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Abstract In recent years, a growing interest in the equi-
librium of compact astrophysical objects like white dwarf
and neutron stars has been manifested. In particular, vari-
ous modifications due to Planck-scale energy effects have
been considered. In this paper we analyze the modification
induced by gravity’s rainbow on the equilibrium configura-
tions described by the Tolman–Oppenheimer–Volkoff (TOV)
equation. Our purpose is to explore the possibility that the
rainbow Planck-scale deformation of space-time could sup-
port the existence of different compact stars.

1 Introduction

Compact stars, exotic stars, wormholes, and black holes are
astrophysical objects described by the Einstein field equa-
tions. For a perfect fluid and in the case of spherical sym-
metry, these objects obey the Tolman–Oppenheimer–Volkoff
(TOV) equation (in c.g.s. units) [1,2]

d pr (r)

dr
= −

(
ρ(r) + pr (r)

c2

)
4πGr3 pr (r)/c2 + Gm(r)

r2[1 − 2Gm(r)/rc2]
+2

r
(pt (r) − pr (r)) (1)

and

dm

dr
= 4πρ(r)r2, (2)

where c is the speed of light, G is the gravitational con-
stant, ρ(r) is the macroscopic energy density measured in
proper coordinates, and pr (r) and pt (r) are the radial pres-
sure and the transverse pressure, respectively. It is clear that
the knowledge of ρ(r) allows one to understand the astro-
physical structure under examination. If we fix our attention
on compact stars, ordinary general relativity offers two kinds
of exact solutions for the isotropic TOV equation:
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(a) the constant energy-density solution,
(b) the Misner–Zapolsky energy-density solution [3].

Of course, (a) and (b) can be combined to give a new profile,
which has been considered by Dev and Gleiser [4]. Case (b)
is satisfied with the help of an equation of state of the form
pr = ωρ with ω = 1/3

pr = ωρ(r) = ω
3c2

56πGr2 = c2

56πGr2 (3)

and

m(r) = 3c2r

14G
. (4)

Other different solutions can be found introducing anisotropy
[4,5] and/or polytropic transformations [6] or other forms of
modification of gravity like f (r) gravity [7,8] and general-
ized uncertainty principle (GUP) [9]. The GUP distortion is
only one of the different examples involving Planckian or
trans-Planckian modifications due to quantum gravitational
effects coming into play. Indeed, a number of recent studies
have already focused on the effects of Planck-scale physics
on the equilibrium configuration of compact astrophysical
objects (see e.g. [10–18]). Usually Planck-scale physics is
considered to affect equilibrium configuration via the mod-
ification of the energy-momentum dispersion relation that
implies deformed equation of state (EoS) for the fluid com-
posing the star. This is for example the approach followed
in Refs. [10–13]. However, there are Planck-scale scenar-
ios in which the deformation occurs by means of the metric
deformation as well. This is the case of the so called grav-
ity’s rainbow [19,20]. Gravity’s rainbow is a distortion of
space-time induced by two arbitrary functions, g1(E/EPl)

and g2(E/EPl), which have the following property1

1 Applications and implications of gravity’s rainbow in astrophysics
and cosmology can be found in [21–26].
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lim
E/EPl→0

g1 (E/EPl) = 1 and lim
E/EPl→0

g2 (E/EPl) = 1.

(5)

It has been introduced for the first time by Magueijo and
Smolin [19,20], who proposed that the energy-momentum
tensor and the Einstein field equations were modified with
the introduction of a one parameter family of equations

Gμν (E/EPl) = 8πG (E/EPl) Tμν (E/EPl) + gμν� (E/EPl) ,

(6)

where G(E/EPl) is an energy dependent Newton’s constant
and �(E/EPl) is an energy dependent cosmological con-
stant, defined so that G(0) is the low-energy Newton’s con-
stant and �(0) is the low-energy cosmological constant. It is
clear that the modified Einstein’s field equations (6) give rise
to a class of solutions which are dependent on g1(E/EPl)

and g2(E/EPl). For instance, the rainbow version of the
Schwarzschild line
element is

ds2 = −
(

1 − 2MG(0)

r

)
dt̃2

g2
1(E/EPl)

+ dr̃2(
1 − 2MG(0)

r

)
g2

2(E/EPl)
+ r̃2

g2
2(E/EPl)

×(dθ2 + sin2 θdφ2). (7)

As shown in Refs. [23,24], one of the effects of the functions
g1(E/EP ) and g2(E/EP ) is to keep under control UV diver-
gences allowing therefore the computation of quantum cor-
rections to classical quantities, at least to one loop. As a result,
the computation of zero point energy (ZPE) in gravity’s rain-
bow is well defined for appropriate choices of g1(E/EP )

and g2(E/EP ). In this paper, we would like to consider the
effect of gravity’s rainbow on the TOV equations to explore
the possibility of finding new forms of compact stars. The
paper is organized as follows. In Sect. 2 we consider the
TOV modified by gravity’s rainbow, in Sect. 3 we exam-
ine the constant energy-density case and its consequence on
the redshift factor, in Sect. 4 we examine the variable energy-
density case and its consequence on the redshift factor includ-
ing the Dev–Gleiser case. We summarize and conclude in
Sect. 5.

2 TOV equation in Gravity’s Rainbow

To see how gravity’s rainbow affects the TOV equations, we
need to define the following line element:

ds2 = − e2	(r)

g2
1(E/EPl)

c2dt2 + dr2

g2
2(E/EPl)

(
1 − 2Gm(r)

rc2

)

+ r2

g2
2(E/EPl)

(dθ2 + sin2 θdφ2). (8)

From Appendix A, we can see that only G00 modifies:

G00 = 2G
e2	(r)

r2

g2
2(E/EPl)

g2
1(E/EPl)

m′(r). (9)

For the energy-momentum stress tensor describing a perfect
fluid, we assume the following form:

Tμν = (ρc2 + pt )uμuν + pt gμν + (pr − pt )nμnν, (10)

where uμ is the four-velocity normalized in such a way
that gμνuμuν = −1, nμ is the unit spacelike vector
in the radial direction, i.e. gμνnμnν = 1 with nμ =√

1 − 2Gm (r) /rc2δ
μ
r . ρ(r) is the energy density, p(r) is the

radial pressure measured in the direction of nμ, and pt (r) is
the transverse pressure measured in the orthogonal direction
to nμ. From the results of Appendix A, we can see that the
equilibrium equation

d p

dr
+ (ρc2 + p)	′(r) = 0 (11)

must hold also in gravity’s rainbow. From this equation fol-
lows that

d pr

dr
= −

(
ρ + pr

c2

) κr3 pr/c4g2
2(E/EPl) + 2Gm(r)/c2

2r2[1 − 2Gm(r)/rc2]
+2

r
(pt − pr ) (12)

and

dm

dr
= 4πρ(r)r2

g2
2(E/EPl)

, (13)

where ρ is the mass density. Equation (12) is the anisotropic
TOV equation modified by gravity’s rainbow. As a first sim-
plification, we will assume that the star is isotropic. Then
we will consider the constant energy-density case (I) and
the Misner–Zapolsky energy-density case (II). We begin to
consider the case (I).
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3 Isotropic pressure and the constant energy-density
case

With the assumption of an isotropic star, the pressure in Eq.
(12) becomes

d pr

dr
= −

(
ρ + pr (r)

c2

)
4πGr3 pr (r)/c2g2

2(E/EPl) + Gm(r)

r2[1 − 2Gm(r)/rc2] .

(14)

The constant energy-density assumption allows an easy solu-
tion of Eq. (13). Indeed, one gets

m(r) = 4πρ

3g2
2(E/EPl)

r3, (15)

where we have used the boundary conditions m(0) = 0.
Nevertheless, Eqs. (14) and (15) are referred to the whole star
included the external boundary R. To account for different
scenarios we discuss two fundamental cases:

(a) The star is divided in two regions: the inner region or the
core, where gravity’s rainbow is relevant, and the outer
region, where gravity’s rainbow is negligible.

(b) The whole star is modified by gravity’s rainbow.

1. Case (a)

In this case, the star is divided in two parts: the external part of
the star without gravity’s rainbow and the core with gravity’s
rainbow. Basically, we can write

dm =
{

4πρr2dr/g2
2(E/EPl) r̄ ≥ r > 0

4πρr2dr R > r > r̄
. (16)

The transition between the distorted and the undistorted
mass is represented by introducing an intermediate radius
r̄ , assuming that

R ≫ r̄ > lPl. (17)

In this first approach, the transition between the distorted and
the undistorted mass is very sharp, but we cannot exclude the
possibility of describing a smoothed variation between the
external part of the star and the core in a next future. After
an integration, we can write

m(r)

=

⎧⎪⎨
⎪⎩

m1(r) = 4πρr3

3g2
2 (E/EPl)

= Mr3/(R̃3g2
2 (E/EPl)) r̄ ≥ r > 0

m2(r) = 4πρ
3 (r3 + r̄3 A(E/EPl)) = M(r3 + r̄3 A(E/EPl))/R̃3 R > r > r̄

.

(18)

In Eq. (18) we have used the total mass density

ρ = M

[
4π

3
(R3 + A (E/EPl) r̄3)

]−1

= M/Ṽ (19)

and we have defined

Ṽ = 4π

3
(R3 + A (E/EPl) r̄3) = 4π

3
R̃3, (20)

with

R̃3 = R3 + A (E/EPl) r̄3 (21)

and

A(E/EPl) = (g2
2(E/EPl)

−1 − 1). (22)

We indicate with ρ0, the mass density (19) with g2(E/EPl) =
1. Note that the volume distorted by gravity’s rainbow, for a
sphere of radius R, is

V =
∫

d3x
√

g = 4π

3g3
2(E/EPl)

∫ R

0

r2dr√
1 − 2m(r)/r

. (23)

Therefore the mass density in (19) does not coincide with
the ratio M/V . To calculate the pressure, we divide the
radius of the star into two sectors exactly like in Eq. (16).
We begin to consider the range R ≥ r ≥ r̄ . This is the sector
where the TOV equation is undeformed. From Eq. (14), with
g2(E/EPl) = 1, one gets

pr (r) = ρ0c2

(√
3c2 − κρ0r2 − √

3c2 − κρ0 R2
)

(
3
√

3c2 − κρ0 R2 − √
3c2 − κρ0r2

) , (24)

where κ = 8πG and where we have used the boundary
condition p(R) = 0. It is immediate to recognize that in this
region of the star, to avoid a singularity in the denominator,
we have to impose

R <

√
c2

3πGρ0
. (25)

When we use Eq. (15) with g2(E/EPl) = 1, then we recover
the Buchdahl–Bondi bound [27–30],

M <
4

9

c2

G
R. (26)

However, because of the distortion introduced by gravity’s
rainbow in Eq. (15) and in the mass density ρ (19), the
inequality (26) becomes

M <
4c2

9G R2 (R3 + A(E/EPl)r̄
3) (27)

and the Buchdahl–Bondi bound is modified. It is useful to
consider the limit in which E/EPl → 0. In this limit, we find
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that Eq. (27) reduces to

M <
4c2

9G R2 (R3 + ((1 + h(E/EPl))
−1 − 1)r̄3) � 4c2 R

9G

−h(E/EPl)
4c2r̄3

9G R2 , (28)

where h(E/EPl) → 0, when E/EPl → 0. Note that
h(E/EPl) ≷ 0 depending on the form of the rainbow’s func-
tion. To complete the analysis, we have to examine the core
of the star r̄ ≥ r ≥ 0 where gravity’s rainbow is switched
on, leading to the following TOV equation:

d pr

dr
= −κr(ρc2 + p(r))(3p(r) + ρc2)

2c2[3c2g2
2(E/EPl) − κρr2] , (29)

whose solution is

pr (r) = ρc2 C B(r, E) − 1

3 − C B(r, E)
, (30)

where A is a constant to be determined by an appropriate
choice of the boundary conditions and where

B (r, E) =
√

3c2g2
2(E/EPl) − κρr2. (31)

Since pr (r) must be continuous, we have to impose

lim
r−r̄−

pr (r) = lim
r−r̄+

pr (r) (32)

which implies

C B(r̄ , E) − 1

3 − C B(r̄ , E)
= ρ0

ρ

(√
3c2 − κρ0r̄2 − √

3c2 − κρ0 R2
)

(
3
√

3c2 − κρ0 R2 − √
3c2 − κρ0r̄2

)
= D(r̄ , R). (33)

Thus C is no longer a constant but it has become a function
of r̄ , R and E and it is determined to find

C ≡ C (r̄ , R, E) = 3D (r̄ , R) + 1

B (r̄ , E) (1 + D (r̄ , R))
. (34)

Plugging the value of C (r̄ , R, E) into (30), we obtain

pr (r) = ρc2 (3D (r̄ , R) + 1) B (r, E) − B (r̄ , E) (1 + D (r̄ , R))

3B (r̄ , E) (1 + D (r̄ , R)) − (3D (r̄ , R) + 1) B (r, E)
(35)

and the radial pressure for the whole star is

pr (r) = ρc2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(3D(r̄ ,R)+1)B(r,E)−B(r̄ ,E)(1+D(r̄ ,R))
3B(r̄ ,E)(1+D(r̄ ,R))−(3D(r̄ ,R)+1)B(r,E)

r̄ > r ≥ 0

D (r̄ , R) r = r̄
√

3c2−κρr2−√
3c2−κρR2

3
√

3c2−κρR2−√
3c2−κρr2

r > r̄

,

(36)

from which is possible to compute the pressure at the center
of the star. One finds

pr (0) = pc

= ρc2
(3D (r̄ , R) + 1)

√
3c2g2

2(E/EPl) − B (r̄ , E) (1 + D (r̄ , R))

3B (r̄ , E) (1 + D (r̄ , R)) − (3D (r̄ , R) + 1)

√
3c2g2

2(E/EPl)

(37)

and in order to have a finite pc, we have to impose the require-
ment that the denominator of (37) be not naught, namely

24c4g2
2(E/EPl) − 9κρc2g2

2(E/EPl)R2

9c2κρ − 3κ2ρ2 R2 − κρc2g2
2(E/EPl)

�= r̄2. (38)

Due to the complexity of Eq. (35), it is useful to discuss the
following limiting cases:

(1) g2(E/EPl) → 0. Although the central pressure pc

approaches a finite and real limit

pc � −ρc2

3
, (39)

the constant A in (34) becomes imaginary. Moreover,
the inequality (27) becomes dominated by the A (E/EPl)

function which is divergent allowing the underlying mass
to assume any value. For this reason, this limit will be
discarded.

(2) g2(E/EPl) → ∞. In this case, Eq. (38) becomes

9κρc2 R2 − 24c4

κρc2 �= r̄2 (40)

and by imposing

R <

√
c2

3πGρ
, (41)

we obtain a Buchdahl–Bondi-like bound, because the
mass density becomes

ρ = M

[
4π

3
(R3 − r̄3)

]−1

. (42)

In this limit, the central pressure becomes

pc � ρc2 D (r̄ , R) = ρ0c2

(√
3c2 − κρ0r̄2 −

√
3c2 − κρ0 R2

)
(

3
√

3c2 − κρ0 R2 −
√

3c2 − κρ0r̄2
) ,

(43)

from which is possible to obtain information on the radius
of the star
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R =
√

1

κρ0

√
(24c2 + κρ0r̄2)p2

c + (12ρ0c4 + 2c2κρ2
0 r̄2)pc + c4κρ3

0 r̄2

ρ0c2 + 3pc
.

(44)

Note that when r̄ → 0, we recover the usual Buchdahl–
Bondi bound. On the other hand, it is possible to have the
expression of the intermediate radius r̄ as a function of
R, ρ0, ρ and pc

r̄ =
√

1

κρ0

√
(9 κ R2ρ0 − 24 c2)p2

c + 6 c2ρ0(κ R2ρ0 − 2 c2)pc + R2c4ρ3
0κ

ρ0c2 + pc
.

(45)

2. Case (b)

In this case, the whole star is distorted by gravity’s rainbow
and the boundary is set very close to the core. The integration
of Eq. (29) with the condition pr (R) = 0, leads to

pr (r) = ρc2

(√
3c2g2

2(E/EPl) − κρr2 −
√

3c2g2
2(E/EPl) − κρR2

)
(

3
√

3c2g2
2(E/EPl) − κρR2 −

√
3c2g2

2(E/EPl) − κρr2
) .

(46)

Because of Eq. (15) at the boundary R, we find

ρ = g2
2(E/EPl)

3M

4π R3 = g2
2(E/EPl)ρ̃, (47)

where ρ̃ is the mass density in ordinary GR. Thus Eq. ( 46)
becomes

pr (r) = g2
2(E/EPl)ρ̃c2

(√
3c2 − κρ̃r2 − √

3c2 − κρ̃R2
)

(
3
√

3c2 − κρ̃R2 − √
3c2 − κρ̃r2

)

= g2
2(E/EPl) p̃r (r). (48)

It is immediate to recognize that all the properties obtained
in ordinary GR are here valid, except for the pressure which
scales with g2

2(E/EPl). The same behavior appears of course,
when we describe the pressure in terms of the mass M and
the radius R. Indeed, always with the help of Eq. (15), one
gets

pr (r) = 3Mg2
2(E/EPl)

4π R3 c2

√
c2 − 2MGr2/R3 −

√
c2 − 2MG/R

3
√

c2 − 2MG/R −
√

c2 − 2MGr2/R3

= g2
2(E/EPl) p̃r (r) (49)

and the Buchdahl–Bondi bound is preserved. We can now
compute the pressure at the center of the star to obtain

pr (0) = pc = g2
2(E/EPl) p̃r (0)

= g2
2(E/EPl)ρ̃c2

(√
3c2 − √

3c2 − κρ̃R2
)

(
3
√

3c2 − κρ̃R2 − √
3c2

)

= g2
2(E/EPl) p̃c (50)

while in terms of the mass M , we obtain

pr (0) = pc = 3Mg2
2(E/EPl)

4π R3 c2 c − √
c2 − 2MG/R

3
√

c2 − 2MG/R − c

= g2
2(E/EPl) p̃c. (51)

Because of the pressure scaling, we find that the radius of
the star can be computed in the same way of the undeformed
case. Indeed, in terms of the rescaled density we find

R =
√

3c2

8ρ̃πG

[
1 − (ρ̃c2 + p̃c)2

(ρ̃c2 + 3 p̃c)2

]
. (52)

The same undeformed result is obtained in terms of the mass
M

R = 2MG

c2
√

1 − (ρ̃ c2+ p̃c)2

(ρ̃ c2+3 p̃c)2

, (53)

where we have used the Schwarzschild form on the boundary
of the star. However, when we go back to the deformed pres-
sure and energy density, we find that the undeformed radius
R described by (52), becomes2

R

g2(E/EPl)
=

√
3c2

8ρπG

[
1 − (ρc2 + pc)2

(ρc2 + 3pc)2

]
. (55)

When g2(E/EPl) 
 1, to obtain the shrinking of the radius
of the star R, necessarily we need ρ̃ c2 
 3 p̃c, since the
central pressure can be large but finite. When R is small, we
find

pc � g2
2(E/EPl)

2πGρ̃2 R2

3
+ O(R4) (56)

or, in terms of the mass M ,

pc � g2
2(E/EPl)

3M2G

8π R4 + O(R4). (57)

This also means that from (53), M must be small. Notice that
in terms of ρ the equilibrium condition becomes

R <
cg2(E/EPl)√

3πGρ
. (58)

2 Note that the relation between the undeformed star radius R and the
deformed R̃ is

Rd = R/g2/3
2 (E/EPl) (54)

as suggested by Eq. (47).
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In the standard framework g2(E/EPl) = 1 and Eq. (58)
imply that when Planckian densities are approached, ρ ≈
ρPl , one gets

R � lPl, (59)

i.e. only stars smaller than the Planck size can satisfy the
TOV equilibrium equation. Instead, in our Rainbow scenario,
at Planckian densities we get

R � g2(E/EPl)lPl, (60)

suggesting that macroscopic stars are also allowed, if the
function g2(E/EPl) is very large.

3.1 The redshift function for the constant energy-density
case

In the case of a constant density, the redshift function
becomes

	(r) + K = −
∫ r

0

d p/dr ′

ρc2 + p(r ′)
dr ′. (61)

Because of the modification due to gravity’s rainbow, we are
forced to separate the discussion of the redshift function into
two cases. We begin with case a.

1. Case a

In this case the computation of the redshift function separates
into two pieces

	(r) + K = −
∫ r̄

0

d p/dr ′

ρc2 + p(r ′)
dr ′ −

∫ r

r̄

d p/dr ′

ρc2 + p(r ′)
dr ′

= I1 + I2, (62)

where r̄ has been defined in (16) and the related range in (17).
Plugging Eq. ( 29) into the first integral one finds

I1 = −
∫ r̄

0

d p/dr ′

ρc2 + p(r ′)
dr ′

= −
∫ r̄

0

d p/dr ′

g2
2(E/EPl)ρ̃c2 + p(r ′)

dr ′

= κ

2c2

∫ r̄

0

r ′ (3p(r ′) + g2
2(E/EPl)ρ̃c2

)
[
3c2g2

2(E/EPl) − κg2
2(E/EPl)ρ̃r ′2]dr ′

= I1a + I1b, (63)

where

I1a = 3κ

2c2

∫ r̄

0

r ′ p(r ′)[
3c2g2

2(E/EPl) − κg2
2(E/EPl)ρ̃r ′2]dr ′

(64)

and

I1b = κρ̃

2

∫ r̄

0

r ′dr ′

[3c2 − κρ̃r ′2] = −1

4
ln

(
3c2 − κρ̃r̄2

3c2

)
.

(65)

Plugging (35) into the integral I1a , one gets

I1a = 3κρ̃

2

∫ r̄

0

× r ′ (3C (r̄ , R) + 1) B̃
(
r ′, E

) − B̃ (r̄ , E) (1 + C (r̄ , R))

[3c2 − κρ̃r ′2][3B̃ (r̄ , E) (1 + C (r̄ , R)) − (3C (r̄ , R) + 1) B̃(r ′, E)] dr ′,

(66)

where we have used the following relationship:

B (r, E) =
√

3c2g2
2(E/EPl) − κρr2

= g2(E/EPl)
√

3c2 − κρ̃r2

= g2(E/EPl)B̃ (r, E) . (67)

Define the new variable

3c2 − κρ̃r ′2 = y2 �⇒ −κρ̃r ′dr ′ = ydy, (68)

then I1 becomes

I1a = −3

2

∫ y(r̄)

√
3c2

(3C (r̄ , R) + 1) y − B̃ (r̄ , E) (1 + C (r̄ , R))

y[3B̃ (r̄ , E) (1 + C (r̄ , R)) − (3C (r̄ , R) + 1) y]dy

= −3

2

∫ y(r̄)

√
3c2

C1 y − C2

y [3C2 − C1 y]
dy, (69)

where

C1 = 3C (r̄ , R) + 1

C2 = B̃ (r̄ , E) (1 + C (r̄ , R)) . (70)

Now I1a can easily be integrated to give

I1a = −3

2

∫ y(r̄)

√
3c2

C1 y − C2

y[3C2 − C1 y]dy

= ln

(
3C2 − C1 y (r̄)

3C2 − C1
√

3c2

)
+ 1

2
ln

(
y (r̄)√

3c2

)
(71)

and

I1 = ln

(
3C2 − C1 y (r̄)

3C2 − C1
√

3c2

)
. (72)

Following the same procedure for I2, one gets

I2 = −
∫ r

r̄

d p/dr ′

ρc2 + p(r ′)
dr ′ = κ

2c2

∫ r

r̄

r ′ (3p(r ′) + ρc2
)

[3c2 − κρr ′2] dr ′

=
3c2−κρr ′2=z2

ln

(
3z (R) − z(r)

3z(R) − z (r̄)

)
. (73)
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Therefore (62) becomes

	(r) + K = ln

(
3C2 − C1 y (r̄)

3C2 − C1
√

3c2

)
+ ln

(
3z (R) − z (r)

3z(r) − z (r̄)

)

= ln

(
(3C2 − C1 y (r̄)) (3z (R) − z(r))

(3C2 − C1
√

3c2) (3z (R) − z (r̄))

)
.

(74)

At the boundary of the star we obtain

exp 2 (	(R) + K ) =
(

(3C2 − C1 y (r̄)) (2z (R))

(3C2 − C1
√

3c2) (3z(R) − z (r̄))

)2

�⇒ exp 2K = 1

exp 2	(R)

(
(3C2 − C1 y (r̄)) (2z (R))

(3C2 − C1
√

3c2) (3z(R) − z (r̄))

)2

,

(75)

then

exp 2 (	(R) + K ) =
(

(3C2 − C1 y (r̄)) (2z (R))

(3C2 − C1
√

3c2) (3z(R) − z (r̄))

)2

(76)

and

exp 2	(r) = exp 2	(R)

(
(3z(R) − z (r))

(2
√

3c2 − κρR2)

)2

. (77)

However, because of the Schwarzschild boundary condition,
namely

exp 2	(R) = 1 − 2MG

c2 R
, (78)

and because of the (19), one finds that the redshift surface
becomes

exp 2	(r) =
(

1 − 2MG

c2 R

)

×
⎛
⎜⎝

(
3
√

1 − 2MG R2

c2 R̃3 −
√

1 − 2MGr2

c2 R̃3

)
(

2
√

1 − 2MG R2

c2 R̃3

)
⎞
⎟⎠

2

, (79)

where we have used (21). In any case, on the star surface the
redshift factor reduces to

z = �λ

λ
= g1(E/EPl)

exp[	(R)] − 1 = g1(E/EPl)√
1 − 2MG

Rc2

− 1. (80)

The rainbow upper bound on the redshift factor

z ≤ zmax = 3g1(E/EPl) − 1 (81)

becomes zmax = 2 in the undeformed limit g1(E/EP ) = 1,
as expected. It is clear that, for energies comparable with

EPl, one can have deviations from the usual redshift factor.
Indeed, from

g1(E/EP ) � 1 + α
E

E p
+ O

((
E

E p

)2
)

, (82)

where

α =
(

dg1(E/EP )

dE

)
|E=0

1

E p
, (83)

we have

zmax = 2 + 3α
E

E p
+ O

(
E

E p

)2

, (84)

with α ≶ 0.
2. Case b

In the case of a constant density one can also calculate the
redshift function explicitly. Indeed, from Eq. (11), we find

	(r) + K = −
∫ r

0

d p/dr ′

g2
2(E/EPl)ρ̃c2 + p(r ′)

dr ′ (85)

and with the help of (49), one can write

pr (y′) =
y′2=c2−2MGr ′2/R3

g2
2(E/EPl)ρ̃c2

×
(

y′ − √
c2 − 2MG/R

)
(

3
√

c2 − 2MG/R − y′
) . (86)

Thus

d pr

dy′ = g2
2(E/EPl)ρ̃c2 2

√
c2 − 2MG/R(

3
√

c2 − 2MG/R − y′
)2 (87)

and (85) becomes

	(y) + K = −
∫ y

c2

d p/dy′

g2
2(E/EPl)ρ̃c2 + p(y′)

dy′

= −
∫ y

c2

dy′(
3
√

c2 − 2MG/R − y′
)

= ln

(
3
√

c2 − 2MG/R − y

3
√

c2 − 2MG/R − c2

)
. (88)

At the boundary of the star, we obtain exp 2	(R) = 1 −
2MG/c2 R, thus
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exp 2 (	(R) + K ) =
(

3
√

c2 − 2MG/R − y (R)

3
√

c2 − 2MG/R − c2

)2

�⇒ exp 2K = 1

exp 2	(R)

(
3
√

c2 − 2MG/R − y(R)

3
√

c2 − 2MG/R − c2

)2

,

(89)

then

exp 2	(r)

= exp 2	(R)

(
3
√

c2 − 2MG/R −
√

c2 − 2MGr2/R3

2
√

c2 − 2MG/R

)2

(90)

= exp

(
1

4c2

(
3
√

c2 − 2MG/R −
√

c2 − 2MGr2/R3
)2

)
. (91)

Explicitly

	(r) = ln

[
1

4

(
3
√

1−2MG/c2 R−
√

1 − 2MGr2/c2 R3

)]

r ∈ [0, R] . (92)

It is immediate to recognize that the behavior of the surface
redshift is the same of the case a), except for the range which
here is related to the whole star.

4 The isotropic TOV equation and the EoS: variable
energy-density case

In this section, we will consider an energy-density profile of
the following form:

ρ = Arα, (93)

where A is a constant with dimensions of an energy density
divided by a (length)α with α ∈ R to be determined. Solving
(13) leads to

m(r) =
∫ r

0

4π A

g2
2(E/EPl)

r ′2+αdr ′ = 4π A

g2
2(E/EPl) (3 + α)

r3+α.

(94)

Plugging (93) and (94) into (1), one finds

ω
dρ(r)

dr
= −ρ(r)

(
c2 + ω

c2

)

×4πGr3ωρ(r) + Gm(r)c2g2
2(E/EPl)

r2
[
1 − 2Gm(r)/rc2

]
c2g2

2(E/EPl)
(95)

⇓
α = −

(
c2 + ω

ωc2

)

× 4πG Ar2+α
(
(3 + α) ω + c2

)
[
c2g2

2(E/EPl) (3 + α) − 8πG Ar2+α
] . (96)

It is immediate to see that ∀α �= −2, there is a singularity
into the TOV equation and a dependence on r still persists.
Therefore if we fix α = −2, one gets the relationship

1 = 3
(
c2 + ω

)2

4ω
[
7c2g2

2(E/EPl) − 3
] , (97)

where we have set A = 3c2/ (56πG). We find an identity
when ω = 1/3, ω = 3, c = 1 and g2(E/EPl) = 1. Therefore
in ordinary GR, TOV is satisfied for

pr = ωρ(r) = ω
3c2

56πGr2 (98)

and

m(r) = 3c2r

14G
. (99)

The energy density in (3) has been found for the first time by
Misner and Zapolsky [3]. When gravity’s rainbow comes into
play, one can find the values of ω satisfying the constraint
(97). One finds

ω± = 14

3
c2g2

2(E/EPl) − c2 − 2 ± 2

3

√
�, (100)

where

� = 49c4g4
2(E/EPl) − 21c4g2

2(E/EPl)

−42c2g2
2(E/EPl) + 9c2 + 9. (101)

When g2(E/EPl) 
 1, the asymptotic form of ω± is

ω+ � 28

3
c2g2

2(E/EPl) − 2c2 − 4 − 3c2

28g2
2(E/EPl)

+O

(
1

g4

)
� 28

3
c2g2

2(E/EPl) (102)

and

ω− � 3c2

28g2
2(E/EPl)

+ O

(
1

g4

)
. (103)

It is immediate to see that both solutions acquire a depen-
dence on g2(E/EPl) which is decreasing for ω− and increas-
ing for ω+. Note that at this stage, E acts as a parameter inde-
pendent on the radial coordinate r . Of course, it is always
possible to consider the situation in which g1(E/EPl) ≡
g1(E(r)/EPl) and g2(E/EPl) ≡ g2(E (r) /EPl) [31]. How-
ever, this goes beyond the purpose of this paper and it will
be investigated elsewhere. Note that as in the original model
of Dev and Gleiser, pr (R) = 0, only if we allow anisotropy.
However, if we take under consideration the relation with
ω−, one can consider the situation in which
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pr (R) = ω−ρ(R) = 9c4

1568πGg2
2(E/EPl)R2

→ 0 (104)

when g2(E/EPl) 
 1 without invoking a boundary that
goes to infinity. As we can see, in this regime, the star
seems to behave as dust, because ω− → 0. For complete-
ness, we present also the expansion for small energies where
g1(E/EPl) � g2(E/EPl) � 1. For example we can write for
ω+

ω+ � −c2 + 8

3
+ 4

3

√
4 − 3c2

+7((3c2 − 8)
√

4 − 3c2 + 12c2 − 16)

9c2 − 12
(g2(E/EPl) − 1)

+O((g − 1)2)

= −c2 + 8

3
+ 4

3

√
4 − 3c2

+7((3c2 − 8)
√

4 − 3c2 + 12c2 − 16)

9c2 − 12
β + O(β2)

=
c2→1

3 + 21β + O(β2) (105)

and for ω−

ω− � −c2 + 8

3
− 4

3

√
4 − 3c2

−7((3c2 − 8)
√

4 − 3c2 − 12c2 + 16)

9c2 − 12
(g2(E/EPl) − 1)

+O((g − 1)2)

= −c2 + 8

3
− 4

3

√
4 − 3c2

−7((3c2 − 8)
√

4 − 3c2 − 12c2 + 16)

9c2 − 12
β + O(β2)

=
c2→1

1

3
− 7

3
β + O(β2), (106)

where we have defined

β =
(

dg2(E/EP )

dE

)
|E=0

1

E p
, (107)

in analogy with definition (83). As regards the star mass, one
can easily verify that

m(r) = 3c2r

g2
2(E/EPl)14G

, (108)

and at the boundary R one gets

M = m(R) = 3c2 R

g2
2(E/EPl)14G

. (109)

4.1 The redshift function for the variable energy-density
case

The mass of the star at the boundary R, Eq. (109), is useful
also to determine the redshift factor. Indeed, if we define the
compactness of the star as

MG

Rc2 = 3

g2
2(E/EPl)14

, (110)

then the surface redshift z corresponding to the above com-
pactness factor is obtained

z = g1(E/EPl)√
1 − 2MG/Rc2

− 1

= g1(E/EPl)

(
1 − 3

7g2
2(E/EPl)

)− 1
2

− 1. (111)

It is immediate to see that only the case in which g2(E/EPl) >√
3/7 is allowed, otherwise z would become imaginary. This

means that, for an energy-density profile of the form (93), the
case in which g2(E/EPl) ≤ √

3/7 is automatically excluded.
Moreover, if g2(E/EPl) is very large, we get

z � 3g1(E/EPl)

14g2
2(E/EPl)

. (112)

Note that when g1(E/EPl) ∝ g2
2(E/EPl), then z is approx-

imately a constant. On the other hand, when we consider
the situation in which E � EPl, one can have small devia-
tions from the undeformed redshift factor z∗ = √

7/2 − 1 �
0.322 88. Indeed one finds

z � g1(E/EPl)

√
7

2

(
1 − 3

8
β

E

EPl

)

−1 �
(

1 + α
E

E p

) √
7

2

(
1 − 3

8
β

E

EPl

)

−1 � z∗ +
√

7E

2E p

(
α − 3

8
β

)
, (113)

with (α − 3
8β) ≶ 0, where we have used definitions (83) and

(107).

4.2 The redshift function for the Dev–Gleiser
energy-density case

The combination of the constant and variable energy-density
profile considered in Sects. 3 and 4, is known as the Dev–
Gleiser [4] energy-density profile whose expression is

ρ(r) = ρ + A

r2 , (114)
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where we have set A = 3c2/ (56πG). We know that in ordi-
nary GR, Dev–Gleiser solved the TOV equation in the pres-
ence of anisotropy showing that the pressureless condition
on the boundary could be satisfied. However, in the isotropic
case, it is not trivial to find solutions for the TOV equation.
Nevertheless, it is again possible to discuss the behavior of
the redshift for such a configuration. Indeed, it is immediate
to see that Eq. (13) can easily be solved to give

m(r) =
∫ r

0

4πρ(r ′)r ′2

g2
2(E/EPl)

dr ′ = 4π

g2
2(E/EPl)

(
ρr3

3
+ Ar

)

(115)

and the total mass M for a star of radius R is simply

M = 4π

g2
2(E/EPl)

(
ρR3

3
+ AR

)
. (116)

To simplify the computation we have considered the case (b)
of Sect. 3 where R � αlPl. Then we can define the compact-
ness of the star as

MG

Rc2 = 4π

g2
2(E/EPl)c2

(
ρR2

3
+ A

)
, (117)

the surface redshift z corresponding to the above compact-
ness factor is obtained:

z = g1(E/EPl)√
1 − 2MG/Rc2

− 1

= g1(E/EPl)

(
1 − 8π

g2
2(E/EPl)c2

(
ρR2

3
+ A

))− 1
2

− 1.

(118)

Even in the Dev–Gleiser profile only the case in which
g2(E/EPl) 
 1 is allowed, otherwise z would become imag-
inary. This means that, for an energy-density profile of the
form (114), the case in which g2(E/EPl) � 1 is automat-
ically excluded. Instead, if g2(E/EPl) is very large, we get

z � 4πg1(E/EPl)

g2
2(E/EPl)c2

(
ρR2

3
+ A

)
. (119)

It is immediate to see that even if g1(E/EPl) ∝ g2
2(E/EPl),

then z cannot be approximated by a constant as in the previous
subsection, because a dependence on the radius of the star R
still persists, not having found, for the Dev–Gleiser energy-
density profile, a simple analytical expression analogous to
(25).

5 Conclusions

In this paper we have considered the effects of gravity’s
rainbow on the TOV equations. After having derived the
deformed TOV equations, we have focused our attention
on two particular simple cases: the constant energy-density
profile and the variable energy-density profile, respectively.
Since the deformation induced by Gravity’s Rainbow is
expected to become more relevant when Planckian energy
density is approached, we have considered two specific sit-
uations for the constant energy-density profile: the first one
deals with a star which has a deformed core and an unde-
formed external region, that is to say, a two-fluid model. The
second one considers a star which is deformed everywhere.
Even if it is possible to compute a pressure for the whole
star in both situations, due to the complexity of the ana-
lytical expressions, we have considered two limiting cases:
g2(E/EPl) → ∞ and g2(E/EPl) → 0. For the two-fluid
model or case (a) of Sect. 3, only the g2(E/EPl) → ∞ limit
has been considered to avoid complex pressures and infinite
masses. In this extreme limit, one finds that the central pres-
sure depends on the undeformed mass density and on the
boundary r̄ where gravity’s rainbow switches off, namely
the core is cut off as shown in (42). It is clear that this is the
result of a crude approximation and the addition of a depen-
dence on the radius r from g1(E/EPl) ≡ g1(E (r) /EPl) and
g2(E/EPl) ≡ g2(E (r) /EPl) [31] could give light to this
result. On the other hand, when gravity’s rainbow is applied
to the whole star or case (b), we find that the star can survive
in the TOV sense and that, due to the g2 factor, the size on the
star does not necessarily become Planckian (60). Even in this
case, we do not know if some corrections due to a full quan-
tum gravitational theory can corroborate or destroy the pic-
ture. Regarding the redshift factor for both cases (a) and (b),
we find that the deformation is induced by g1(E/EPl) only
and there is a deviation that could be detected in principle,
even for small values of E . As regards, the variable energy-
density profile, we have found that the parameter of the EoS ω

cannot be considered as constant but acquires a dependence
on E/EPl. Even for the variable case, we have considered
the g2(E/EPl) → ∞ limit, to avoid infinite masses. In this
regime, we have found two solutions ω±: ω+ is divergent
when g2(E/EPl) → ∞, while ω− → 0, when in the same
limit. While ω+ must be discarded, we can see that ω− can
represent a form of “gravity’s rainbow dust”. It is interesting
to note that the vanishing of the pressure at the boundary R
is here reached as a limit procedure. Indeed as shown by Dev
and Gleiser [4], only if we introduce anisotropy, we can have
the exact vanishing of the pressure at the boundary. Regard-
ing the redshift we here find that z depends on both Rainbow
functions. As a particular case, one can fix the ideas where
g1(E/EPl) ∝ g2

2(E/EPl). With this choice, one finds that the
redshift factor is almost constant. Almost because, the exact
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value z = 3/14 is reached when g1(E/EPl) = g2
2(E/EPl)

and not simply proportional. The same situation appears
also for the Dev–Gleiser potential, where we have only con-
sidered the redshift problem since the pressure computa-
tion needs a more elaborate scheme. In summary, it seems
that the distortion created by gravity’s rainbow on the TOV
equation is able to create stars that are really Planckian in
density without necessarily being Planckian in size. These
“Planck stars” seem to be completely different by the Planck
stars proposed by Rovelli and Vidotto [16]. Indeed, for an
appropriate choice of the function g2(E/EPl), the Buchdahl–
Bondi bound is satisfied and the collapse never appears.
It is clear that the correction due to a dependence on the
radial coordinate of the form g1(E/EPl) ≡ g1(E(r)/EPl)

and g2(E/EPl) ≡ g2(E(r)/EPl) or a correction induced
by a quantum gravitational calculation could considerably
improve the present stage of the computation.
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Appendix A: Derivation of the TOV equations in Grav-
ity’s Rainbow

For a static fluid, we can define

u1 = dr

dτ
= 0 u2 = dθ

dτ
= 0 u3 = dφ

dτ
= 0 (A1)

and with the help of the normalization uμuμ = −1, we can
write

−1 = − e2	(r)

g2
1(E/EPl)

u0u0 → u0 = dt

dτ
= g1(E/EPl)e

−	(r).

(A2)

For the energy-momentum stress tensor, one finds

T 00 = ρ(r)c2g2
1(E/EPl)c

−2e−2	(r)

T 11 = g2
2(E/EPl)p (1 − b(r)/r)

T 22 = g2
2(E/EPl)pr−2

T 33 = g2
2(E/EPl)pr−2 sin−2 θ, (A3)

and in terms of the mixed tensor, one gets

T 0
0 = −ρ(r)c2 T 1

1 = T 2
2 = T 2

2 = p(r). (A4)

Thus from Einstein’s equations (κ = 8πG) we obtain

G00 = κT00 → b′(r) = κρ(r)c2r2

c4g2
2(E/EPl)

(A5)

and

G11 = κT11 → 	′(r)

= κr3 p(r)/c2g2
2(E/EPl) + 2Gm(r)

2r2c2
[
1 − 2Gm(r)

rc2

] . (A6)

From the conservation of the stress-energy tensor T μν

;ν = 0
follows

T μν

;ν = ∂T μν

∂xν
+ �

μ
βνT βν + �ν

νβT μβ = 0.

However, for practical purposes, it is convenient to adopt the
mixed stress-energy tensor leading to

μ = 0 �⇒ ∂T 0
0 (t, r, θ, φ)

∂t
= 0,

μ = 2 �⇒ ∂T 0
0 (t, r, θ, φ)

∂θ
= 0

μ = 3 �⇒ ∂T 0
0 (t, r, θ, φ)

∂φ
= 0 (A7)

and

μ = 1 �⇒ ∂p(r)

∂r
+	′(r)(ρ(r)c2 + p(r)) = 0. (A8)

Appendix B: The Dev–Gleiser energy-density profile
induced by the ZPE in a Gravity’s Rainbow context

In this section we shall consider the formalism outlined in
detail in Refs. [23,24], where the graviton one loop contribu-
tion to a fixed background is used. The latter contribution is
evaluated through a variational approach with Gaussian trial
wave functionals, and the divergences are taken under control
with the help of gravity’s rainbow. We refer the reader to Refs.
[23,24] for details. In ordinary gravity the computation of
ZPE for quantum fluctuations of the pure gravitational field
can be extracted by rewriting the Wheeler–DeWitt equation
(WDW) [32] in a form which looks like an expectation value
computation [33–35]. We remind the reader that the WDW
equation is the quantum version of the classical constraint
which guarantees the invariance under time reparametriza-
tion. Its original form with the cosmological term included
is described by

N (r) → e2	(r) and b (r) → 2Gm(r)

c2 . (B1)
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H� =
[
(2κ) Gi jklπ

i jπkl −
√

g

2κ

(
3 R − 2�

)]
� = 0.

(B2)

Note that H = 0 represents one of the classical constraints.
The other one is the invariance by spatial diffeomorphism. If
we multiply (B2) by �∗ [

gi j
]

and functionally integrate over
the three spatial metric gi j , we can write3 [33–35]

1

V

∫ D [
gi j

]
�∗ [

gi j
] ∫

�
d3x�̂��

[
gi j

]
∫ D [

gi j
]
�∗ [

gi j
]
�

[
gi j

]

= 1

V

〈
�

∣∣∣∫�
d3x�̂�

∣∣∣�〉
〈�|�〉 = −�

κ
, (B3)

where we have also integrated over the hypersurface � and
we have defined

V =
∫

�

d3x
√

g (B4)

as the volume of the hypersurface � with

�̂� = (2κ) Gi jklπ
i jπkl − √

g3 R/ (2κ) . (B5)

In this form, (B3) can be used to compute ZPE provided that
�/κ be considered as an eigenvalue of �̂� , namely the WDW
equation is transformed into an expectation value computa-
tion. In Eq. (B2), Gi jkl is the super-metric, π i j is the super-
momentum,3 R is the scalar curvature in three dimensions
and � is the cosmological constant, while κ = 8πG with
G the Newton constant. Nevertheless, solving (B3) is a quite
impossible task, therefore we are oriented to use a variational
approach with trial wave functionals. The related boundary
conditions are dictated by the choice of the trial wave func-
tionals which, in our case, are of the Gaussian type. Different
types of wave functionals correspond to different boundary
conditions. The choice of a Gaussian wave functional is jus-
tified by the fact that ZPE should be described by a good
candidate of the “vacuum state”. To fix the ideas, a variant
of the line element (7) will be considered

ds2 = −N 2(r)
dt2

g2
1 (E/EPl)

+ dr2(
1 − b(r)

r

)
g2

2 (E/EPl)

+ r2

g2
2 (E/EPl)

(
dθ2 + sin2 θdφ2

)
, (B6)

where N is the lapse function and b(r) is subject to the only
condition b (rt ) = rt . For instance, For the Schwarzschild
case, we find b(r) = 2MG = rt . For the de Sitter case (dS),
ons gets b(r) = �d Sr3/3 and for the anti-de Sitter (AdS) case

3 See also Ref. [36] for an application of the method to a f (R) theory.

one gets b(r) = −�Ad Sr3/3. The graviton contribution of
(B3) is

�

8πG
= − 1

3π2

2∑
i=1

∫ +∞

E∗
Ei g1 (E/EPl) g2 (E/EPl)

× d

di

√√√√
(

E2
i

g2
2 (E/EPl)

− m2
i (r)

)3

dEi , (B7)

where E∗ is the value which annihilates the argument of the
root and where we have defined two r-dependent effective
masses m2

1 (r) and m2
2(r)

⎧⎪⎪⎨
⎪⎪⎩

m2
1(r) = 6

r2

(
1 − b(r)

r

)
+ 3

2r2 b′(r) − 3
2r3 b(r)

m2
2(r) = 6

r2

(
1 − b(r)

r

)
+ 1

2r2 b′(r) + 3
2r3 b(r)

(r ≡ r (x)) .

(B8)

We refer the reader to Refs. [23,24] for the deduction of these
expressions. It is immediate to recognize that the induced
cosmological constant is no longer a constant but is induced
by quantum fluctuations with the help of Eq. (B7). Therefore,
if we make the following identification:

ρ(r) = �(r)

8πG
(B9)

we have the possibility to probe different energy-density pro-
files induced by quantum fluctuations of the gravitational
field itself. To be more explicit, we choose [24]:

g1 (E/EPl) =
(

1 + β
E

EPl
+ δ

E2

E2
Pl

+ γ
E3

E3
Pl

)
exp

(
−α

E2

E2
Pl

)

g2 (E/EPl) = 1. (B10)

We can recognize two relevant cases:

(a) m2
1(r) = −m2

2(r) = m2
0(r),

(b) m2
1(r) = m2

2(r) = m2
0(r).

When condition (a) is satisfied, this means that we are
describing the Schwarzschild, Schwarzschild–de Sitter and
Schwarzschild–anti de Sitter cases in proximity of the throat.
On the other hand, when condition (b) is satisfied, we are
describing the Minkowski, de Sitter and anti-de Sitter cases.
For our purposes, the case (b) is the most significant, espe-
cially if we fix our attention to the de Sitter case which, in
static coordinates is simply described by b(r) = �d Sr3/3.
In this situation the effective masses of (B8) take the form

m2
1(r) = m2

2(r) = 6

r2 − �dS, r ∈ (0, rC ] (B11)
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with rC = √
3/�dS . Defining the dimensionless variable

x = L P

r

√
6 − �dSr2, (B12)

we can use the following expression:

�

8πG E4
P

= C1+C2x2+
[

C3 − 1

8π2 ln(x2α/4)

]
x4+O(x5),

(B13)

which is valid for x � 1. Assuming r 
 L P and �r2 =
O(1), one gets at the leading order

�

8πG E4
P

= C1 + C2

(
L P

r

)2 (
6 − �d Sr2

)

= C1 − 6C2�d S L2
P + 6C2

L2
P

r2 , (B14)

where

C1 = −8α3/2 − 6
√

παβ − 15
√

πγ − 16
√

αδ

8π2α7/2 , (B15)

C2 = +4α3/2 + 2
√

παβ + 3
√

πγ + 4
√

αδ

8π2α5/2
(B16)

and

C3 = −α3/2 − 2γEα3/2 + 2
√

παβ + √
πγ + 2

√
αδ

16π2α3/2 .

(B17)

Because of the identification (B9), we have obtained a Dev–
Gleiser-like energy-density profile.
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