 A2 A3〉〈A4〉

−
∑

perm=3

〈A1 A2〉〈A3 A4〉 +
∑

perm=6

〈A1 A2〉〈A3〉〈A4〉

−〈A1〉〈A2〉〈A3〉〈A4〉 = 0, (17)

where ‘perm’ stands for permutation number. In the end,
there are 11 independent terms left.

At O(a2), the previous five operators in the Symanzik
action can be mapped into the EFT with five classes of chiral

Lagrangians LO(a2)
i (i = 1, . . . , 5). Following the notation

of Ref. [50], the first class of chiral Lagrangians can be writ-
ten as

LO(a2)
1 = a2c2

SWW 2
0

[
c̄1〈B̄ B〉 + c̄2〈O+〉

× 〈B̄ B〉 + c̄3〈B̄[O+, B]+〉 + c̄4〈B̄[O+, B]−〉 ] ,

(18)

where the operator O+ is defined as

O+ = 2[u†(W − W)u + u(W − W)u†], (19)

with W = 1−W = diag(1−ωl , 1−ωl , 1−ωs), and c̄1,...,4

are the unknown LECs of dimension mass−3.
Because the second type of operators have an insertion

of the quark mass mq , the chiral order of the corresponding
chiral Lagrangians is at least O(p6), which is beyond the
present work and will not be shown.

There are seven independent terms in the third class of
chiral Lagrangians

LO(a2)
3 = a2c2

SWW 2
0 [ē1〈B̄[O+, [O+, B]]〉

+ ē2〈B̄[O+, {O+, B}]〉
+ ē3〈B̄{O+, {O+, B}}〉 + ē4〈B̄O+〉〈O+ B〉
+ ē5〈B̄[O+, B]〉〈O+〉 + ē6〈B̄{O+, B}〉〈O+〉
+ ē7〈B̄ B〉〈O+〉2 + ē8〈B̄ B〉〈O2+〉], (20)

where the ēi are the unknown LECs of dimension mass−3.
Furthermore, we can eliminate the ē6 term by use of the
Cayley–Hamilton identity [83]:

〈B̄{X2, B}〉 + 〈B̄ X B X〉 − 1

2
〈B̄ B〉〈X2〉 − 〈B̄ X〉〈B X〉 = 0,

(21)

with X = O+ − 1
3 〈O+〉 being a 3 × 3 traceless matrix.

Four-quark operators that break chiral symmetry can be
mapped into the following chiral Lagrangian:

LO(a2)
4 = d̄1〈B̄[ρ+, [ρ+, B]]〉 + d̄2〈B̄[ρ+, {ρ+, B}]〉

+ d̄3〈B̄{ρ+, {ρ+, B}}〉 + d̄4〈B̄ρ+〉〈ρ+ B〉
+ d̄5〈B̄[ρ+, B]〉〈ρ+〉 + d̄7〈B̄ B〉〈ρ+〉2

+ d̄8〈B̄ B〉〈ρ2+〉, (22)

with the seven unknown LECs d̄i of dimension mass−3.
Because the chiral transformation properties of ρ+ and χ+
are the same, the chiral Lagrangian has the same form as the
corresponding fourth-order chiral Lagrangian of ChPT.

For the O(4) breaking operators, the mapped chiral
Lagrangian can be written as

LO(a2)
5 = a2c2

SWW 2
0

[
f̄1〈B̄ DμDμDμDμB〉

+ f̄2〈O+〉〈B̄ DμDμDμDμB〉
+ f̄3〈B̄ DμDμDμDμ[O+, B]+〉
+ f̄4〈B̄ DμDμDμDμ[O+, B]−〉 ] , (23)

where the f̄i are the unknown LECs of dimension mass−3.
Their contributions to the octet baryon masses can be
absorbed by the terms of class one, i.e., Eq. (18).

3 Discretization effects on the octet baryon masses

In this section, we calculate the discretization effects on the
octet baryon masses up to O(a2) for the Wilson action. Then
employing the baryon masses obtained in Wilson covariant
BChPT up to N3LO, we estimate discretization effects of the
current LQCD simulations by performing a simultaneous fit
of the latest n f = 2+1 LQCD data, which are obtained with
the O(a)-improved Wilson action.

It should be stressed that we are not aiming at a precise
determination of discretization effects on the octet baryon
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(a) (b) (c) (d)

Fig. 1 Feynman diagrams contributing to the a-dependence of octet
baryon masses up to O(a2). The solid lines represent octet baryons and
the dashed lines denote pseudoscalar mesons. The boxes (diamonds)

indicate the O(a) (O(a2)) vertices. The circle-cross is an insertion from
the LO(a). The wave function renormalization diagrams are not explic-
itly shown but included in the calculation

masses, given the fact that most LQCD simulations are per-
formed at a single lattice spacing. On the contrary, we would
like to get a rough estimate of discretization effects and to
check whether the results of previous studies [69,70,75,76]
are robust, which have neglected these effects.

3.1 Octet baryon masses up to O(p4)

The octet baryon masses up to N3LO and with finite lattice
spacing a contributions up to O(a2) can be expressed as

m B = m0 + m(2)
B + m(3)

B + m(4)
B + m(a)

B , (24)

where m0 is the chiral limit octet baryon mass and m(2)
B , m(3)

B ,

and m(4)
B correspond to the O(p2), O(p3), and O(p4) con-

tributions (the corresponding finite-volume corrections from
loop diagrams are also included) and their explicit expres-
sions can be found in Ref. [75]. The last term m(a)

B denotes
the discretization effects up to O(a2). In our power-counting
scheme, it contains the following three contributions:

m(a)
B = mO(a)

B + m
O(amq )

B + mO(a2)
B . (25)

Here, we need to mention that virtual decuplet contributions
are not explicitly included, since their effects on the chiral
extrapolation and the finite-volume corrections are relatively
small [76].

In the case of the unmixed Wilson action, where the u, d,
and s quarks are all Wilson fermions, the Wilson matrix can
be written as W = diag(1, 1, 1). One can easily compute
the O(a) contributions of the diagram of Fig. 1a to the octet
baryon masses,

mO(a)
B = −4acSWW0(3b̄0 + 2b̄D), (26)

where B = N , Λ, Σ, and Ξ .
The O(amq) contributions can be written as

m
O(amq )

B = −16acSWW0 B0(ξlml + ξsms)

= −8acSWW0

(
ξl M2

π + ξs

(
2M2

K − M2
π

))
,

(27)

and the coefficients ξl and ξs are tabulated in Table 1.
We have introduced the following combinations of LECs:

Table 1 Coefficients of the O(amq ) contributions to the octet baryon
masses (Eq. 27)

ξl ξs

N B̄1 + 2B̄3 B̄2 + B̄3

Λ 1
3 (B̄1 + B̄2 + 6B̄3)

1
3 (2B̄1 + 2B̄2 + 3B̄3)

Σ B̄1 + B̄2 + 2B̄3 B̄3

Ξ B̄2 + 2B̄3 B̄1 + B̄3

b̄1 + b̄2 + 3b̄7 + 3b̄8 = B̄1, b̄4 − 3b̄7 + 3b̄8 = B̄2, and
2b̄10 + 3b̄11 + b̄12 = B̄3. Hence, there are three independent
combinations. In obtaining the above results, the light-quark
masses have been replaced by the leading-order pseudoscalar
meson masses: ml = 1

2B0
M2
π and ms = 1

2B0
(2M2

K − M2
π ).

The O(a2) contributions are not only from the fourth-
order tree-level diagram Fig. 1b, but also from the one-loop
diagrams of Fig. 1c, d

mO(a2)
B = −a2c2

SWW 2
0

(
C̄ + 16D̄ + 16Ē

)

− 1

(4πFφ)2
acSWW0

∑
π, K , η

ξ
(c)
B,φH (c)

B (Mφ)

+ 1

(4πFφ)2
∑

π, K , η

ξ
(d)
B B′,φH (d)

B,B′(Mφ), (28)

where C̄ = c̄1 + 4(3c̄2 + 2c̄3), D̄ = 4d̄3 + 9d̄7 + 3d̄8, and
Ē = 4ē3 +9ē7 +3ē8. We introduce C̄ +16D̄ +16Ē = 16X̄
as one free LEC in the fitting process. The second line of
Eq. (28) is for the contributions from the tadpole diagram of
Fig. 1c, and the corresponding coefficients ξ (c)B,φ are listed in
Table 2. The last term is for the contributions from the one-
loop diagram of Fig. 1d, and the coefficients ξ (d)B B′,φ can be

found in Table 5 of Ref. [75]. The loop diagrams H (c)
B (Mφ)

and H (d)
B B′(Mφ) read

H (c)
B (Mφ) = M2

φ

[
1 + ln

(
μ2

M2
φ

)]
, (29)

H (d)
B B′(Mφ) = mO(a)

B

⎡
⎣ 2M5

φ

m2
0

√
4m2

0 − M2
φ

arccos

(
Mφ

2m0

)

+ M4
φ

m2
0

ln

(
M2
φ

m2
0

)
+ 2M2

φ ln

(
m2

0

μ2

)⎤
⎦ , (30)
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Table 2 Coefficients of the
tadpole diagram contributions to
the octet baryon masses (Eq. 28)

N Λ Σ Ξ

ξ
(c)
B,π 6(2b̄0 + b̄D + b̄F ) 4(3b̄0 + b̄D) 12(b̄0 + b̄D) 6(2b̄0 + b̄D − b̄F )

ξ
(c)
B,K 4(4b̄0 + 3b̄D − b̄F )

8
3 (6b̄0 + 5b̄D) 8(2b̄0 + b̄D) 4(4b̄0 + 3b̄D + b̄F )

ξ
(c)
B,η

2
3 (6b̄0 + 5b̄D − 3b̄F ) 4(b̄0 + b̄D)

4
3 (3b̄0 + b̄D)

2
3 (6b̄0 + 5b̄D + 3b̄F )

where mO(a)
B is for the leading-order discretization effects of

Eq. (26).

3.2 Application to recent n f = 2 + 1 LQCD simulations

At present, most LQCD simulations employ a single lat-
tice spacing a and take discretization effects as systematic
uncertainties. A similar strategy has been adopted by the-
oretical studies. On the other hand, one may combine the
LQCD simulations from different collaborations and perform
a quantitative study of the discretization effects. Among the
latest LQCD simulations, several collaborations employed
the O(a)-improved or ‘clover’ Wilson action, e.g. PACS-
CS (with a = 0.0907(14) fm and cSW = 1.715), QCDSF-
UKQCD (with a = 0.0795(3) fm and cSW = 2.65), HSC
and NPLQCD (with as = 0.1227(8) fm, at = 0.03506 (23)
fm, cs

SW = 2.6, and ct
SW = 1.8) Collaborations. These simu-

lations are performed at three different values of lattice spac-
ing a and with different light-quark masses and, therefore, in
principle allow for a quantitative study of the discretization
effects on the octet baryon masses.

It should be noted that both the HSC [61] and the
NPLQCD [66] simulations employed the anisotropic clover
fermion action [84]. In this action, the temporal lattice spac-
ing is chosen to be much smaller than the spatial lattice spac-
ing. The EFT for such a LQCD setup has been worked out
in Ref. [52], which in principle is more appropriate to be
employed to study the HSC and NPLQCD simulations. On
the other hand, this EFT has to introduce more LECs to dis-
criminate the temporal and spatial lattice spacing effects. As
we will see, present limited LQCD data do not allow us to
perform such a study. Therefore, in our study we assume that
these simulations are performed with a single lattice spac-
ing, as , and we treat the difference between as and at as
higher-order effects.

As in Refs. [76,85], we focus on the LQCD data from
the above four collaborations with Mπ < 500 MeV and
MφL > 3.8 to ensure the applicability of SU(3) covariant
BChPT. In total, there are 12 sets of LQCD data (each set
includes the N , Λ, Σ , and Ξ masses) from the PACS-CS
(three sets), QCDSF-UKQCD (two sets), HSC (three sets),
and NPLQCD (four sets). In order to better ascertain the
values of LECs, the experimental octet baryon masses are
also included in the fits.

In the O(a)-improved Wilson action the Pauli term aL(5)
is eliminated. As a result, discretization effects originate
only from the O(amq) and O(a2) terms. Therefore, only
the fourth-order tree-level diagrams contribute, while the
leading-order tree-level diagram and the tadpole/one-loop
diagrams do not contribute. In the end, the discretization
effects,

m(a)
B = m

O(amq )

B + mO(a2)
B

= −8acSWW0

(
ξl M2

π + ξs

(
2M2

K − M2
π

))

−16a2c2
SWW 2

0 X̄ , (31)

only contain four new independent combinations of LECs,
i.e., B̄1, B̄2, B̄3, and X̄ . Together with the 19 unknown LECs
appearing in the octet baryon masses in the continuum, there
are in total 23 free LECs that need to be fixed.4 As in Ref. [75],
the meson decay constant is fixed at its chiral limit value
Fφ = 0.0871 GeV. For the baryon axial coupling constants,
we use D = 0.8 and F = 0.46 [86]. The renormalization
scale is set at μ = 1 GeV.

In order to study the discretization effects on the octet
baryon masses, we perform two fits. First, we use the contin-
uum octet baryon mass formulas to fit the LQCD and exper-
imental data. Second, the mass formulas of Eq. (24) with
discretization effects taken into account are employed to fit
the same data. In both fits, the finite-volume corrections to
the LQCD simulations are always taken into account self-
consistently [75]. The LECs, together with the χ2/d.o.f.,
obtained from the two best fits are tabulated in Table 3.
It is clear that the 19 LECs remain similar whether or not
discretization effects are taken into account. The total χ2

changes from 30 for the first fit to 28 for the second fit,
indicating that the data can be described slightly better. On
the other hand, the χ2/d.o.f. slightly increases from 0.91
to 0.97, implying that discretization effects do not play an
important role in describing the present LQCD data.5 This
justifies their treatments as systematic uncertainties without
being taken into account explicitly in the fitting, as done in
most previous theoretical and LQCD studies. It should be

4 In our fits, we set W0 at 1 GeV3. Later a more proper value will be
used to check the naturalness of the resulting LECs, B̄1, B̄2, B̄3, and X̄ .
5 This is in contrast with the finite-volume effects. In Ref. [75], it is
shown that a self-consistent treatment of finite-volume effects is essen-
tial to obtain a χ2/d.o.f. about 1.
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Table 3 Values of the LECs
from the best fit to the LQCD
data and the experimental data
at O(p4) with and without
discretization effects

BChPT WBChPT BChPT WBChPT

m0 (MeV) 910 (20) 915 (20) d1 (GeV−3) 0.0295 (124) −0.0196 (121)

b0 (GeV−1) −0.579 (56) −0.557 (50) d2 (GeV−3) 0.342 (65) 0.230 (58)

bD (GeV−1) 0.211 (56) 0.201 (48) d3 (GeV−3) −0.0314 (63) −0.0557 (56)

bF (GeV−1) −0.434 (43) −0.359 (41) d4 (GeV−3) 0.372 (114) 0.304 (1,008)

b1 (GeV−1) 0.730 (10) 0.810 (8) d5 (GeV−3) −0.401 (110) −0.237 (88)

b2 (GeV−1) −1.21 (18) −0.819 (26) d7 (GeV−3) −0.0913 (58) −0.104 (48)

b3 (GeV−1) −0.340 (153) −0.357 (12) d8 (GeV−3) −0.132 (79) −0.0417 (67)

b4 (GeV−1) −0.776 (16) −0.780 (15) B̄1 (GeV−3)×10−2 – −0.121 (103)

b5 (GeV−2) −1.15 (287) −1.34 (23) B̄2 (GeV−3)×10−2 – −0.467 (109)

b6 (GeV−2) 0.778 (390) 0.889 (199) B̄3 (GeV−3)×10−2 – 0.344 (267)

b7 (GeV−2) 0.899 (26) 0.787 (14) X̄ (GeV−3)×10−4 – 0.606 (5,723)

b8 (GeV−2) 0.627 (37) 0.817 (28)

χ2 30.0 28.0 χ2/d.o.f. 0.91 0.97

noted that the one-sigma uncertainties of the LECs B̄1, B̄2,
B̄3, and, particularly, X̄ are rather large. This shows clearly
the need to perform LQCD simulations at multiple lattice
spacings in order to pin down more precisely discretization
effects, which has long been recognized [87].

In the above fits we have included the experimental data
to better constrain the large number of LECs appearing at
N3LO. We can of course drop the experimental data, redo the
fit, and calculate the octet baryon masses at the physical point.
Such a procedure should be taken with caution, however,
for the following reasons. First, we have a large number of
unknown LECs (about 20). Second, the lightest LQCD data
point has a Mπ about 300 MeV, and it is still a bit away
from the physical point. Third, all the χ2/d.o.f. are close to
1. These factors can make the extrapolations unstable with
respect to moderate changes of the LECs. In Table 4, we
tabulate the extrapolated octet baryon masses with two sets of
LECs, determined from the fits in which finite lattice spacing
effects are either taken into account or neglected. It is clear
that the extrapolated masses agree within uncertainties, and
so do the corresponding LECs (not shown). Nevertheless, the
extrapolated nucleon mass still deviates about 60–80 MeV
from its physical value, calling for LQCD simulations with
smaller light-quark masses (than studied in the present work).

In Fig. 2, we show the evolution of discretization effects
as a function of the lattice spacing for three different pion
masses with the relevant LECs determined from the second
fit. It is seen that the discretization effects increase almost
linearly with increasing lattice spacing a for fixed pion mass.
For fixed a, they increase with increasing pion mass as well.
Furthermore, essentially no curvature is observed. It is clear
that in our present work the O(amq) terms dominate over
the O(a2) terms. It should be stressed that the LEC X̄ is
consistent with zero and a fit without the O(a2) contributions

Table 4 Extrapolated octet baryon masses (in unit of MeV) to the
physical point with the LECs determined by fitting to the LQCD data
alone

BChPT WBChPT Exp. [88]

χ2/d.o.f. 0.89 1.0 –

m N 889 (21) 865 (39) 940 (2)

mΛ 1,113 (17) 1,087 (41) 1,116 (1)

mΣ 1,163 (19) 1,139 (42) 1,193 (5)

mΞ 1,333 (16) 1,309 (41) 1,318 (4)

would have yielded very similar results as shown in Table 3
and Fig. 2. For a lattice spacing up to a = 0.15 fm, the finite
lattice spacing effects on the baryon masses are less than 2 %,
consistent with the LQCD study of Ref. [89].

The above results can be naively understood in the follow-
ing way. Recall that mq

ΛQCD
∼ aΛQCD in our power-counting

scheme. If we take ms = 100 MeV, ΛQCD = 300 MeV, and
a = 0.1 fm, we obtain mq

ΛQCD
≈ 0.3 and aΛQCD ≈ 0.15. If

we further assume that all the LECs are of natural size, i.e.,
∼1, we then expect O(m2

q) : O(amq) : O(a2) = 4 : 2 : 1.
Remember that the quark masses are larger than their physi-
cal values while the lattice spacing is fixed to be around 0.1
fm in the LQCD simulations, our actual numerical results
seem to support this naive argument. Furthermore, we would
like to point out that the a-dependent LECs B̄1, B̄2, B̄3, and
X̄ are of natural size. The values in Table 3 appear to be
small because we have set the dimensional quantity W0 to be
1 GeV3. Its more ‘proper’ value can be estimated by noting
the following relations: W0a ∼ B0mq and M2

π ∝ 2B0mq (in
leading-order ChPT), which yield W0 ≈ 0.02 GeV3. With
this value, the LECs turn out to be B̄1 = −0.0605 GeV−3,
B̄2 = −0.234 GeV−3, B̄3 = 0.172 GeV−3, and X̄ =
0.152 GeV−3, which are of natural size as expected.
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Fig. 2 (color online). Finite
lattice spacing effects on the
octet baryon masses,
RB = m(a)

B /m B , as functions of
lattice spacing a for
Mπ = 0.3, 0.4, and for 0.5 GeV,
respectively. The SW coefficient
is set at cSW = 1.715, the value
of the PACS-CS Collaboration.
The strange quark mass is fixed
at its physical value dictated by
leading-order ChPT

4 Conclusions

We have studied discretization effects on the octet baryon
masses. The a-dependent chiral Lagrangians are formulated
for the first time in the SU(3) one-baryon sector and dis-
cretization effects on the octet baryon masses are calcu-
lated for the unmixed Wilson action up to O(a2). By tak-
ing into account discretization effects and finite-volume cor-
rections, we have performed a simultaneous fit of all the
n f = 2 + 1 LQCD simulations, which are performed using
the O(a)-improved Wilson fermion action. We found that
taking into account discretization effects can slightly improve
the description of the LQCD octet baryon masses, but their
effects are small. Furthermore, the values of the 19 LECs
appearing in continuum ChPT up to O(p4) do not change
much. Our studies showed that the treatment of discretiza-
tion effects as systematic uncertainties in the previous studies
of the LQCD octet baryon masses seems to be justified.

With the LECs of Wilson ChPT fixed from the best fit,
we have also studied the evolution of discretization effects
with the lattice spacing and the pion mass. It was shown that
the discretization effects on the octet baryon masses are less
than 2 % for lattice spacings up to 0.15 fm, in agreement with
other LQCD studies.

Nevertheless, future lattice simulations performed at mul-
tiple lattice spacings will be extremely valuable to pin down
more precisely discretization effects (on the octet baryon
masses) and to check the validity of Wilson ChPT in the
one-baryon sector.
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