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ABSTRACT 

Psychologists often want to detect category structure in subjects' free recall protocols. 

While runs tests based on the binomial distribution are commonly used to detect non­

randomness within a sequence, many research situations require tests based on the 

multinomial distribution. We propose a test of randomness versus clustering based on the 

number of runs in multinomial data. We illustrate its use with data from a mass 

communication experiment using a constrained free recall procedure. 
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1. INTRODUCTION 

To draw inferences about mental processes, psychologists often want to detect category 

structure in free recall. Typically, a list of randomly ordered words is presented to a subject. 

Unbeknownst to the subject, the experimenter has selected the words from a limited number 

of categories. At some later time the experimenter asks the subject to write down as many of 

the words as he or she can remember-a free recall procedure. The experimenter then looks 

for evidence that the subject used the underlying categories in recalling the words. Typically 

some measure of clustering by category is used (Murphy and Puff, 1982). 

The study list does not have to be an artificial list drawn up specifically for an 

experiment. The investigator can ask the subject to call on real-life experiences as well. For 

example Shapiro (1987; 1988) was interested in whether subjects used mass media categories 

in classifying memories. To test that, he asked subjects to free recall specific people from 

certain categories typically over or under represented in the mass media (e.g., criminals or old 

people). If a subject used communication source categories in retrieving that kind of 

information, then the free recall items should cluster according to communication source (i.e., 

television fiction, a newspaper, a book). A multinomial runs test seems natural for detecting 

clustering in the constrained free recall setting, where no presented list exists. 

In Shapiro's (1987; 1988) experiment, each of 155 subjects was asked to list all specific 

examples s/he could recall of a given kind of person in a fixed time period. This was done for 

each of 6 categories (topics): criminals, law enforcement personnel, victims of crime, 

professionals, 25-45 year-olds and old people. After the 6 lists were made, each subject was 

asked to classify each item on each list as to one of 8 possible sources from which information 

was obtained: direct experience, other people, books, newspapers, television news, television 

fiction, other television and movies. All 155 subjects were tested independently, the order of 

topics for each subject was varied using latin squares, and each subject made separate lists 

for each topic. 
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Hence, each list represents a sequence of memories, which can be tested for clustering of 

items according to communication source. Using a one-tailed multinomial runs test, one 

rejects (fails to accept) the null hypothesis of randomness of recall on a topic with respect to 

communication source, if the number of runs is too small. The multinomial runs test has the 

advantage of allowing each subject-topic combination to have its own vector of probabilities 

for the 8 sources. In Section 4, we will apply the results of Sections 2 and 3 to data from 

Shapiro's (1987; 1988) experiment. 

Shapiro's constrained free recall experiment. was designed to obtain indirect evidence for 

(or against) a proposed model of how information from various communication sources is 

stored and used. The model assumes that information about the communication source is 

stored along with an event memory. For example, the model claims that when a viewer 

stores a memory of a criminal from a television detective show, the communication source of 

that memory (television fiction) is associated with that memory. The spreading activation 

theory of memory (Collins and Loftus, 1975) predicts that remembering an exemplar from 

one source would activate other memories connected with that source. That activation would 

make it more likely that memories from that source would be recalled next. According to 

this model, in constrained free recall, consecutive items from the same communication source 

are more likely than one would expect by chance. Thus, one would expect fewer runs in the 

recall data than expected by chance. Observing many runs in the experiment would indicate 

that the model described above is inappropriate, while observing a statistically significant 

paucity of runs only would indicate that the model is a possible (but not unique) explanation 

of the mental processes. 

To ascertain whether a relationship exists between an item's recall position and some 

other factor in free recall protocols, Pellegrino and Hubert (1982} suggest a statistic of the 

form 

n 
r = E f(x., Y·) ' 

i=1 1 1 
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where y. designates the position of the ith item in the recall list, X· designates some other 
1 1 

characteristic of the ith item and f(xi' yi) is a function specified by the experimenter. 

Pellegrino and Hubert (1982) focus on normalized correlation coefficients, which incorporate 

comparison of the recalled list with the presented list; they do not suggest a specific function 

useful in measuring clustering. Robertson (1985) suggests using the multinomial runs 

·distribution to quantify clustering in free recall experiments by reporting the probability, 

under the null hypothesis of no clustering, of obtaining the same or fewer runs than that 

observed in the recall list. Notice that with data from the constrained free recall experiment 

correlation coefficients cannot be used, since no presented list exists, and a runs statistic 

cannot be written in the form suggested by Pellegrino and Hubert. We examined the utility 

of a test based on the multinomial runs distribution as a test of randomness versus clustering 

in such situations. 

The distribution theory of runs developed out of interest in testing whether a sequence 

of events exhibits randomness rather than clustering of like elements within the sequence. 

According to Mood (1940), the early work began in the late nineteenth century with Karl 

Pearson and was motivated by interest in games of chance. Mood's 1940 paper gives the 

distribution theory for random arrangements of a fixed number of each kind of element as 

well as for random arrangements of a random number of each kind of element (i.e., 

distributions of elements from binomial and multinomial populations). Even today, runs 

tests are the primary tools available to distinguish clustering of like elements from 

randomness within a sequence (Lehmann, 1975; 1983), although the multinomial version of 

the runs test is not commonly discussed in statistical methods books and tables of critical 

values are not commonly available. 

Shaughnessy (1981) gives the recursion formulae needed to calculate the exact 

distribution of runs and tabulates the critical values for the multinomial runs test with few 

classes (2-6) and approximately equal numbers in each class. Schwager (1983) gives formulae 

for calculating run probabilities for the more general case of sequences of Markov-dependent 
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trials. Robertson (1985) and Koppen and Verhelst {1986) discuss the behavior of large 

sample approximations to the exact distribution of runs; both papers focus on fixed numbers 

of each kind of element, occurring in a free recall context.· With even a moderate number of 

classes, calculation of the exact distribution becomes prohibitive. 

To use Mood's results as the basis of runs tests, one must assume that the probability of 

the ith class (pi) is known. In a binomial runs test it is often sensible to take pi = ~; 
however, in the multinomial situation, the pi's are usually unknown and must be estimated. 

In Sections 2 and 3, we investigate the effect that estimation of the pi's has on the 

performance of the multinomial runs test. Mood, Graybill and Boes (1974, pp. 519-521) 

suggest a binomial runs test, which uses the mean and variance of the number of runs that 

are conditional on the observed number of elements of each type. A similar test could be 

devised for the multinomial case. Such tests are expected to be conservative. However, 

deriving estimators based on the conditional distributions would be unwise for the 

constrained free recall application. One would be leery of drawing inference, conditional on 

the observed n vector, when the. given n vector is of no interest and unlikely to be observed 

again, even if one retested the same subject. 

2. MULTINOMIAL RUNS TEST STATISTIC 

In applying Mood's results to our problem, two major modifications were ~ecessary. 

First, the asymptotic mean depends on the unknown pi's and therefore must be estimated. 

This estimation changes the asymptotic distribution. Second, the asymptotic results given in 

Mood (1940) were inaccurate for the sample sizes we encountered in practice; thus the exact 

moments were needed. 

The second problem is somewhat simpler, so we deal with it first. Mood [1940, equation 

(7.20)] lists the means, variances and covariances of the ri 's, the runs of each type, but does 

not explicitly list the mean or variance of the total number of runs, r = :L>i· The mean can 

be easily calculated as 
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E(r) = 1-'r = L:E(ri] = L:[npi(1-pi) + Pi] 

= n (1-l::Pf) + l::Pi , (2.1) 

where pi is the probability associated with the ith kind of element. The asymptotic result of 

n(1 - l::Pf) can easily be incorrect by more than 10% of the standard deviation of r for small 

to moderate sample sizes. 

The variance of r is given by 

Var(r) = u~ 

= L:Var(r1.) +EE Cov (rk,rz) 
i k;i:l 

= ""[np. (1 - 4p. + 6p? - 3p~) + p?(3-8p- - 5p?):l 4- 1 1 1 1 1 1 1~ 
1 

+ EE{-nPkPz(1 - 2Pk- 2Pz + 3PkPz)-pkpl(2Pk + 2Pz - 5PkPJ)} 
k;i:l 

= n{EPf + 2Epf- 3(EPf)2} + {-EPf- 4Epf + 5(l::Pf)2}. (2.2) 

Again, leaving out the second term in braces to get the asymptotic result often causes an 

error of more than 10% of the standard deviation. This extra piece therefore must be 

included for the sample sizes we encountered. 

The more serious complication is the need to estimate the unknown pi's. Mood {1940) 

gives the result 

r-J.Lr "'AN(O 1) 
ur ' ' 

where J.Lr is given by the order n term in (2.1) and ui is given by the order n term in {2.2). 

In attempting to use r:J.'r to test for randomness, the P· 's are nuisance parameters and must vr 1 

be estimated.· If &r denotes a consistent estimate of ur (we will use the MLE) and flr denotes 

an estimate of J.Lr, then it is well known that the asymptotic distributions of r-;/r and r-}r 
r ur 

are equal. However, the distributions of r;~r and r;~r are not asymptotically equal. 

In particular 

Var(r-flr) = Var(r-J.Lr) + Var(J.Lr-Pr) + 2Cov(r-/-lr J.Lr-P.r) 
ur ur ur ur ' ur 

= 1 + (Var(flr)- 2Cov(r,P.r))/u~. (2.3) 
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The term in brackets will usually be nonzero. 

To construct a test statistic, we propose replacing the value of JJr by its unbiased 

estimate, ilr, and calculating the asymptotic variance of r -Pr· Explicitly, we suggest the use 

of r-ilr 
T= ' 

~ Var( r-Pr) 
{2.4) 

where Pr = n{1-2:pf) + 1, which is unbiased for (2.1). It remains to calculate Var(r-ilr)· 

From (2.3) we need to calculate Var(ilr) and Cov( r ,jlr ). The variance term is given by 

Var(P.r) = Var[n{1 - Ei>f)] 

= 12 (2: Var(n?) + E:E Cov(n2k, n21)) , 
n i 1 k=Fl 

where ni is the observed number of elements of the ith kind, and the variances and 

covariances in this last expression are given in Johnson and Kotz (1969, p. 284). The 

covariance term is slightly more tedious to calculate: 

Cov(r,P.r) = Cov[r, n(l- Ei>f)] 

= - A E Cov(r, n?) 
. 1 
l 

= - A ( ~ E[rnf] - E[r]E[nf]) . 
1 

In this last formula, E[r] is given by (2.1) and E[rniJ can be found as 

E(rnil = E [ E(rnilnl] 

= E [nfE[rlnJ] 

= {n? I: nj(n-nj+ 1)l from (Mood, 1940) 
l j n J 

= A (Cn2 + n)E[n?] - E[n~] - E E(n?n?J) . 
l l ·...J_· l J 

J .,._1 
Combining the calculations, we have 

Var(r~r) = 1 + { 2 [(1-ft)(I:Pi) + ft] [~E{ni)J + ~2 ( - ~E[niJ 
l l 

- I: E[ni]2 + E:E E[nknj] - 3 EE E[nk] E[nj])} / <r~ • 
i k=#=l k=#=l 

This can be calculated in a straightforward, though tedious manner for use in practice. 
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Exact formulae are given in Appendix 1. 

3. PERFORMANCE OF THE TEST STATISTIC 

We investigated the performance of the test statistic given by (2.4) by simulation. We 

were especially concerned about its mean and variance under the null hypothesis, since in 

Section 4 we combine the number of runs calculated from separate subjects to form an overall 

test statistic. Details of the simulation techniques are given in Appendix 2. 

The results of the simulation were encouraging. Even for samples of size n = 25 with. 8 

categories the standard deviation was close to one and the distribution was well 

approximated by a standard normal. For small sample sizes the only failing was a light tail 

on the right, leading to a slight conservatism for small a levels. 

For the simulations, we considered probability vectors that were motivated by the 

constrained free recall experiment and spanned a wide range of values. The vectors 

considered were 

p1 ( .125, 

P2 = ( .411, 

P3 ( .586, 

P4 ( .443, 

p 5 ( .289, 

PG ( .441, 

p 7 ( .182, 

.125, .125, 

.204, .112, 

.170, .111, 

.306, .107, 

.280, .148, 

.184, .149, 

.172, .169, 

.125, .125, .125, .125, .125 )' 

.106, .095, .032, .024, .016 )1 

.057, .038, .017, .013, .008 )1 

.070, .030, .024, .014, .006 )1 

.124, .050, .048, .039, .022 )1 

.078, .065, .041, .026, .016 )1 

. 121, .112, .104, .07 4, .066 )1 • 

In Table 1, we present the standard deviations ofT = s;(jL~ ) and Z = r-_ftr for samples of 
r-p.r <Tr 

size n = 10, 25, 50 and 100 for the seven probability vectors given above. 

The results show that T is always an improvement over Z. The effect of estimation of 

f.Lr is to greatly reduce the standard deviation from the nominal value of one. This would 

lead to extremely conservative tests. Often T is a substantial improvement over Z, e.g., 



-8-

n = 50 for p3 • Even for sample sizes as small as 10 or 25, T had a standard deviation close 

to one. 

Table 1: Simulated standard deviations of s:(~~~r) and r~~r for various sample sizes and 

probability vectors. 

Sample Size P1 P2 

10 .85,.70 .91,.69 

25 .92,.83 .96,.77 

50 .96,.91 .99,.78 

100 .96,.93 .99,.78 

Standard Deviations 

( r-fLr r-fLr) 
SE(r-fLr) ' iTr 

Probability Vectors 

P3 P4 

.91,.61 .96,.73 

.89,.60 .95,.76 

.94,.60 .97,.78 

1.00,.62 .99,.80 

Ps P6 P7 

.91,.72 .93,.69 .88,.72 

.94,.80 .93,.72 .92,.83 

.97,.84 .94,.72 .93,.86 

1.02,.90 .99,.76 1.01,.96 

In Table 2, we present some selected tail probabilities for p6, which had neither the best 

nor worst approximation to a standard normal distribution. The left tail probabilities are 

almost exactly equal to nominal, while the right tail probabilities are slightly conservative for 

small sample sizes. 
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Table 2: Simulated tail probabilities of r-[i.r 
SE(r-[i.r) for P6 • 

I 

Tail Probabilities 

Left Right 

Sample Size Nominal .010 .025 .050 .050 .025 .010 

10 .010 .029 .059 .015 .010 .001 

25 .008 .023 .047 .031 .011 .003 

50 .009 .021 .047 .035 .011 .003 

100 .012 .025 .053 .051 .021 .010 

Simulation 
Standard Errors (.0026) (.0040) (.0056) (.0056) (.0040) (.0026) 

4. APPLICATION TO THE CONSTRAINED FREE RECALL EXPERIMENT 

In the constrained free recall experiment (Shapiro, 1987; 1988), each of 155 subjects was 

asked to list all specific examples s/he could recall on a given topic (e.g., criminals) in a fixed 

period of time. After a list was made for each of 6 topics, each subject was asked to classify 

each item on each list as to one of 8 possible communication sources. Hence, every list 

represents a sequence of memories, which can be tested for clustering of items according to 

information source. The multinomial runs test has the advantage of allowing each subject-

topic combination to have its own vector of probabilities for the 8 sources. This is critical, 

since the likelihood of obtaining information from a given source will differ from topic to topic 

and is likely to differ from person to person. A global test can be performed by summing the 

number of runs over people and topics. Alternatively, one can combine over topics to test for 

randomness in sequences for the subjects or combine over subjects to test for randomness in 

sequences for the topics. 

A statistic, T, that combines topics or combines subjects is calculated as follows: 
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E(r.- j.t ·) . .J rJ 
T= J 

~EV~r(r ·- j.t ·) • .J rJ 
J 

where j indexes the categories to be combined, rJ. = E r1 •• and p . = :l:[n.(1 - L:p?.) + 1] . • • J rJ .J .1J 
1 J 1 

A similar statistic, based on Z, can be formed. A one-tailed test is appropriate for this 

problem: if there is clustering of items from different sources, there will be too few runs. 

Table 3 illustrates the calculation of the runs statistic based on Mood's results, Z, and 

our runs statistic, T, using the data for one subject on two topics. Z is conservative for both 

topics. For criminals, one would reject the hypothesis of randomness of recall with respect to 

communication source based on either statistic. However, one draws different conclusions 

from the two statistics for law enforcement personnel. Of the 18 items for this topic, 14 were 

attributed to TV fiction and they occurred in 2 runs; the total number of runs for this topic 

was 5. The T statistic rejects the randomness hypothesis, while the Z statistic is too 

conservative, failing to reject the randomness hypothesis although the total number of runs is 

The constrained free recall experiment also can be used to illustrate a runs test, which 

combines over subjects for a given topic. A simple random sample of subjects, with sample 

size 28, was drawn from the data base. Combined tests based on the T and Z statistics were 

calculated for the topic criminals. Using the data from the 28 subjects, Tc = -12.48 

(p = 0.0000) and Zc = -9.82 (p = 0.0000). One rejects the hypothesis of randomness of 

recall with respect to communication source based on either statistic. Again, the Z statistic is 

too conservative. 
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Table 3: Calculation of Z and T statistics for one subject and two topics from the Shapiro 

1 

2 

3 

4 

5 

6 

7 

8 

Total 

constrained free recall experiment. (ni = number of items from each source, 

ri = number of runs of each kind) 

Source n. 
1 

TV fiction 5 

TV news 6 

other TV 0 

movies 2 

books 1 

newspapers 0 

direct experience 1 

other people 4 

n = 19 

r-f.Lr z = -.- = -3.033 
ur 

Criminals 

r. 
1 

2 

3 

0 

1 

1 

0 

1 

2 

r = 10 

p-value of Z = 0.0012 

r-f.Lr 
T = SE(r-f.Lr) = -3.4799 

p-value ofT = 0.00025 

Law Enforcement Personnel 

p. 
1 

n. 
1 

r. 
1 

p. 
1 

5/19 14 2 14/18 

6/19 0 0 0 

0 0 0 0 

2/19 0 0 0 

1/19 0 0 0 

0 0 0 0 

1/19 3 2 3/18 

4/19 1 1 1/18 

n = 18 r=5 

z = -1.0255 

p-value of Z = 0.1526 

T = -2.1023 

p-value of T = 0.0221 
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5. DISCUSSION 

Based on the data from the random sample of 28 of the 155 subjects tested in the 

constrained free recall experiment, we conclude that there is a statistically significant paucity 

of multinomial runs in the recall lists. Thus, the null hypothesis of randomness of recall with 

respect to communication source is rejected, and the clustering of recall items according to 

information source is deemed significant. The six tests for topics, which combine over 

subjects to test for randomness in sequences for each of the topics, all indicate significant 

clustering of recall items according to communication source, at a = 0.01. Under the null 

hypothesis of randomness, it may be reasonable to assume that topics, as well as subjects, 

represent independent data and a global test, calculated by summing the number of runs over 

subjects and topics, can be formed. Such a test for the six topics and 28 subjects easily 

rejects the hypothesis of randomness (p = 0.0000). If the assumption of independence of 

topics is untenable, a global test can be performed using Bonferroni corrections. 

The significant clustering of recall items with respect to communication source in 

Shapiro's data is consistent with the psychological model, based on the spreading activation 

theory of memory, described in Section 1. However, other interpretations of the clustering 

are possible. The model in Section 1 suggests that the source of a memory activates other 

memories connected to that source. This process could occur in two different ways. During 

the initial phase when items are recalled, subjects might use the communication source as a 

recall strategy, generating examples from the same source in sequence. Alternatively, during 

the labeling phase when sources are ascribed to items in the recall list, subjects might tend to 

think of the same context (communication source) for each example. That is, the source 

assigned to the current item in the list may be affected by the source of the previous item. A 

different explanation of the clustering is that subjects recall items from multiple sources, but 

their decision of which item to use is biased by their earlier decisions. The clustering of the 

recall items according to communication source is consistent with all of these interpretations. 

Recall lists provide no information to allow differentiation among the processes described 
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above, but they do indicate a relationship between the sequence of items and communication 

source. 

In this paper, we propose a test statistic for runs with multinomial data when the mean 

number of runs under randomness must be estimated from the data: Our statistic performs 

much better than a statistic derived using the distributional results of Mood (1940), which do 

not account for estimation. 
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APPENDIX 1 

In this appendix we list the formulas for Var(r-Jtr) for ease of use in practice. Var(r-Jtr) is 

equal to Var(r) + Var(Jtr)- 2 Cov(r, ftr)· Var(r) is given in (2.2). 

Var(ftr) = \ (L:Var(n~) + L:L: Cov(n2k, n21 )) 
n i 1 kj:l 

Finally, 

= \ {r: [n(n-1)(n-2)(n-3)p~ + 6n(n-1)(n-2)p~ + 7n(n-1)p~ + np.] n . 1 1 1 1 
l . 

+ L:L:[n(n-1)(n-2)(n-3)pk.Pl + n(n-1)(n-2)(PkPz + PkPz) 
k:f=l 

+ n(n-1) PkPz] 

- 2:2: ( n2(n-1)2 pkpl + n2(n-1) (PkPz + pkp[} + n2pkpz)}. 
k:f=l 

Cov(r,Jtr) = [-y(n(n-1)pj + npi) J [ft + (Ypj)(1- 1/n)J 

+ \(I: [n(n-1)(n-2)(n-3)p~ + 6n(n-l)(n-2)p~ + 7n(n-1)p~ + np.] 
n i 1 1 1 1 

+ L:L:[n(n-1)(n-2)(n-3)pkpl + n(n-1)(n-2)(PkPz + pkp[} 
k:f=l 

+ n(n-1) PkPzl)· 
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APPENDIX 2 

All simulations were written in the matrix language GAUSS and were run on an IBM PC-AT 

computer. All random number generation was performed using the built-in random number 

generator in GAUSS, RNDU. Common random numbers were used to compare the means, 

standard deviations and tail probabilities of five statistics: 

r-ftr , r-:ftr and r-P.r 
~ ur SE(r-ftr) · 

1500 replications were run for each n and p in order to achieve the desired accuracy in 

estimating the nominal a = .05 tail probabilities. SE(r-ftr) and iTr are zero if f>i is one for 

some i. In such cases, the test was declared to reject at all significance levels; however the 

standard deviation was not recorded. This occurred in the simulations only for n =10 for 

vector p3• For that situation it occurred 3 times in 1500 replications. 


