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ABSTRACT 

We derive an effective continuum model to describe the nucleation and subsequent growth 
of a gas phase from a supersaturated liquid in a porous medium, driven by heat transfer. 
The evolution of the gas results from the reduction of the system pressure at a constant 
rate. The model addresses two stages before the onset of bulk gas flow, nucleation and gas 
phase growth. The problem arises in internal steam drives, for example of the type recently 
discussed in blowdown experiments in carbonate rocks (Dehghani et al., 1997, Dehghani and 
Kamath, 1999). 

Important quantities characterizing the process, such as the fraction of pores that host ac- 
tivated sites, the deviation from thermodynamic equilibrium, the maximum supersaturation 
in the system and the critical gas saturation depend crucially on the nucleation character- 
istics of the medium. We use heterogeneous nucleation models in the form of pre-existing 
gas, trapped in hydrophobic cavities to investigate the nucleation behavior. Using scaling 
analysis and a simpler analytical model we show that the relevant quantities during nucle- 
ation can be expressed in terms of a simple combination of dimensionless parameters, which 
include rate effects. The subsequent evolution of the gas phase and the approach to the 
critical gas saturation are also described using numerical and analytical models. 

The theory predicts that the maximum supersaturation in the system is a weakly increas- 
ing function of the decline rate. This function depends sensitively on the probability density 
function of the nucleation cavity sizes. It also predicts that the final nucleation fraction, thus 
the critical gas saturation, is a power law of the decline rate. The theory for both nucleation 
and phase growth is then compared with available experimental data and a good match is 
obtained by appropriate fitting of the nucleation characteristics of the medium. 

V 





I. INTRODUCTION 

The liquid-to-gas phase change in a porous medium and the subsequent growth of the gas 
phase is encountered in a plethora of applications driven by mass or heat transfer. Typical 
examples include the solution gas-drive process for the recovery of oil from oil reservoirs, 
boiling in porous media, thermal methods for oil recovery, nuclear waste disposal, soil reme- 
diation and others. In this report, we examine the gas phase growth from a supersaturated, 
slightly compressible, liquid in a porous medium, driven by heat transfer and controlled by 
the application of a constant-rate decline of the system pressure. A characteristic example 
of such a process occurs dyring cyclic steaming for the recovery of oil from low permeability 
reservoirs through hydraulic or natural fractures (Dehghani et al., 1997). During injection 
and soaking, steam condenses in the fracture and hot water imbibes into the matrix. During 
production, the pressure of the system constantly declines, and when it falls sufficiently be- 
low the vapor pressure, it results in the appearence of steam in the matrix (in-situ boiling). 
The in-situ production and subsequent growth of the steam phase inside the matrix are of 
interest because they result in expelling additional oil from the matrix. 

Dehghani et al. (1997) conducted a series of core experiments in order to study the effect 
of in-situ steam drive on fluid displacement in porous media. Subsequently, Dehghani and 
Kamath (1999) conducted experiments with a vuggy carbonate core using a recombined oil 
to study the contribution of the various recovery mechanisms (thermal expansion, thermally 
enhanced solution gas drive, dry distillation, and in-situ steam drive) during steam injection, 
followed by pressure reduction. 

While of interest both from theoretical and applied viewpoints, a more fundamental 
understanding of the basic aspects of this process has not been obtained, to our knowledge. 
It is the objective of this report to bridge this gap, by providing a model both of the nucleation 
and of the gas-phase growth periods. Internal steam drive has many similarities with the 
process of solution gas-drive. They both describe the evolution of a gas phase due to the 
increase of the supersaturation of the system, through a relatively slow pressure decline. 
Nucleation and subsequent phase growth play a key role in both processes. An important 
difference is that solution gas drive involves a binary system and it is controlled by mass 
transfer, while internal steam drive is fundamentally a single-component system, controlled 
by heat transfer. In two recent publications (Tsimpanogiannis and Yortsos, 2001a,b) we 
developed a comprehensive effective continuum model to model solution gas-drive under 
various conditions. In this report, we extend that approach to the specific problem of internal 
steam drive. 

As discussed in Tsimpanogiannis and Yortsos (2001a,b), the effective continuum model 
is best suited during the early part of the process, where nucleation and the early stages of 
bubble growth are dominant. The latter two, particularly the nucleation sequence, are the 

1 



main areas of interest of this report. We focus on the effect of the nucleation characteristics 
on the maximum supersaturation and the nucleation fraction (and the critical gas saturation) 
and provide an analysis of the effect of various parameters, such as pressure decline rate, 
on these quantities. Results for the gas phase growth following the conclusion of nucleation 
are also presented. It  is assumed that the pressure decline rates are sufficiently slow so 
that inertia and spatial gradient effects on bubble growth are negligible. Under the same 
conditions, the model can in principle be applied to describe the onset of boiling in porous 
media, driven by the application of a constant heat flux. This application is left for a future 
study, however. 

At later stages of bubble growth, where the various gas clusters compete with each other 
through a combination of pore geometrical and topological effects, the present continuum 
model will have obvious drawbacks. In the latter stages, a pore-network model should 
instead be used. Pore-network models of bubble growth in single-component systems, driven 
by heat transfer w ere developed by Satik and Yortsos (1996). In principle, these contain all 
the necessary physics for a rigorous modeling of the process, particularly when significant 
spatial gradients develop. Such an effort can be pursued in parallel. 

The report is organized as follows: First, we formulate the problem closely following 
Tsimpanogiannis and Yortsos (2001a)b). A scaling analysis of the resulting equation allows 
to recast the problem in a more useful form) to be used for direct predictions. The numerical 
results are analyzed. It turns out that for their interpretation, a simplified model of the 
nucleation and growth periods can be developed. We use the simpler model to obtain 
expressions for the maximum supersaturation as a function of geometric, thermodynamic 
and process parameters. This allows us to obtain useful relations for the dependence of 
the final nucleation fraction (and the critical gas saturation) on process parameters. The 
theoretical predictions are then compared against experimental results. 

11, MATHEMATICAL FORMULATION 

Consider an effective porous medium occupied by a single-component liquid. At the 
beginning of the process, the system is subcooled at the initial temperature, To, and pressure, 
Po, where Po > Psat(To) and PSut(T)  denotes the equilibrium vapor pressure at temperature 
T. In the practical application discussed by Dehghani and Kamath (1999) this state is 
achieved by steam injection, followed by steam condensation. Then, the pressure of the 
system is slowly decreased. Nucleation and subsequent bubble growth are driven by the 
continuous increase in the supersaturation, Psu'(Tm) - P2(1), where T, is the far-field system 
temperature and subscript I denotes liquid. To describe phase equilibria, we will assume a 
Clausius-Clapeyron equation 
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where R, is the ideal gas constant and L,  the molar latent heat of vaporization. Equation 
(1) does not include Kelvin vapor pressure lowering effects. However, these can be readily 
incorporated by replacing L,  in (1) by L,  + Pcv,, where Pc is the capillary pressure and v, 
the molar liquid volume. More complex thermodynamics can certainly be incorporated (Reid 
et al., 19861, but the salient features are manifested with the simpler model (1). Conversely, 
at a specified liquid pressure, Pl, a degree of superheat is present in the system, given by the 
difference 

where Tsu'(Pl) denotes the equilibrium temperature corresponding to Pl. The change in 
supersaturation (or superheat) is here driven by a constant rate of pressure decline. As 
mentioned, we will proceed with the assumption that the rate of decline is sufficiently slow? 
so that inertia effects as well as effects of spatial gradients (gravitational and/or viscous) 
are negligible. This requires sufficiently small Rayleigh, Bond, capillary and Peclet num- 
bers. Instead, emphasis will be placed on nucleation and on the effect of the increase of 
supersaturation on the growth of the gas phase. 

a. Nucleat ion 

As the liquid pressure declines, nucleation sets in. Yortsos and Parlar (1989) reviewed 
the gas-liquid phase change in porous media and concluded that heterogeneous nucleation is 
the most plausible mechanism under sufficiently slow rates of supersaturation. In one model, 
nucleation occurs when a gas bubble, either pre-existing or nucleated inside a cavity at the 
pore walls? becomes unstable and detaches or otherwise occupies the host pore body. This 
type of mechanism is in agreement with visual observations from micromodel experiments in 
solution gas drive (Li and Yortsos, 1995a, El Yousfi et al., 1991, 1997, Bora et al., 2000 and 
Dominguez et al., 2000) and will also be assumed here. In the cavity model, the activation 
of a nucleation site occurs when the trapping capillary forces are overcome for the first time. 
Then, the following condition is satisfied between the radius of the nucleation cavity, rc ,  and 
the (local) supersaturation, 

27 COS 6 * 
rC 

Pc = P"""T,) - P@) (3)  

where O* is the contact angle (0 < 0" < 7 ~ / 2 ) .  In the present model, the onset of nucleation 
is not kinetically related to the degree of supersaturation, as for example, in conventional 
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approaches for solution gas drive (Firoozabadi and Kaschiev, 1997), but rather depends on 
the size distribution, cy,(r,), of the nucleation cavities. 

Consider, now, the activation of nucleation sites. With the decrease in the liquid pressure, 
the right-hand side of (3) increases, eventually becoming positive. Then, various cavities 
satisfying (3) become activated and their corresponding host pore bodies are occupied by 
gas. At any time, the current nucleation fraction, fq, defined as the number fraction of pores 
that contain sizes which have been activated? is 

" fq  = l; 
where rC is an implicit function of time, through ( 3 ) .  Equation (4) implies a zero nucleation 
fraction at zero supersaturation (rC + ca) and a nucleation fraction of one at infinite su- 
persaturation ( rc  + 0). As elaborated in Tsimpanogiannis and Yortsos (2001a), the cavity 
size distribution, cy,? pertains only to the largest cavity in any given pore (as this cavity will 
be activated first). Also, equation (4) slightly overestimates the true nucleation fraction, 
since pores containing sites to be activated later, may already be occupied by gas, due to 
the growth of gas clusters from neighboring pores. However? in most cases, nucleation termi- 
nates well before gas bubble growth has occurred to any substantial degree (S, << l),  thus 
(4) should be an excellent approximation. 

It is apparent that f q  will have a different dependence on parameters, depending on the 
assumed cavity size distribution. In the present report, we will consider distribution of the 
Rayleigh type, 

where r,* is a characteristic (here the mean) cavity size, as well as a stretched-exponential 

f q  = exp (-2) orZn 

where n is a positive exponent and 0 is a measure of the 
influences significantly the results to be obtained, as will 

As long as the level of supersaturation increases with 

variance. The type of distribution 
be demonstrated below. 
time, the right-hand-side of equa- 

tion (5) also increases, implying that additional sites become activated, and the nucleation 
fraction continuously rises. This is consistent with experimental evidence of sequential nucle- 
ation reported by Satik and Yortsos (1996). After the supersaturation reaches a maximum 
(local or global), equation (5) predicts a decreasing f q ,  which is unphysical. Therefore, in 
segments of decreasing supersaturation the nucleat ion fraction is assumed const ant. When 
the supersaturation goes through a global maximum, it signals the end of the nucleation pe- 
riod, in which case the fraction of pores ultimately activated, . fg j?  will be given by equations 
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( 5 )  or (6) at the time of the maximum supersaturation. We note that in typical solution 
gas-drive experiments, fQf is very small, of the order of lo-' - 

Through this process, nucleation centers are activated sequentially, giving rise to evolving 
gas clusters, which grow by heat transfer from the liquid to the gas. Sequential nucleation 
results into clusters of different ages (the time passed since a particular class of gas clusters 
has been nucleated/activated). Let w ( T )  be the number density of clusters nucleated per 
total number of pores. Then, w(-r)dr is the number of new clusters per total number of 
pores that become activated in the time interval between T and T + dT. Evidently, 

L;.'(T)dT = dfq 

This relation will be used below to simplify the expressions for the gas phase growth. 

b. Gas phase growth 

During the growth of the gas phase we can roughly distinguish two periods, one in 
which the growth is within single pores and another corresponding to gas clusters spanning 
several pores (Tsimpanogiannis and Yortsos, 2001a). The first period extends throughout 
and following the nucleation stage, the second is the later stage of growth. In either, growth 
is driven by heat transfer. In general, different clusters compete for the available heat in the 
liquid, the relative heat transfer rates depending on their geometry and relative position. 

In the absence of competition between adjacent clusters and under the assumption that 
heat transfer is conduction-controlled (namely that the Peclet number is sufficiently small), 
an isolated cluster j grows at a rate which is proportional to its effective radius, Rj(1, T I ,  and 
the driving force T, - Tsat(Pl) where T,  is the far-field temperature. This is true even for 
ramified fractal clusters, as was verified by Satik and Yortsos (1996) for a percolation cluster. 
Assuming that the gas is ideal, we can write the following mass balance for a growing cluster 

where Mw is the molecular weight of the gas, Tg the temperature in the gas phase, r:.j the gas 
cluster volume, k , f f  an effective conductivity and L,  the mass latent heat of vaporization 
( L ,  = ,CUMw). In equation (8) we have also included the capillary pressure, Pc, which in 
the application of interest can be significant. To simplify, we linearize the phase equilibria 
around Po, 

and take without significant loss Tg E To. 
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The gas volume takes a different expression in the two different periods (Tsimpanogian- 
nis and Yortsos, 2001a). For growth within a single pore, 4 FZ I& (2) , where & is a char- 
acteristic cavity volume (defined here as $ $ r ~ , + ~ ) .  For growth of a cluster spanning several 

pores, we have 4 FZ A*V, (2) , where V,  is the average site volume, rt is a characteristic 
pore body size, D j  is the mass fractal dimension, equal approximately to 2.5 for a 3-D clus- 
ter, and A* is a dimensionless geometric prefactor. To capture both periods with the same 
equation we write 

3 

D f  

with the understanding that Df varies between 3 and 2.5, and A between 1 and A = 
D f  (5) , during the nucleation period and growth periods, respectively. 

Under the above assumptions, the gas phase will be described as a collection of clusters 
of size R(t ,  r ) ,  the dynamics of each of which is described by equation ( lo) ,  with Rj replaced 
by R, namely 

subject to the initial condition R(T,T)  = r - ( ~ ) ,  where rc satisfies (3). 
Consider, next, the heat balance for the entire system. We have 

where the integration is over all existing clusters, Cp denotes heat capacity per unit mass, 
# is porosity, h is the heat transfer coefficient to the surroundings, assumed at temperature 
To, and A,,,j is the corresponding surface area through which heat is exchanged. 

The gas saturation is related to the radius of the growing clusters and the nucleation 
fraction through the relation 

where we introduced the volume ratio v E E and the notation k(t, f ( 7 ) )  E R(t,  T ) ,  for the 
radius of a cluster at time t ,  nucleated when the nucleation fraction was J’(T). Note that the 
liquid mass balance can also be expressed and reads as 

dPi dSg 
dt  d t  

= -(1 - ss>c- + - 
VP 

(14) 
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where c takes values in the range of 1.45 x - 1.45 x 10-3MPa-1. However, in the present 
problem it is not used. Subject to the relevant initial conditions, the system of equations 
( I I ) ,  ( la ) ,  (14) and (13) can be integrated. Integration proceeds until the time when the 
critical gas saturation is reached. In the present approach, we assume that the critical gas 
saturation, Sgc, can be predicted given the nucleation fraction and the capillary and Bond 
numbers (Du and Yortsos, 1999, Tsimpanogiannis and Yortsos, 2001a,b, Tsimpanogiannis 
and Yortsos, 2002). Therefore, for the purposes of estimating S,,, it only suffices to  model 
well the events during the nucleation period. 

c. Dimensionless formulation and scaling 

For the solution of the problem, we recast the equations in dimensionless form. Denote 
dimensionless quantities by subscript D and scale temperature by To, pressure by Po, clus- 
ter size by rz ,  and time by t* = $, where a is the constant pressure decline rate. The 
dimensionless mass balance for the gas phase is given by 

while the dimensionless heat balance for the system reads 

In the above, we have defined the dimensionless groups 

Parameter I I I  expresses the ratio of the characteristic times for heat diffusion at the pore 
scale to that for the decline of pressure. Although a small number in typical applications, it 
plays a key role in determining the nucleation fraction and the critical gas saturation. 

In addition, we have the following relations: The gas saturation is 
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Using the linearized phase equilibria, the dimensionless superheat is 

sat  - 0 T', - TD - T D ~  - (1 - $ t ~ )  
RgTo 

Ltl+P,vm when Kelvin effects are important. The cavity size 
that becomes activated at a given time and temperature can be expressed in terms of the 
supersaturation 

R To where $ e or $ 

or, more conveniently, in terms of the rescaled supersaturation 

S 

Then, the nucleation fraction is 

jq  = exp (-+), f q  = exp (-L) O S 5  
4sD 

depending on the size distribution used. In the solution of the problem, we assumed that 
the process begins (tu = 0) when the pressure is at the bubble point corresponding to To. 
Initial conditions for the simulations were Toa, = 1, Pol = 1 and R ~ ( T ,  T) = .si'(.i-). 

The above system contains one key parameter, I I I ,  describing the effect of the rate of 
increase of the supersaturation. Because it is small, a further rescaling of the nucleation 
fraction and the cluster size is necessary. After some analysis (Tsimpanogiannis and Yortsos, 
2001a), it is not difficult to show that for the cavity nucleation model, the following scaling 

is valid, fq - 111 and jqRDf - O(1) (where, given that the nucleation fraction varies 
only during the first period, D j  = 3 ) .  This scaling contains the main effect of the pressure 
decline rate on the nucleation fraction. Thus, we define a rescaled nucleation fraction and 
rescaled cluster sizes 

D f  
Of-1  

3 L A  
4g = fgIIl' and p o  = II,2& 

In this notation, the governing equations become 

and 

(23) 
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while 

s g  = Au f q  p ( t D  $q )"'d$s 

The numerical solution of the system of the rescaled equations is described below. 

111. NUMERICAL RESULTS 

The system of differential equations was solved numerically using a fourth-order Runge- 
Kutta method (Press et al., 1994). At each time step we examine whether nucleation of a 
new class of gas clusters is possible, namely whether the supersaturation is increasing. If so, 
a new class of gas clusters is added. Then, the simultaneous growth of all different classes 
of clusters is computed. When the supersaturation reaches a maximum, further nucleation 
stops. In the typical case, parameters which can vary over a significant range are It1 and II, 
(and possibly I I 2 ) .  An additional important variable is the type of the cavity size distribution 
used in the calculation of the nucleation fraction. The sensitivity to these parameters was 
examined in the simulations. 

The effect of III and IIc on the rescaled nucleation fraction, # q ,  the mean rescaled radius, 
p D l r n ,  the rescaled supersaturation, s g ,  and the gas saturation, Sg, is shown in Figs. 1- 
4. In these calculations, we used a stretched exponential (n  = 1.0 and o = 1.0) cavity size 
distribution, III2 was kept constant to the value 0.9697 x lo8 ,  we assumed an adiabatic system 
(II, = 01, while Ill varied over several orders of magnitude (from to 

The variation of #q as a function of the dimensionless time, t D ,  and of the parameters 
nl and III, is shown in Fig. 1. The nucleation fraction increases rapidly in a small time 
interval, and then stabilizes to a final value at the conclusion of nucleation. Such behav- 
ior is characteristic of nucleation processes, and has features similar to those reported by 
Tsimpanogiannis and Yortsos (2001a, b) for solution gas drive. There is a slight effect of 
I I I ,  which basically demonstrates the correctness of the scaling (23). The effect of IIc is 
significant. As Itc increases, the final nucleation fraction $sf (hence f y 4 )  decreases, while the 
onset of nucleation is delayed (Fig. lb ) .  The increase of .fgf with an increase in II1 and a 
decrease in Il, is expected. Larger values of Ill result from a faster decline rate, a greater 
departure from equilibrium, the establishment of a greater supersaturation in the system, 
hence the activation of more nucleation sites. Likewise, smaller II, imply that nucleation is 
facilitated at increasingly smaller supersaturations, as larger size cavities can be activated 
more easily. 

Fig. 2 shows the corresponding effects on the mean rescaled size p ~ ~ .  There are two 
different regions, corresponding to the nucleation period, and anot her to growth after nucle- 
ation. The first period can be approximated as a linear function of time. The effect of II1 is 
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relatively insignificant at small III, confirming the validity of the scaling ( 2 3 ) .  The effect of 
IIc (not shown) is more significant. Smaller values of IIc lead to an increase in the nucleation 
fraction, and a corresponding decrease in the size of the gas clusters at the conclusion of 
nucleation. 

Fig. 3 shows plots of the rescaled supersaturation S D  as a function of time for different II1 
and IIC. During the nucleation period (straight line segment in Fig. 3a), the supersaturation 
increases with time almost linearly, suggesting that T’m does not vary significantly in that 
period. Eventually, the rate of supersaturation increase slows down and, at some point, sg  
reaches a maximum, s D m ,  at which point nucleation terminates. Following this point, the 
supersaturation decreases monotonically. The maximum value S D ~  is plotted in Fig. 3b as 
a function of I I I  for two different values of III,. Note that s D m  is in general of the order of 

- 10-l. The dependence on the parameters becomes stronger at larger Ill and smaller 

n C .  

The evolution of the gas saturation is shown in Fig. 4. I t  follows that of fq, during 
the nucleation period, and that of p ~ ~ ,  during the period of growth. The effect of IIc is 
indirect, in that smaller values of rIc promote larger values of Sg due to an increase in both 

f4j and p ~ .  All these trends are similar to the case of solution gas drive, as explained in 
Tsimpanogiannis and Yortsos (2001a, b). We refer the reader to these publications for other 
effects, including the effect of rZ1 and II, on the critical gas saturation Sgc. Because the latter 
pertains to the formation of a sample-spanning cluster, in the absence of viscous or gravity 
effects, Sgc actually reflects the variation of f q f .  Thus, Sgc can be considered a power-law 
both of llIl and of rZ, with exponents that vary between 0.16 and 0.25 with respect to IIl and 
between -0.33 and -0.22, with respect to III,, respectively (see Tsimpanogiannis and Yortsos. 
2001a, b).  

The effect of IIH on the rescaled nucleation fraction, #+ and the gas saturation, Sg, is 
shown in Figs. 5-6. In these calculations, we used a stretched exponential ( n  = 0.2233 
and 0 = 0.1364) cavity size distribution. As IIH increases, the level of superheat and thus 
the level of the supersaturation in the system is higher. This leads to an earlier onset of 
nucleation, as well as a higher degree of nucleation. Note, however, that the effect of IIH on 
the maximum superheat and on the rescaled final nucleation fraction, is not significant. 
A change of nH by three orders of magnitude, results in a change of $4J by a factor of less 
than 2. The gas saturation increases faster as the heat transfer coefficient increases. This is 
due to the maintaining of a higher level of superheat, therefore a larger driving force for gas 
volume growth. Interestingly, as the heat transfer coefficient decreases the gas saturation 
growth slows down at larger values of the gas saturation. A noticeable difference, however, 
at higher values of IIH, is that the superheat is not be completely depleted before the gas 
saturation becomes equal to one, as happens with the lower values of IIH. 
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The numerical solutions obtained will be compared against available experimental results. 
However, before doing so it is beneficial to provide an interpretation of the numerical findings, 
using a simpler model. 

IV. INTERPRETATION USING A SIMPLER MODEL 

To interpret the results obtained we will consider a simpler model that captures the 
essential features of the problem, just like in Tsimpanogiannis and Yortsos (2001a, 2001b). 
Consider, first, the nucleation period. 

a. Nucleat ion 

We use the following equations for the gas phase growth and the superheat 

and 

These are subject to the initial conditions 

At early times and for small I l l ,  the solution is approximately 

Note that the heat transfer term does not affect the early behavior (compare also with Figs. 
5-61. The dimensionless superheat is linearly proportional to the dimensionless time and the 
mean cluster size becomes evantually proportional to time. Both are consistent with the 
numerical results during the nucleation period (Figs. 2 and 3). 

We will use (28) to approximate the approach to the maximum superheat. The latter is 
reached when = 0, namely when 

d t D  

11 



Following a similar approach as in Tsimpanogiannis and Yortsos (2001a, b) we can combine 
(30) and (30) with the definition of #q to obtain an approximate algebraic equation for the 
rescaled maximum supersaturation, S D ~ .  For example, for the case of Rayleigh distribution 
we have the equation 

3 -- ( 'no) a 2 
7r 1 

2lnso, FZ -In$ - In IIp + - - -1n3 - -1nA 
4S2,m 2 

where we introduced the combination of variables 

Likewise for the case of a stretched exponential we get 

cr-l --R 1 sDm - 21ns~, -ln$ - In 
2 

These equations suggest that the dependence 
maximum superheat since 8 = $rI ,s~)  on the 
the Rayleigh distribution and of (34) for two 

(np + y) - 21n3 1 - -1nA 3 
2 

(321 

(34) 

of the maximum supersaturation (hence the 
various parameters. The solutions of (32) for 
different cases of a stretched exponential are 

plotted in Fig. 7, as a function of A. For the Rayleigh distribution, s D m  varies weakly, in the 

range 0.1 - 1, as A varies over several orders of magnitude (between and lo-')). For 
small A, the maximum supersaturation is practically constant. As A takes larger values, 
s D m  increases weakly and eventually much more strongly, as A approaches the order of 
one (compare also with Fig. On the other hand, for the stretched exponential, the 
variation is much stronger in the logarithmic plot, and almost approximates a straight line. 
Stronger dependence on A is observed for the case when the tail of the cavity size distribution 
becomes longer (smaller values for n) .  Plotted in the same figure are also the results of the 

numerical solution of the full problem for a number of different parameter values. The 
agreement between the numerical results and the simple analytical model is very good and 
demonstrates the validity of the simple model. 

3). 

Equations (32)-(34) can be used to approximate the final nucleation fraction. For all 
cases we have 

where 
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The behavior of the maximum supersaturation as a function of the parameter A is very 
similar to that in solution gas drive (Tsimpanogiannis and Yortsos7 2001a, b). In particular, 

(a) In the region where s D m  varies weakly with A (at very small A) the final nucleation 
fraction varies as a power law of I l l 7  with exponent equal to 3 / 2 .  

(b) In the region where s D m  may be approximated by a power-law dependence on A, e.g. 
as S D ~  - Am, we have the scaling 

fqf A&2m (37 )  

Such a dependence on A leads to a decrease in the exponent in the power-law scaling of fqf 

on II1. For example, if we take m FZ 1/4 (a value examined in more detail in Tsimpanogiannis 
and Yortsos, 2001a, b), we read 

b. Gas c lus te r  growth 

The modeling of the growth regime, where nucleation has terminated, can be simplified 
if we consider only one class of clusters and simplify the heat and mass balances as follows 

and 

Here, we introduced the variable 

and the parameter 

The final value of the rescaled nucleation fraction, q5q f ,  as well as initial values for Tom and 
pD needed for the above calculation, are obtained from the previous analysis. 
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V. COMPARISON WITH EXPERIMENTS 

The theoretical model was next compared to the experimental results of Dehghani et 
al. (1997). In these experiments, the pressure at the open end of a Colton sandstone core, 
saturated with water and embedded in a constant temperature bath, was slowly reduced at 
the rate of 0.7448 bar/h (10.8 ps i lh) .  The other end of the core was kept closed to flow. 
Properties of the core of interest to this report were taken as follows: rs = 3.0 x l o p 5  e m ,  rc = 

3.0 x em.  Additional physical parameters and values of the dimensionless parameters 
used in the calculations are shown in Table 1. 

The gas saturation as a function of time for the single-component experiment and for 
various axial positions along the core are shown in Fig. 8. It is worth noting that the evolu- 
tion of the gas saturation is slower as the distance from the entrance of the core increases. In 
a way, this reflects a reduced rate of pressure decline, or a decrease in the heat transfer coef- 
ficient as the distance from the open end increases. For a better comparison of the data, we 
attempted to collapse all data into a single curve. By replotting the data using as time origin 
the time the boiling point in the bulk is reached (which is io = 84 minutes), and by rescaling 
time by a factor b ( L ) ,  where L is the distance from the open end, we were able to collapse 
satisfactorily all data in a single curve, as shown in Fig. 9. The less satisfactory collapse of 
the data at the early times could be the result of poor CT-scan resolution in the low porosity 
sandstone used in the experiments (Dehghani et al., 1997). The variation of the factor b ( L )  
which allows this collapse is shown in Fig. 10. It is a linear function of the dimensionless 
distance and the best fit line describing the data is given by: b(L)  = 1.0106 + 5.1513 (e),  
where Lo is the core length. We then attempted to match this universal curve using our 
model. As shown in Fig. 9, a very good match was obtained, using a stretched exponential 
cavity size distribution with n = 0.35 and 0 = 1.0. 

VI. CONCLUSIONS 

In this report we developed an effective continuum model to describe the nucleation and 
subsequent growth of a gas phase from a supersaturated liquid in a porous medium, driven by 
heat transfer. The evolution of the gas results from the reduction of the system pressure at a 
constant rate. The model addresses two stages before the onset of bulk gas flow, nucleation 
and gas phase growth. 

We used heterogeneous nucleation models in the form of pre-existing gas, trapped in 
hydrophobic cavities to investigate the nucleation behavior. Using scaling analysis and a 
simpler analytical model we showed that the relevant quantities during nucleation can be 
expressed in terms of a simple combination of dimensionless parameters, which include rate 
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effects. The subsequent evolution of the gas phase were also described using numerical and 
analytical models. 

The theory predicts that the maximum supersaturation in the system is a weakly increas- 
ing function of the decline rate. This function depends sensitively on the probability density 
function of the nucleation cavity sizes. It also predicts that the final nucleation fraction, 
thus the critical gas saturation, is a power law of the decline rate. The theory was then 
compared with available experimental data of internal steam drives, such as the blowdown 
experiments in carbonate rocks (Dehghani et al., 1997) and a good match is obtained by 
appropriate fitting of the nucleation characteristics of the medium. 
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Parameter Value 

0.7448 
5954.7 
850.0 
4.145 x 
1 .o 
11.354 
37294.8 
18.016 
9.276 
3.0 x 10-7 
3.0 x 10-5 
449.4 

55.0 
1.333 x 10-l' 

3.901 x lo1 
2.697 x lo2 
2.981 x 10' 
2350.0 
1. x 
0.111 
1.002 x 10-1 

9.697 x 107 

Table 1: Characteristic values for the various parameters . 
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Figure 1: Variation of the rescaled nucleation fraction, Q q ,  as a function of the dimensionless 
time, to. (a) Effect of It1 = 1.485 x lo-", for I I 2  = 9.6972 x lo7, IIp = 2.981 and IIH = 0. 
(b) Effect of IIc = 0.117 x lo", for Il l  = 1.485 x lo-', I I 2  = 9.6972 x lo7, rIP = 2.981 and 
l-IH = 0. 
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Figure 2: Variation of the mean rescaled dimensionless radius, porn, as a function of di- 
mensionless time, t ~ .  Effect of I I I  = 1.485 x lo-", for I I Z  = 9.6972 x lo7,  lIP = 2.981, 
IIc = 0.117 x 101 and IIH = 0. 
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Figure 3: Numerical results for the rescaled supersaturation, sg: (a) Variation as a function 
of dimensionless time, t g .  Effect of Il l  = 1.485 x lo-", for I-IZ = 9.6972 x lo7,  I I p  = 2.981 
and IIH = 0. (b) Effect of the parameter I I I  on the maximum rescaled supersaturation, S D ~ ,  

for IIC = 0.117 x 10". Points correspond to the full numerical solution, solid lines correspond 
to the simpler problem. 
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Figure 4: Variation of the gas saturation, is$, as a function of dimensionless time, t ~ .  Effect 
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Figure 5: Variation of the rescaled nucleation fraction, g q ,  as a function of dimensionless 
time, t D .  Effect of IIH = lo", for II1 = 1.485 x I - IZ  = 9.6972 x lo7,  I-I, = 0.117 x 101 
and I I p  = 2.981. 
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Figure 6: Variation of the gas saturation, is$, as a function of dimensionless time, t ~ .  Effect 
of IIH = lo", for It1 = 1.485 x lop8, I I 2  = 9.6972 x l o7 ,  IIc = 0.117 x lo1 and I I p  = 2.981. 
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Figure 7: Maximum rescaled supersaturation, S D ~ ,  as a function of A for various cavity size 
distributions. Solid lines correspond to the simpler problem, points correspond to the full 
numerical solution [denoted by circles for the Rayleigh cavity size distribution, by triangles 
for a Stretched exponential ( n  = 0.2233 and o = 0.1364) and by squares for a stretched 
exponential (n = 1.0 and 0 = 1.0)]. 
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Figure 8: Gas saturation profiles for single-phase flash experiment as a function of time and 
for various axial positions along the core, L.  Experimental data from Dehghani et al., (1997). 
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Figure 9: The evolution of the gas saturation as a function of a rescaled time for the ex- 
periments of Dehghani et al., (1997). Points denote experimental values and the solid line 
corresponds to the full numerical solution. 
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Figure 10: Variation of the rescaling factor, b, as a function of the dimensionless axial position 
along the core, L/L,.  
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