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Introduction

Resveratrol 1 (Fig. 1) (RVT) is a naturally occurring stilbene 
derivative that possesses three phenolic groups, two of which are 
part of a resorcinol structure. Most work involves the naturally 
occurring trans isomer. It is present in various dietary sources, 
including grapes, peanuts, plums and many plants. Much 
recent attention was paid to the “French paradox” (see below) 
which provides evidence for the beneficial effects of red wine. 
Investigations pointed to RVT as the principal therapeutic agent. 
The literature contains voluminous reports on the wide variety 
of properties by the phenol. Most attention has been devoted to 
anticancer, anti-aging, anti-inflammatory, cardioprotection and 
countering of insults to the central nervous system. Articles doc-
ument a large number of mechanisms involved in the biological 
activity. One of the most important is the antioxidant (AO) attri-
bute. Considerable literature correlates the presence of reactive 
oxygen species (ROS) to oxidative stress (OS) leading to large 
numbers of adverse effects suffered by body constituents. Hence, 
it is reasonable to assign a widespread protective role to RVT as 
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an AO. Other mechanisms in which the drug is involved include 
cell signaling, apoptosis and gene expression. The dichotomy of 
the AO RVT also exhibiting pro-oxidant action is addressed and 
rationalized. Another important aspect is the finding that RVT 
has been shown to produce no adverse effects, even when con-
sumed in high concentrations.1 Hence, it exhibits good protec-
tion for use in therapy for various diseases.

Reviews demonstrate the widespread involvement of 
ROS-OS in cancer and toxicity associated with many illnesses. 
The preponderance of bioactive substances and their metabo-
lites incorporate ET functionalities, which, we believe, play an 
important role in physiological responses. The main groups 
include quinones (or phenolic precursors), metal complexes (or 
complexors), aromatic nitro compounds (or reduced hydroxy-
lamine and nitroso derivatives) and conjugated imines or imi-
nium species. In vivo redox cycling with oxygen can occur 
giving rise to OS through generation of ROS, such as hydrogen 
peroxide, hydroperoxides, alkyl peroxides, and diverse radicals 
(hydroxyl, alkoxyl, hydroperoxyl), and superoxide. In some 
cases, ET results in interference with normal electrical effects, 
e.g., in respiration or neurochemistry. Generally, active entities 
possessing ET groups display reduction potentials in the physi-
ologically responsive range, i.e., more positive than -0.5 V ET, 
ROS and OS have been increasingly implicated in the mode of 
action of drugs and toxins (toxicants) e.g., antiinfective agents,2 
anticancer drugs,3 carcinogens,4 reproductive toxins,5 nephro-
toxins,6 hepatotoxins,7 cardiovascular toxins,8 nerve toxins,9 
mitochondrial toxins,10 abused drugs,11 ototoxins,12 pulmonary 
toxins,13 immune system toxins,14 and various other categories 
of drugs and toxins, including human illnesses.15

There is a plethora of experimental evidence supporting the 
OS theoretical framework, including generation of the common 
ROS, lipid peroxidation, degradation products of oxidation, 
depletion of AOs, and DNA oxidation and cleavage products, 
as well as electrochemical data. Of particular relevance in the 
present case is the prevalent beneficial effect of AOs,16 in con-
nection with RVT. This comprehensive, unifying mechanism 
is in keeping with the frequent observations that many ET 
substances display a variety of activities, e.g., multiple drug 
properties, as well as toxic effects. Knowledge of events at the 
molecular level can result in practical application in medicine.
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resveratrol (rvT) is a naturally occurring trihydroxy stilbene 
that displays a wide spectrum of physiological activity. its 
ability to behave therapeutically as a component of red wine 
has attracted wide attention. The phenol acts as a protective 
agent involving various body constituents. Most attention has 
been given to beneficial effects in insults involving cancer, 
aging, cardiovascular system, inflammation and the central 
nervous system. One of the principal modes of action appears 
to be as antioxidant. Other mechanistic pathways entail cell 
signaling, apoptosis and gene expression. There is an intriguing 
dichotomy in relation to pro-oxidant property. Also discussed 
are metabolism, receptor binding, rationale for safety and 
suggestions for future work. This is the first comprehensive 
review of rvT based on a broad, unifying mechanism.
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The parent RVT could act as an AO, similar to the 
familiar phenolic AO vitamin E. Also, the conjugates pos-
sessing free phenolic groups might exert AO effects pro-
vided contact is made with free radical species. However, 
conjugation with highly hydrophilic groups results in 
increased water solubility. An AO analog would be water 
soluble vitamin C.

There is scant literature on oxidative metabolism of RVT. 
In a metabolic study, mention is made of hydroxylation, 
in addition to glucuronidation, sulfation and hydrogena-
tion.23 Oxidation catalyzed by lipoxygenase yields a com-
plex mixture of decomposition products, similar to those 
obtained with hydrogen peroxide.24 Quinones, apparently 
not yet identified, may be formed in low yield, difficult to 
isolate due to reaction with protein nucleophiles. However, 
only small amounts are required to carry out catalytic ET 
with generation of large quantities of ROS.

Antioxidant

The AO property is apparently an important aspect of the physi-
ological activity of RVT, particularly in relation to protection 
from oxidative injury. The literature is extensive and is also cited 
in other parts of this review.

The AO effect of RVT was manifested in blood mononuclear 
cells by a significant reduction in malonaldehyde content, an 
indication of oxidant injury.25 The cells acquired AO capacity. 
Grape RVT may be a useful dietary supplement for minimiz-
ing oxidative injury in immune-perturbed states and human 
chronic degenerative diseases. The effect of RVT on oxidative/
nitrative stress by peroxynitrite, which is a strong physiological 
oxidant and inflammatory mediator, was determined in human 
blood platelets.26 Protein oxidation was significantly inhibited. 
Oxidation of thiol groups in protein and GSH was markedly 
reduced. There was distinct reduction in platelets lipid peroxi-
dation. Various protective effects against peroxynitrite induced 
oxidative/nitrative damages to human platelet proteins and lipids 
were observed. RVT reduces OS induced by cisplatin and Se-Pt 
in human blood platelets, lymphocytes and plasma.27 The AO 
decreased lipid peroxidation and reduced activities of anti-oxida-
tive enzymes, such as SOD, catalase and GSH peroxidase. A sig-
nificant decrease in DNA damage was observed. Another study 
dealt with the antioxidation and free radical scavenging activities 
in the protective effects on ischemia-reperfusion induced injuries 
of rat hearts.28 Scavenging of the stable free radical DPPH was also 
observed. Astringinin, a more water soluble catechol-type analog, 
has a superoxide scavenging ability about 160 times more potent 
than that of RVT, and, hence could potentially be used as an AO 
and cardioprotective agent in biological systems. The efficiency 
of RVT for protecting polyunsaturated fatty acids was higher 
than that of flavonoids during oxidation.29 A related study deals 
with inhibition of human LDL oxidation by RVT.30 The phenol 
exhibits potent AO properties related to anti-inflammatory and 
anti-catabolic effects.31 The findings suggest possible application 
of RVT in therapy of human and animal osteoarthritis.

The protective effects of RVT are demonstrated for cancer 
and insults to many body constituents, including the cardio-
vascular system, central nervous system (CNS), liver, kidney, 
DNA and others. There is a beneficial effect in connection with 
aging, arthritis and inflammation. The drug is a versatile agent 
that also functions through cell signaling and gene expression. 
Other aspects treated are metabolism, receptor interaction, elec-
trochemistry, safety and pro-oxidant behavior. Suggestions for 
future work are offered.

This review demonstrates that the ET-ROS-OS-AO unifying 
theme, which has been successful for many other classes of drugs 
and toxins, can also be applied to RVT, and this comprises the 
first comprehensive, mechanistic review devoted to that agent. 
However, it should be emphasized that physiological activity of 
endogenous and exogenous substances is often complex and mul-
tifaceted. Our objective does not encompass extensive treatment 
of all other modes of action. The citations are usually representa-
tive, rather than exhaustive. A number of original references may 
be found in the reviews and articles cited.

Metabolism

A common metabolic route for phenols involves oxidation to 
catechols or hydroquinones with subsequent conversion to o- or 
p-quinones. An ensuing result is often redox cycling entailing 
oxygen with production of ROS. It is quite significant that finding 
comparable literature for phenolic RVT is difficult. A rationale is 
provided by various metabolic reports. Rapid metabolism leads 
to about 75% excretion in urine and feces in the form of RVT 
glucuronides and sulfates.17 The following conjugates are reported: 
3-O-and 4'-O-glucuronides;18 most abundant, 3-O-glucuronide 
and 3-sulfate;19 main metabolites, monoglucuronide, dihydro 
monosulfate, monosulfate and dihydro RVT;20 3-sulfate,  
4'-sulfate, 3,5-disulfate, 3,4'-disulfate, 3,4',5-trisulfate, 3-gluc-
uronide and aglycone.21 In a study with two cell lines, RVT-3-
sulfate was identified.22 The absence of toxic effects apparently 
results from preferential conjugation, rather than appreciable oxi-
dation to ET quinones.

Figure 1. resveratrol structure. The compound is a stilbene derivative contain-
ing three phenolic groups. Hence, it can exert AO action which evidently plays 
an important role in the protective effects observed against oxidative insult 
involving various body constituents. Metabolic studies show major formation of 
water-soluble conjugates. Many investigations deal with cell signaling pathways 
in the bioactivity. Particular focus has been devoted to antiaging, anti-cancer 
actions, cardio protection and prevention of CNS damage.
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many intracellular signaling pathways which regulate cell sur-
vival and apoptosis. Further insight is provided into the signaling 
network and interaction points. A review discusses the diverse 
molecular targets with focus on those involved in intracellular 
transduction.43 RVT impacts many components of intracellular 
signaling pathways including regulation of apoptosis and cell 
survival, tumor switches involved with kinases, transcription 
factors and their regulators. Evidence indicates that the stilbene 
derivative targets PTPIB to inhibit PDGFR mitogenic signal-
ing.44 RVT mediates its effects through modulation of many 
different pathways by binding to numerous cell-signaling mol-
ecules.45 The compound activates various transcription factors, 
e.g., NFkB, STAT3, HIF-1a, b-catenin and PPAR-g, suppresses 
the expression of antiapoptotic gene products, inhibits protein 
kinases, e.g., src, P13K, JNK and AKT, induces AO enzymes, 
and modulates cell cycle regulatory genes. The polyphenol holds 
promise against numerous age-associated diseases. An investiga-
tion was made of signaling pathways influenced by RVT involved 
with apoptosis and growth control in leukemia.46 Apoptosis is 
induced by modulating three different signaling pathways that 
regulate cell death and survival. The survival signaling pathway 
Notch is inhibited. The phenol inhibits P13K/Aket and activates 
Gsk/3b. Pro-apoptotic proteins p53 are also influenced. RVT 
reduces paclitaxel-induced apoptosis by modulating cell signal-
ing pathways.39

Since the literature on cell signaling involving RVT is volumi-
nous, additional, representative material is provided in abbrevi-
ated form. The organ or action is indicated along with the cell 
signaling involved in Tables 1–5.

In relation to mechanism at the basic level, recent proposals 
focus on ROS and electrochemistry. Cell signaling is known to 
be importantly involved in various aspects of biological function, 
including normal processes, therapeutic drug action and toxicol-
ogy. More than 10 years ago, ROS attracted attention in rela-
tion to cell signaling. Since then several books103,104 and a book 
chapter105 have addressed this aspect. A recent review has further 
insight.106 Evidence has accumulated that ROS, such as hydro-
gen peroxide, superoxide, and the hydroxyl radical, are important 
chemical mediators that regulate the transduction of signals by 

RVT could be a useful drug for the protection of 
liver cells from OS induced damage.32 The phenol is 
of interest for its beneficial properties in a variety of 
pathologies, including neurodegeneration.33 Many of 
the beneficial effects have been attributed to the abil-
ity to reduce OS. Bioactive phenols, such as RVT, can 
quench ROS and thus avoid pro-oxidative damage.34 
This highly effective protection against OS damage 
suggests that this AO property constitutes the major 
part of preventing tumor induction. An investigation 
was made of the mechanism of cardioprotection by 
RVT in ischemia-reperfusion.35 The protection of car-
diomyocytes from injury occurs partly by suppression 
of superoxide levels via AO action.

The mechanism of phenolic AO action has been 
addressed in a recent book.16 A key step is stoppage of 
radical propagation by formation of a resonance-stabi-
lized peroxy radical, shown in Figure 2 for RVT. A report deals 
with mechanism and efficiency of AO action involving RVT and 
analogs.36 The comparison of the radical-scavenging effects of 
RVT and its analogues trans-4-hydroxystilbene and trans-3,5-
dihydroxystilbene revealed that the two analogs showed almost 
the same effect and were more efficient than trans-3,5-dihydrox-
ystilbene. These findings indicate greater radical-scavenging 
activity of the trans-resveratrol para-hydroxy group than its meta-
hydroxy groups. Other data showed great similarity between 
RVT and trans-4-hydroxystilbene which seems to confirm that 
the para-hydroxy group of trans-resveratrol scavenges free radi-
cals more effectively than its meta-hydroxy groups. The results 
can be rationalized by the greater delocalization possible for the 
radical from the para hydroxy group vs. the meta analog. Another 
important aspect entails termination of radical propagation by 
the phenoxy radical. This favorable aspect involves conversion to 
non-radical product by C-C coupling.16 This process is reported 
to occur with the radical derived from RVT.37 Trapping of the 
radical occurs by dimerization yielding trans-delta-viniferin 
which is unable to chain propagate.

Cell Signaling

An investigation was made of the regulatory effect of RVT on 
signal transduction pathways in leukemia.38 Data indicate reduc-
tion in activation of JAK1/STAT3 tyrosine phosphorylation, as 
well as downregulation of expression. Evidence indicates activa-
tion of the Raf/Ras cascade and reversal of the sustained phos-
phorylation of JNK/SAPK.39 The study deals with the effect of 
RVT on signal transduction pathways involved in paclitaxel-
induced apoptosis. The phenol inhibits phorbol ester activa-
tion of JNK and PKC.40 The inhibition may have a therapeutic 
potential, perhaps providing a novel means of controlling growth 
and invasiveness of tumors. A report deals with RVT modula-
tion of phorbol ester-induced signal transduction pathways 
leading to elevated COX-2 expression.41 Other signals involved 
are NFkappaB, MAP kinases, AP-1 and protein kinase (ERK). 
An overview summarizes RVT modulation of signal transduc-
tion in apoptosis and cell survival.42 There is interference with 

Figure 2. resveratrol radical. The illustrated phenoxy radical is generated during 
the widespread AO action of rvT. The radical formation is facile due to the high 
degree of resonance stabilization afforded by this species. Hence, energetically, 
this radical is favored over the ones that would be formed from the meta-hydroxy 
resorcinol group in the other ring. radical propagation is terminated by C-C radical 
coupling leading to a more stable dimer.
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modulating protein activity via redox chemistry. Authors have 
proposed that ROS have been conserved throughout evolution as 
universal second messengers. Nearly every step in signal transfer 
is sensitive to ROS, which can function as second messengers 
in the activation of transcription factors. Various types of radia-
tion, which are generators of ROS, also influence cell communi-
cations. Since the messengers must possess appreciable lifetime 
in order to migrate, a certain degree of stability is required. For 
example, the hydroxyl radical would not be a messenger due to 
its extremely high reactivity with its resultant very short time 
existence, although it would generate messenger radicals. Likely 
candidates include superoxide and resonance stabilized peroxyl 
radicals. Others would be stable ROS arising from AOs, such as 
vitamin C, vitamin E and flavonoids. Members can be envisioned 
from the reactive nitrogen species (RNS) category. NO is a well 
known radical that plays an important role in cell signaling. In 
relation to theory, a puzzling aspect is its relatively short life time. 
Perhaps more stable complexes are involved. Other nitrogen radi-
cals can play a role. Important candidates comprise small pro-
teins possessing redox groups.

In effect, cell signaling can be regarded as proceeding via a 
long redox chain in which the standard parameters of initiation, 
propagation and termination pertain, involving omnipresent 
conduit species with unshared electrons. A series of relay sta-
tions may be operative. Based on the redox chain framework, the 
second messenger might be superoxide formed by redox process 
involving oxygen and a second messenger electron from an ET 
functionality in the receptor site. At the termination of the initial 
journey, radical character would be transmitted to a site, mobile 
or stationary, e.g., a redox amino acid (AA) side chain acting as 
a relay (transfer station), that could then pass on (initiate) radi-
cal character to a third messenger. These types of interactions, 
widespread in AA chemistry, usually involving electron and/or 
hydrogen abstraction to generate radical species, are treated in 
a review.107 The numerous redox moieties in anchored proteins 
might fall in the relay category. There has been dramatic increase 
in attention devoted to free radical species in cell signaling, 
although the bulk of the signal transduction literature pays no 
attention to this aspect.

Electrochemistry also appears to play a role in cell signaling, 
including electron transfer and electrostatics. Discussion is pres-
ent in recent reviews on receptor-ligand activity,108 phosphates 
and sulfates109 and metal cations.110

Receptors

The literature on the RVT receptor is very limited. RVT is a phy-
toestrogen which binds to and activates estrogen receptors that 
regulate the transcription of estrogen-responsive target genes.111 
The effect on gene expression appears to correlate with chemo-
prevention. The drug regulates mRNA expression of several 
genes involved in cell cycle control, apoptosis, metastasis, cell-
cell adhesion and receptor signaling pathways. A report shows 
RVT binds to the sulfonyl urea receptor.112 Electrophysiological 
measurements revealed that the bound ligand is a blocker of pan-
creatic SUR channels and enhances apoptosis. RVT is known to 

Table 1. Apoptosis

Cell signaling agent Organ or action Reference

(1) MAP kinases
Human breast cancer cell 

MCF-11
47

(2) Fas redistribution in 
the rafts

Colon cancer cells 48

(3) Ceramide Breast cancer cells 49

(4) STAT3 and nuclear 
factor-kB-regulation

Human multiple myceloma 
cells

50

(5) Protein kinases and 
p38 kinase

Antitumor activity 51

(6) Src and Stat3 Breast cancer 52

(7) TrAiL-induced Mitochondria 53

(8) Phosphorylated Akt 
and Caspace-9

MCF7 human breast cancer 
cells

54

(9) Cdc42 activation of 
ASK1/JNK

Human leukemia cancer cells 55

(10) Phosphatidylinositol 
3'-kinase Akt

Human prostate cancer cells 56

(11) wAF-1/p21-
 mediated G1 phase

Human epidermoid 
Carcinoma A431 cells

57

(12) AMPK Colon cancer cells 58

(13) JNK and c-JUN/AP-1 Prevented HNe-induced JNK 59

(14) c-Myc
Downregulation in human 

medulloblastoma
60

(15) erK
initiates p53 dependent 

 apoptosis via avb3
61

(16) Caspase-3 Human breast cancer cell 62

(17) CD95 Human tumor cells 63

(18) TNBS inhibiting Notch pathway 64

(19) p53 and P13K/Akt
Human T-cell acute 

 lymphoblastic leukemia 
MOLT-4 cells

65

Table 2. Cancer

Cell signaling Organ or action Reference

(1) NFkB and Ap-1 Genes 66

(2) p38, MAPK, p53 and 
p21

Cancer cells 67

(3) NFa mediated MMP-9 
expression

Hepatocellular carcinoma 
cells

68

(4) TrAiL through gene 
expression

Human melanomas 69

(5) STAT3 Medulloblastoma cell lines 70

(6) MAPK Breast cancer cells 71

(7) c-Jun-NH2-terminal-
kinase

waldenström’s 
 macroglobulinemia

72

(8) NFkB
Cardiovascular, 

 neurological and 
 mitochondrial  dysfunction

73

(9) ATM/ATr-Chk1/2-Cdc42 Ovarian cancer cells 74

(10) rac and Cdc42 Breast cancer cells 75

(11) P13K Cultured muscle cells 76
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phytohormonal actions, anticancer properties via modulation 
of signal transduction (anti-initiation, antipromotion and anti-
progression effects), antimicrobial effects, sirtuin activation, 
possible benefits in Alzheimer’s disease and prevention of pho-
toaging.125 Comparison was made with other AOs used in skin 
care products. RVT consistently retards aging in organisms as 
diverse as yeast, worm, fly and fish.126 It prolonged lifespan and 
delayed the onset of age-related dysfunctions in fish. A review 
focuses on the role of OS and inflammation in cardiovascular 
dysfunction in aging, and on emerging anti-aging therapeutic 
strategies offered by RVT and other polyphenols.127 In a study 
of RVT influence on aging, the drug mitigated the metabolic 
dysfunction of mice fed high-fat diets.128 The effects may be 
mediated partly by activation of a deacetylase enzyme that reg-
ulates several transcription factors and enzymes responsive to 
nutrient availability.

Cancer

Antioxidant. OS arising from ROS appears to be associated with 
many aspects of carcinogenesis.4 For example, there is involve-
ment in three major stages of the process. Literature cited129-134 
indicates that RVT as an AO provides a beneficial effect in alle-
viation of harmful OS. In some cases, there is evidence for sig-
nificant modulation of oxidative imbalance and effect on levels 
of other AOs.

Apoptosis. Apoptosis plays a part in many aspect of biological 
chemistry. There are many articles which deal with it in connec-
tion with cancer. The reports addressed herein do so in connec-
tion with presence of RVT.62,135-149

Cell signaling. This aspect has been addressed in a gen-
eral approach (see above). Cell signaling has played a role in 
many aspects of biochemistry. It is not surprising that consid-
erable attention has been devoted to its relationship with can-
cer. Mechanistic aspects of signaling are summarized in an 
above section. Representative articles are provided that involve 
RVT.43,58,150-158

Nitric oxide. This fascinating gas possesses a wide variety of 
bioactivities, both beneficial and deleterious. Many modes of 
action have been implicated. One review puts focus on electron 
transfer.159 Peroxynitrite formed by reaction with superoxide, 

influence the androgen receptor (AR). AR pathways are involved 
in the development and progression of prostate cancer.113 The 
ability to modulate AR function may contribute to the chemo-
preventive activity of RVT. Also, the drug regulates AR target 
gene expression, at least in part, by repressing AR transcrip-
tional activity.114,115 RVT represses different classes of AR. AR 
upregulates genes at the protein or mRNA level, and may be a 
useful preventive or therapeutic agent for prostate cancer.116 Aryl 
hydrocarbon receptor ligands, such as dioxin and polynuclear 
aromatic hydrocarbons, are environmental contaminants with 
many adverse effects.117 RVT, a competitive antagonist of these 
ligands, promotes receptor translocation to the nucleus and bind-
ing to DNA. The phenol inhibits the transactivation of several 
dioxin-inducible genes. Clinical testing as a prophylactic against 
the insults is warranted.

Electrochemistry

Glucose-induced depolarization was counteracted by RVT.118 
There is inhibition of electrical activity and insulin release from 
insulinoma cells by blockage of voltage-gated Ca channels and 
chloride currents, with inhibition of K (ATP) currents. RVT 
inhibits the electrical activity of paraventricular nucleus neurons 
and exerts neuroprotective effects on central neurons.119 The 
effects of RVT on neuron discharges in rat subfornical organ 
were examined.120 The inhibition of electrical activity may be 
related to blockade of voltage-gated Ca channels and NO promo-
tion. A study demonstrated RVT-induced depression of electri-
cal activity in the rat heart.121 The shortened action potential in 
the left atrium is likely due to activation of K (ATP) channels. 
The importance of electrochemistry in living systems has been 
reviewed recently.122

Aging

The anti-aging property of RVT has enjoyed much attention. 
This aspect is also addressed in many other portions of this 
review. Considerable prior literature identifies ROS with the 
aging process.

An article deals with prevention and treatment of common 
clinical conditions of aging.123 Aging is associated with a variety 
of common conditions, such as cancer, diabetes, cardiovascular 
disease and Alzheimer’s disease. Properties of the phenol associ-
ated with the beneficial aspects include AO, regulation of the 
cell cycle, activation of intracellular pathways, vascular tone, 
oncogene suppression and mitochondrial energy production. 
There is a striking transcriptional overlap of RVT and calo-
rie restriction in the heart, skeletal muscle and brain.124 Both 
interventions inhibit gene expression associated with cardiac 
and skeletal muscle aging, as well as prevention of cardiac dys-
function. RVT fulfills the definition of a dietary compound 
that mimics some aspect of calorie restriction. A review sum-
marizes the anti-aging properties of RVT, including cardiovas-
cular benefits via increased NO production, downregulation of 
vasoactive peptides, lowered levels of oxidized low-density lipo-
protein, cyclooxygenase inhibition, effects on neural tissues, 

Table 3. inflammation

Cell signaling agent Organ or action Reference

(1) NFkB
Chromatin structure 

Glutathione biosynthesis
77

(2) iL-6-induced iCAM-1
gene expression in 

endothelial cells
78

(3) P13KK/AKt/erK 
 dependent interleukin iL-17

Mouse cardiac fibroblast 79

(4) TNFa endothelial cells 80

(5) Cytokine 1L-1b Human chondrocytes 81

(6) NFkB and AP-1 Mouse skin cell 82

(7) TLr-derived
Mouse embryonic 

 fibroblast
83
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plays a role, particularly in toxicity. A sampling of literature is 
presented for the effects of NO along with RVT.135,160,161

Miscellaneous aspects. There are many other approaches  
that deal with the cancer problem, along with involvement of 
RVT.162-174 Examples involve hormones, polyamines, autophagy, 
cathepsin D, DNA synthesis and mitochondria.

Cardiovascular System

RVT displays many bioactivities, such as protection from or 
reduction of the incidence of coronary heart disease, including 
counteraction to ischemia-reperfusion injury.175 It might be that 
there is inhibition of signaling pathways and gene expression 
which involve the disruption of the ERK pathway via attenuation 
of ROS. A review focuses on the role of the phenol on OS and 
inflammation in cardiovascular disease.176 Intake may contribute 
to the “French paradox” involving the unexpectedly low cardio-
vascular morbidity in the Mediterranean population, which may 
reflect the AO and anti-inflammatory effects. Upregulation of 
NO production might also be involved.177 The amount of malon-
dialdehyde, indicative of lipid peroxidation, was decreased in the 
postischemic myocardium indicating a reduction of OS.178 There 
was prevention of superoxide-dependent inflammation response 
induced by ischemia-reperfusion and oxidants.179 AO proper-
ties may be involved. RVT exhibits multifaceted properties in 
preventing various harmful vascular alterations, in addition to 
aging, including cell signaling, enzymatic pathways, apoptosis, 
gene expression and AO action.180 The review discusses the rela-

tionship with ROS and regulation of pro-inflammatory 
genes. Administration of RVT exerts cardioprotection 
against ROS-mediated menadione toxicity.181 Results 
indicate that the drug interferes with the release of 
inflammatory mediators, thus providing biological 
plausibility to the protective effect of moderate red wine 
consumption against coronary heart disease.182 In a 
related study a protective AO effect of RVT in red wine 
was demonstrated against oxidative injury on red blood 
cells.183 Authors proposed that the AO and antiapoptotic 
effects, together with the anti-inflammatory actions, 
are responsible, at least in part, for the cardioprotective 
effects.184 Upregulation of endogenous AOs and certain 
enzymes by red wine RVT in aortic muscle cells leads to 
protection against oxidative and electrophilic stress.185 
Various investigations dealt with the effects on blood 
platelets, such as, action as AO for reduction of OS,186 

Table 4. Heart

Cell signaling agent Organ or action Reference

(1) AMPK H9c2 cardiac muscle cells 84

(2) NFkB endothelial cells of coronary artery 85

(3) p38 and erK/1/2 inhibits eMMMPriN THP-1 cells 86

(4) p38 Mitogen-activated protein kinase Triggers an MAPK path involving erK ½ and P38 MAPK 87

(5) Bcl-2 Adenosine A3 receptor Activation 88

(6) p38 map kinase and P1-3-kinase HO-1 mediated mechanism 89

(7) Akt/protein Kinase B Suppresses angiotensin ii-induced protein 90

Table 5. Miscellaneous

Cell signaling 
agent

Organ or action Reference

(1) NF-e2 HO-1 gene expression 91

(2) Kinase
reduces oxidation of human retinal 

pigment epithelial cells
92

(3) AMPK Antidiabetic 93

(4) Nrf2 Cigarette smoke-mediated OS 94

(5) SirT1 and 
AMP kinase

Human alcoholic liver disease 95

(6) ras
Stimultes sirtuins and extends life 

span
96

(7) Caspase-3 inhibits iL-1b-induced stimulation 97

(8) 3-Kinase/Akt
inhibition of phosphor-inositide-

dependent kinase-1 activity
98

(9) NFkB
Stimulates cytokines iL-6-1b and 

NFkB
99

(10) P13K inhibition 100

(11) AMP kinase Stimulate AMPK in neurons 101

(12) NFkB and 
AP-1

Activate and regulate gene 
 expression

67
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Figure 3. resveratrol quinone. This stilbene quinone would be expected from fac-
ile oxidation of rvT. However, we are unable to find any report of its formation. it 
may be that it is present only in very small amounts making for greater difficulty in 
isolation. Nevertheless, only minor quantities will suffice for the catalytic genera-
tion of large amounts of rOS. Quinone formation is one rationale for the observed 
pro-oxidant effects of rvT involving redox cycling with oxygen leading to rOS.
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injury following trauma hemorrhage are likely due to reduc-
tion of pro-inflammatory mediators.212 Plausible mechanisms of 
anti-inflammatory activity are discussed.213 This property may 
have relevant clinical implications. The drug could alleviate the 

inhibition of superoxide generation, ROS production and lipid 
peroxidation.187 The drug reduces ROS levels, blunts the inflam-
matory pathways and stimulates NO generation.188 There is inhi-
bition of ROS production, e.g., superoxide, hydrogen peroxide, 
singlet oxygen and organic radicals,189 and a variety of actions 
including anti-inflammatory, AO, ROS, scavenger and reduction 
of lipid peroxidation.190

A prior comprehensive review on prevention of cardiotoxicity 
is based on the unifying theme of ET-ROS-OS.8

Central Nervous System (CNS)

Much research supports the thesis that ROS play a role in insults 
to the CNS.9 Since the brain is deficient in defenses by AOs, 
supplementation should be investigated as a potential clinical 
approach. There are many reports demonstrating the beneficial 
effect of RVT in preventing toxic attacks in relation to 
brain neuronal injury in conditions such as Alzheimer’s 
disease and Parkinson’s disease.191-199 In many cases, 
attribution is given to the AO property. In the treatment 
of traumatic brain injury, the drug provided neuropro-
tection by reducing OS.200 There is a related report.201 
Increased OS has been implicated in the mechanism 
of neuronal cell death following cerebral ischemic 
insult.202,203 RVT exerted a protective action, apparently 
as an AO. The phenol is a potent neuroprotective agent 
against diabetic oxidative damage.204 There was reduc-
tion in lipid oxidation product and NO production, as 
well as OS and DNA fragmentation.205 A neuroprotec-
tive effect via free radical scavenging was observed with 
induced Parkinsonism.206,207 Intervention by AOs can 
be a potential beneficial approach in the treatment 
of epilepsy.208 The protective effect of RVT against 
kainic acid-induced convulsions and the attenuation 
of lipid oxidation product suggest the potential use 
of AOs as adjunct therapy in epilepsy. The neuropro-
tective ability of RVT against NO-related toxicity in 
hippocampal neurons is attributed to AO involve-
ment.209 Also, a neuroprotective effect was observed 
in cerebral ischemia.210 There was decrease in prod-
uct from lipid oxidation and induction of an impor-
tant role for NO.

Inflammation

An appreciable amount of research is reported on the 
anti-inflammatory effects of RVT. Evidence shows 
that the condition is associated with the presence of 
ROS.15 Hence, it is not surprising that the powerful 
phenolic AO exerts a beneficial effect. Literature in 
the area is also discussed elsewhere in this review, 
such as in cell signaling.

Some research in this area involves the lungs.211 With human 
airway epithelial cells, RVT inhibits NFkB-protein dependent 
transcription and cytokine-stimulated inducible NO synthase 
cells. The salutary effects of the drug on attenuation of lung 

Figure 5. Mono-hydrogen bonded quinone. This structure is analogous to that in 
Figure 4. Hence, the enol moiety is stabilized.

Figure 6. Diketo-enol tautermer of “3” (Fig. 3). Structure “5” (Fig. 5) shows the stabi-
lization of an enol group by H-bonding, similar to that in “4” (Fig. 4). Since this is now 
less likely for the other enol group. it may tautomerize mostly to the keto form as illus-
trated in “6” (Fig. 6). The ability to redox cycle would be substancially decreased due to 
absence of the quinone functionality. The conjugated a-dicarbonyl structure in “6”  
(Fig. 6) should be capable of electron uptake, but not be a good generator of rOS.

Figure 4. enol tautomer of cyclohexane-1,2-dione. Although the keto 
form is generally favored over the enol tautomer, in the case of “4,” 
hydrogen bonding of enol with the carbonyl results in increased contri-
bution of enol to the equilibrium state.
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NFkB is a pivotal transcription factor involved in the 
activation of the TNFa and IL-b genes.219 Activation 
of NFkB is a feature seen in arthritis patients. RVT 
is a potent and specific inhibitor of TNFa and IL-1b. 
Injection of the drug may protect cartilage against the 
development of inflammatory arthritis.

Liver

Pyrogallol causes hepatotoxicity in experimental ani-
mals.220 RVT reduces the increase in lipid peroxidation 
due to OS by the toxicant. The accompanying decrease 
in GSH, GSH peroxidase and GSH reductase activities 
was significantly attenuated by the phenol. In a study 

of the liver damage with a high-fat diet, RVT reduces oxidized 
LDL and hepatic OS.221 RVT-mediated chemoprevention of 
hepatocarcinogenesis occurred with nitrosamine-initiated car-
cinogenesis.222 The favorable effect was attributed to inhibition 
of cell proliferation and induction of apoptosis. A review docu-
ments evidence for the favorable effect entailing destruction of 
cancer-initiating ROS by AO action (see Introduction). Liver 
damage caused by chronic alcohol consumption was reduced by 
RVT.223 Inhibition of oxidation of polyunsaturated fatty acids is 
proposed as a basis of the hepatoprotective effect. The involve-
ment of OS in the pathogenesis of alcoholic diseases in the liver 
has been repeatedly confirmed.224 Dietary supplementation with 
RVT during ethanol treatment inhibited hepatic lipid peroxida-
tion and ameliorated the reduction in activity of SOD, catalase 
and GSH peroxidase.

Kidney

The protective effect of the AO resveratrol and others was investi-
gated in the kidney of rats treated with the carcinogen KBrO

3
.225 

The 100% increase in 8-OH-dG from oxidation in the renal 
genome DNA was completely abolished by treatment with RVT. 
ROS have been implicated in cell injury that occurs after isch-
emia.226 Products of lipid peroxidation are generated on reperfu-
sion. This oxidation can be prevented by AOs. Resveratrol was 
found to exert a favorable effect in reducing such injury. A related 
report is available.227 An hypothesis was advanced concerning 
the beneficial effects of red wine which contains resveratrol.228 
Evidence suggests a protective role of moderate wine consump-
tion against the onset and progression of renal diseases, based on 
the concept of kidney injury mediated by OS. A similar study 
was reported.229 ROS are observed in gentamicin-induced neph-
rotoxicity.230 Renal lipid peroxidation increases with the toxicant 
alone, which was prevented by the administration of RVT.230 
Addition of the phenol resulted in an increase in the levels of 
AOs. At least a part of the favorable effects was attributed to the 
AO activity.

DNA

RVT reduces nuclear DNA fragmentation.231 Results indicate 
that the drug can act as an antimutagenic/anticarcinogenic agent 

severity of pancreatitis through its anti-inflammatory effects, 
regulation of inflammatory mediators and inhibition of NFkB 
expression.214 Also, there is prevention of superoxide-dependent 
inflammatory response induced by ischemia/reperfusion plate-
let-activating factor or oxidants.215 The phenol decreases the 
degree of inflammation associated with colitis.64 The effect may 
result from the countering of OS and proinflammatory cytok-
ines. Attenuation of ischemia/reperfusion injury in rats is due 
to the ant-inflammatory action of RVT, apparently through a 
NO-dependent mechanism.216

Arthritis

Much evidence supports a role for ROS-OS in arthritis.15 This 
includes oxidative damage to DNA, protein and lipids. In accord 
with involvement of ROS, there is depletion of GSH, ascorbate 
and a-tocopherol. Hence, it is not surprising that the AO RVT 
possesses the potential for arthritis treatment.217 Inflammation, 
which is commonly associated with arthritis, appears to have 
a ROS link.15 Involvement of cell signaling pathways is also 
treated.217 The inflammatory process plays a pivotal role dur-
ing the pathogenesis of osteroarthritis, dominated by catabolic 
processes initiated by pro-inflammatory cytokines, such as IL-1 
beta.218 RVT appears to be an effective anti-inflammatory agent 
that has a chondroprotective capacity through suppression of 
IL-1b, ROS and tumor suppression protein p53 production. 

Figure 7. Di-hydrogen bonded quinone. Perhaps both enols participate in H-
bonding with the carbonyl. Therefore, the quinone structure is maintained.

Figure 8. Quinone metabolite of PCB. This metabolite route to “8” is 
quite similar to that proposed for rvT, which provides support for the 
proposed oxidative metabolism. The monohydroxy metabolite of PCB 
is analogous to rvT.
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decrease in DNA damage.241 An important AO role was assigned. 
Also, an inhibitory effect was observed on the NFkB signaling 
pathway after exposure to metal-induced radicals. Obesity in the 
US has become a serious problem, leading to a sharp increase in 
diabetes. In a controlled study, RVT treatment caused the great-
est and most consistent loss of fat content in animal subjects.242  
The underlying target protein likely involves sirtuin family mem-
bers. A study was carried out involving RVT and Cd-induced 
oxidative damage in mice.243 The phenol and other AOs effec-
tively protect against lipid peroxidation generated by the metal, 
and were able to counter the inhibition of catalase activity. Metals 
are well-known generators of ROS and OS.2-15

Skin cancer is a common illness among humans, due to solar 
radiation.243 A way to reduce the occurrence is by use of photo-
chemopreventive agent, often in the AO category.244 Results sug-
gest that RVT may afford substantial protection against damage 
caused by UVB exposure, which may be mediated via its AO 
properties. RVT reduces colitis, alleviates oxidative events and 
stimulates apoptosis.245 Much attention has recently been paid 
to nanoparticles. RVT-loaded nanoparticles protected cells from 
b-amyloid peptide toxicity by attenuating intracellular OS and 
caspase-3-activity.246 A review addresses various approaches to 
immunomodulation.247 Disruption of the accompanying proin-
flammatory cascade is by various therapies, including RVT, 
involving various mechanisms, including AO effects and altera-
tions in cell signaling.

Pro-Oxidant

The literature contains extensive documentation for AO action by 
RVT as presented above. However, there is an apparent dichot-
omy based on an appreciable number of reports providing evi-
dence for pro-oxidant action. The following material addresses 
these references, followed by rationale for the dichotomy.

Compounds, such as RVT, acting as AOs to lipids often have 
a pro-oxidant effect on DNA or protein.248 Free radicals derived 
from the phenol appear to mediate between anti-and pro-oxidative 
actions. Dietary polyphenols with phenol rings are metabolized by 
peroxidase to form pro-oxidant phenoxy radicals which are suf-
ficiently reactive to co-oxidize GSH or NADH accompanied by 
extensive oxygen uptake and ROS formation.249 The experimen-
tal conditions are important for the pro-oxidant activity, causing 
oxidative DNA damage that may lead to cell cycle arrest or apop-
tosis.250 At certain concentrations, RVT elicits pro-oxidant proper-
ties as evidenced by an increase in intracellular superoxide.251 The 
pro-oxidant effect is further supported by other observations. An 
unusual study reveals opposite effects on rat tissue lipid peroxida-
tion.252 With a dark-light cycle, RVT behaved as an AO during the 
dark span, and as a pro-oxidant during the light span, comprising 
further support for the importance of conditions.

Discussion of the AO-pro-oxidant aspect is available for other 
well-known AOs, such as vitamins E and C, flavonoids and thi-
ols.16 For the phenols, a pro-oxidant appears to involve conver-
sion to a quinone capable of ET-ROS-OS. A similar route would 
apply to RVT in relation to oxidation to the stilbene quinone “3”  
(Fig. 3). However, we have not found such a report (see Metabolism 

by preventing DNA damage which plays a pivotal role in the car-
cinogenic activity of many genotoxic agents. The phenol reduced 
DNA damage induced by Cr (III) based on reduced 8-OH-dG 
formation.232 The protective effect against Cr-induced carcino-
genesis may relate to the free radical-scavenging ability. The geno-
protective effects of the drug were investigated under conditions 
of OS induced by hydrogen peroxide in glioma cells.233 Due to 
attenuation of oxidative DNA damage, RVT may be important 
in protecting against DNA fragmentation and oxidation arising 
from OS. In a study of Alzheimer’s disease, red wine micronutri-
ents were found protective. The phenols reduced ROS produc-
tion, prevented DNA fragmentation and protected the cellular 
membrane from oxidative damage.

Genes

RVT significantly blocked the expression of genes related to the 
NFkB family.234 The phenol has a significant modulatory effect 
on the NFkB signaling pathway and an important AO role 
that may help explain the cardioprotective effects attributed to 
long-term moderate red wine consumption. Through its phytoe-
strogenic properties, RVT regulates the expression of hormone-
dependent genes in breast cells and provides a protective effect 
against several types of cancer, notably breast cancer.111 The drug 
modulates the expression of genes in a pattern dependent on the 
state of estrogen receptors. Gene expression is regulated via the 
estrogen receptor pathway and also an undetermined pathway. 
The effects of RVT on circadian clocks of Rat-1 cells were ana-
lyzed.235 A dose, which did not exhibit toxicity, regulated the 
expression of various clock genes. Relevant material is also pres-
ent elsewhere in this review.

Other Body Constituents

In addition to the extensive studies presented in the above sec-
tions, there are many reports of the beneficial effects of RVT 
on other body constituents under stress. Much of the salutary 
responses can be attributed to AO action under OS. RVT limited 
dysfunction of rat brain mitochondria in an anoxia-reoxygenation 
model.236 At least three mechanisms were proposed, including 
AO properties. Data indicate that the drug may have application 
in the treatment of bronchial asthma, accompanied by inhibi-
tion of increases in cytokinases.237 A review provides evidence 
for AO protection of various pulmonary disorders.13 The phenol 
exerted beneficial activity against alcohol injury, e.g., peroxida-
tion of lipids.238 The adverse effects, countered by AO action 
involve ROS and OS. Oxidative stress entailing rapid degenera-
tion of endothelial cell function, is deeply involved in systemic 
sclerosis pathogenesis.239 There is potential for RVT as an AO 
for reverting endothelial dysfunction, scavenging lipid peroxides 
and reducing hypoxia-reperfusion injury. Examination revealed a 
significant improvement in ovarian morphology in RVT-treated 
rats, compared with the ischemia-reperfusion group.240 Drug 
administration reduced lipid peroxide products and countered 
the reduction in GSH levels. The phenol exerted a favorable influ-
ence against lipid peroxidation in cell membranes, including a 
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quinone “8” (Fig. 8) stage. Compound “8” (Fig. 8) is known to 
redox cycle with formation of ROS which appear responsible for 
some of the toxicity.254

An alternate interpretation exists for the pro-oxidant behav-
ior. Phenols, including RVT, form complexes with metals. In 
the case of heavier metals, the favorable reduction potential can 
lead in vivo to redox cycling involving oxygen with formation of 
ROS leading to OS.2-15 In the presence of Cu ions, DNA dam-
age by RVT occurs which is attributed to oxidative interme-
diates formed by redox cycles involving the metal complex.255 
Similar studies were made.256-261

Future Work

A principal aspect of metabolism (see above) involves forma-
tion of conjugates. It would be helpful to ascertain whether or 
not the mono- and di-derivatives with at least one free phenolic 
group possess AO properties. A careful analysis of metabolic 
products from oxidation should be performed with the aim of 
detecting the proposed quinone. Authentic material would be 
synthesized for comparison. Also, it could be illuminating to 
oxidize 1 at the carbon between the resorcinol hydroxyl groups 
and determine the structure in relation to the hypothetical qui-
none. Computational studies should cast light on the structure 
of “3” (Fig. 3).

Other Aspects

Related articles are available, including ones dealing with 
antioxidants.262-271
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section). It may be that the quinone has not yet been isolated due 
to formation in small quantities with much being tied to protein by 
nucleophilic attack (see Future Work).

A superficial approach might lead to assignment of quinone “3” 
(Fig. 3) as the product from oxidation of “1.” However, application 
of basic principles of organic chemistry could lead to different con-
clusion. Compound “3” (Fig. 3) is a conjugated dienone incorpo-
rating two enol groups. Generally, at equilibrium, the keto state is 
energetically favored over the enol tautomer. An exception is cyclo-
hexane-1,2-dione for which enol “4” (Fig. 4) makes a substantial 
contribution due to enol stabilization by hydrogen bonding with 
the carbonyl.253 It is reasonable to apply this reasoning to “3” (Fig. 
3) as shown in structure “5” (Fig. 5). On the other hand, such inter-
action makes similar H-bonding by the other enol less likely. As a 
result, the keto form shown in “6” (Fig. 6) could prevail. Therefore, 
the quinonoid structure capable of redox cycling with generation of 
toxic ROS would not pertain. This scenario is in line with the very 
low toxicity exhibited by RVT.1 Another possibility is H-bonding 
involving both enol groups, as illustrated in “7” (Fig. 7), or conver-
sion to an ET o-quinone via oxidation of adjacent hydroxyl groups 
in the tetrahydroxy precursor of “3” (Fig. 3).

It should be recognized that “6” (Fig. 6) could also be capable 
of electron uptake, but less efficiently than the related quinone. 
Compound “6” (Fig. 6) is a conjugated analog of diacetyl which 
is electron affinic, but exhibits negligible ability to generate sig-
nificant OS via ROS.253

The placement of the hydroxyl groups apparently is beneficial 
due to phenolic AO action, but largely avoids the damaging redox 
cycling that often results from quinone generation via oxidation. 
This represents another example of a clever strategy employed in 
the biochemical domain.

Analogy can be made to metabolism of PCBs, in which oxi-
dation proceeds via mono- and di-hydroxyl derivatives to the 
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