
Beltway buffers: avoiding the OS traffic jam
Willem de Bruijn

Vrije Universiteit Amsterdam
wdb@few.vu.nl

Herbert Bos
Vrije Universiteit Amsterdam

herbertb@few.vu.nl

ABSTRACT

Beltway buffers are operating system I/O paths optimised
for high-throughput network applications. The key architec-
tural feature of Beltway buffers is that all I/O takes place in
long-lived, allocation-free, shared ringbuffers. Advantages of
this design are (1) improved throughput through system-wide
copy, context-switch and allocation avoidance and judicious
use of the data cache, (2) transparent integration of peripheral
hardware and (3) simplicity and familiarity due to comprehen-
sive use of the POSIX file interface for accessing streams.

I. INTRODUCTION

We introduce a novel system-wide buffer management sys-
tem based on extensive use of ring buffers. The system pro-
vides all well-known primitives (sockets, file descriptors and
pipes) to support legacy applications. In addition, it carries ad-
vanced I/O features (e.g., user-visible disk caches, multi-way
named pipes, copy avoidance and splicing, prefetching and
interrupt mitigation) that improve application performance.
Internally, Beltway buffers are structured quite differently from
existing systems.

Traditional network stacks incur cross-layer copying and
task-switching overhead as a result of strict compartmental-
isation. By default, reading data from disk and writing it
unmodified to the network involves two privilege escalations to
handle disk I/O and networking, as well as two copies across
the kernel/userspace barrier. For this most basic example, the
sendfile system call brings relief, but for the majority of
more complex I/O interactions it is too simplistic. They must
resort to application specific band-aids. Dynamic webservers,
for example, duplicate filecaches in userspace.

Only a small subset of the systems in use need the strong
security guarantees enforced by strict task separation. Instead
of incurring this cost on all applications and trying to add
exception clauses for certain uses, we propose to remove
the restriction in general and only impose layering for those
applications where it makes sense. In practise, this means
improving performance for the vast majority of machines
that operate as network servers or single-user workstations.
Separately, we shall show that this architecture can offer the
strong protection demanded by multi-user systems.

Beltway buffers explores an extreme in the design space for
communication paths: where most existing systems are careful
not to waste memory, we sacrifice RAM to gain performance.
This design point is increasingly viable as processing and

memory density costs decrease faster than access latency and,
consequently, datarates.

This paper makes the following contributions:
1) It presents a novel operating system I/O architecture with

attractive properties for network applications.
2) It identifies causes of avoidable I/O overhead in tradi-

tional network stacks by comparing the novel architec-
ture directly against a widely used alternative (Linux).

3) It explains how the novel design can cleanly integrate
existing and upcoming networking hardware (such as
programmable and multi-ring NICs).

4) It discusses implementational issues involved in building
a practical high-performance I/O stack and presents
solutions.

These abstract contributions have direct practical benefits,
such as support for copy-free data movement (known as ’splic-
ing’), multi-point pipes, zero-overhead network monitoring,
and vastly improved transfer rates even for unaltered POSIX
file I/O operations.

In Section II we show how Beltway is used in a common OS
with real applications. Section III contains related work. Sec-
tion IV discusses the Beltway design, while Section V shows
how buffer implementations vary for optimal performance.
Section VI discusses how the buffers are used to provide
abstractions like sockets, pcap, etc. In Section VII we evaluate
our work and in Section VIII we draw conclusions.

II. APPLICATIONS

To demonstrate how the existing situation limits networking
performance, we introduce two very different networking
applications and their current implementational weaknesses:
A file/web server (FS) pushing data from disk to the network,
and a network monitor (MON) that sniffs incoming traffic. FS
and MON will be used as running examples throughout this
paper to explain the practical impact of abstract innovations.

Fileservers are interesting because they have two potential
bottlenecks: disk access on the back-end and network access
on the front-end. Additionally, the hand-off between the disk
cache and the network stack often introduces superfluous
copying. Indeed, this issue is so common that the sendfile
system call can be found in many operating systems. But
sendfile is useful only for a narrow subset of server tasks:
serving of complete, unaltered, files. Recent versions of Linux
support splicing to transfer data between kernel subsystems
without resorting to copying [1]. This implementation adds a
system call and demands application support. As we will show,

the Beltway design trivially allows splicing and also reduces
the other two bottlenecks.

Network monitoring applications show a different source of
waste: unnecessary copying and task switching during packet
capture. Monitoring forms the basis for critical security tasks,
such as intrusion detection, but the present high capture cost
prohibits live monitoring of production machines.

While this is the first time that we submit a description of
the Beltway buffers for publication, they were used ‘under
the hood’ in several projects. For instance, We used them
to implement high-speed intrusion prevention on embedded
hardware [2].

III. RELATED WORK

Copy overhead in network stacks is a well known prob-
lem. Copy-avoidance mechanisms have been proposed that
replace copying with page remapping to reduce overhead.
Brustoloni [3] categorised previous efforts and showed them
to perform roughly identical. Druschel et al. describe copy
avoidance ideas for network buffers [4] and subsequently
translate these into Fbufs [5]: copy-free communications paths
across protection domains that can sometimes amortise the
per-block costs. Fbufs are only efficient if mappings can be
reused, for which early demultiplexing is required. This is also
true for container shipping [6]. Fbufs are later incorporated in
IO-Lite [7], which introduces mutable pointers to immutable
buffers to replace copying system wide.

In contrast to these projects, Beltway buffers eschew per-
block allocation; they amortise allocation overhead by placing
all blocks into large, reusable ring buffers. Govindan [8]
introduced memory-mapped ring buffers to reduce cross-space
communication. He used buffers as one-to-one pipes between
applications and kernel. We extend this basic notion by allow-
ing shared buffers between arbitrary address spaces, be they
applications, OS subsystems, or embedded logic. Furthermore,
we implement sharing throughout the system: arbitrary sets of
buffers can be shared between arbitrary sets of processes. The
resultant buffer subsystem is generic: tailored to networking,
but also applicable to other cross-space communication such as
IPC. Ring buffers can already be found in most network stacks,
for instance U-Net [9] and the Arsenic network interface [10],
but we believe that we are the first to extend the idea beyond
the scope of a single path to a generic OS communication
layer.

IV. ARCHITECTURE

Accepted operating system design principles add unneces-
sary cost to I/O, especially in the case of network traffic.
Conservative memory protection limits the ability to share
data. Additionally, monolithic operating system kernels add
cost through compartmentalisation: separate subsystems for
networking, disk I/O and system call handling duplicate code
(e.g., for caching), introduce buffering (which increases la-
tency and decreases cache efficiency) and implement local
optimisations at the detriment of global throughput.

A well-structured system-wide I/O architecture increases
data throughput in two ways: (1) it removes inefficiencies
emanating from the hand-off between subsystems, and (2) it
makes complicated performance optimisations cost-effective
by applying them globally. Beltway buffers aim to provide
just that in a popular OS (Linux), where they underlie all I/O
mechanisms (sockets, pipes, disk, etc.). The design revolves
around moving all data transport throughout the processing
stack (process, kernel, peripheral devices) into shared ring
buffers.

A. Advantages of rings

Most operating systems implement per-block dynamic al-
location: a memory region must be acquired for each data
block. Pointer queues are maintained to structure streams (e.g.,
into FIFOs). In contrast, we statically allocate (a) shared data
rings (DBufs) capable of holding multiple data blocks, and
(b) private index buffers (IBufs) with pointers into these rings
(Figure 1). Rings hold a number of advantages over dynamic
allocation with pointer queues:

• Amortised Allocation. Static allocation amortises cost
across many blocks.

• Amortised Copy Avoidance. Similarly, remapping opera-
tions are carried out once per process lifetime, not for
every block.

• Rich pointers. Pointer queues are not valid across address
spaces. Furthermore, pointers provide no context (e.g.,
TCP flow, or movie frame), which causes them to be
embedded in complex shared datastructures that demand
locking. In Beltway, each consumer has an IBuf, a private
set of rich data pointers, valid across address spaces.
IBufs are lock-free and yield good cache behaviour
through their reduced size.

If rings have such obvious advantages, why have they
not been used more extensively before? There are a few
obvious challenges to implementing rings effectively. For one,
they trade memory utilisation for speed. In the past this
was unacceptable, but as RAM size growth outpaces access
time the option becomes increasingly viable. Furthermore,
memory waste can be curtailed. Another issue is that rings are
coarse-grain structures: they do not enforce per-block security
policies. The remainder of this paper – and indeed the core of
the Beltway buffers – deals with overcoming these obstacles.

B. Collections of Rings

Battling complexity, a single ring would be ideal. Unfortu-
nately, that fails even for the simplest of tasks. Take a MON-
like application in which drivers receive all data in a single,
shared ring buffer that is shared between all applications.
Such a ring incurs no copies and has no runtime allocation.
Unfortunately, the solution fails for multiple reasons.

First, unacceptable security concerns arise when there is
no control over who has read and write access to data
within the ring. Unprivileged users’ MON applications, for
example, may not inspect any traffic but their own. The authors

Ibuf

Ibuf

Dbuf

Ibuf

Dbuf

Fig. 1. Chain of data rings with data and index buffers with pointers to data

of FBufs [5] have previously voiced these concerns about
memory architectures with coarse-grain security enforcement.

Second, in the presence of multiple logical processors,
a single ring is shared by all processors which leads to
cache conflicts. In contrast, giving each processor its individ-
ual buffer limits working-set overlap and thereby increases
throughput. We want to avoid silly cache behaviour, whereby
an update by one consumer leads to a cache invalidation for
another even though no data dependency exists. The same
holds for metadata updates by producers and consumers.
Similar objectives led to Van Jacobson’s ‘netchannel’ [11]
architecture where the processing of a packet, including TCP,
is tied to a single processor. We facilitate the same behaviour.

Third, besides multiple cores performing end processing, we
must also attend to embedded resources. For instance, NICs
may run some functionality on the card (filters for MON, say,
or checksumming for FS) using either on-board buffers [2], or
buffers in host memory [12]. The I/O architecture must support
non uniform memory access, reconcile distinct memory ad-
dressing schemes, integrate varying hardware ring implemen-
tations and select globally optimal buffer placement policies.

Finally, transformation of data (such as TCP reassembly,
encryption, etc.) may be hard to do ‘in-place’ because of
security or buffer space limitations. In that case, data may
be better duplicated in a different buffer.

C. Data Buffers and Index Buffers

At the heart of the Beltway buffers are DBufs and IBufs
of varying sizes and use-cases (Figure 1). DBufs can contain
arbitrary and possibly mixed data, of both discrete (e.g., IP
packets) and continuous (e.g., a UNIX pipe) nature. Each
IBuf belongs to a consumer: a kernel task or application
interested in a subset of the data contained in the DBuf. An
IBuf represents a consumer’s view on this data. For example,
a media application’s IBuf may point to the start of all frames
in a videostream.

An IBuf may contain pointers to multiple DBufs and
multiple IBufs may point to the same or different blocks
in the same DBuf. Figure 1 depicts the varied relationships.
Both kinds of freedom are necessary. The first is used when
a consumer accesses data arriving over multiple paths, e.g.,
a MON application monitoring two NICs. The second case
occurs with multiple processors. Here, data consumers may
be scheduled on separate cores. By maintaining the data
list for each consumer in a separate IBuf, interference is
minimised. Producer and consumer metadata is mapped in
different cachelines, so updating the write pointer does not
invalidate the consumers’ cachelines. In addition, in many
demanding applications, like network processing or graphics,

userspace

kernel

�
�
�
�

�
�
�
� len

index

offset
buffer id index offset classifier

IBuf entry

NIC1

buffer id

DBuf−2DBuf−1

Fig. 2. IBuf entry points to a byte in a specific DBuf on NIC1

consumers process disjoint sets of data blocks. For instance,
applications process their own set of IP packets or frames.
By aligning buffer slots on cacheline boundaries, we decouple
data access on multiple cores.

D. Allocation and Memory Mapping

Beltway buffers minimise copying through aggressive shar-
ing. In most cases, a block is copied into a DBuf once and
accessed by everyone from there. For instance, FS applica-
tions read from a file-cache and only push indices to the
transmission queue, where they are combined with headers,
scatter-gather style. MON applications directly snoop other
processes’ DBufs to filter in-place. Beltway minimises copying
both vertically (e.g., between NIC, kernel and applications for,
say, FS sending data to the network), and horizontally (e.g.,
demultiplexing the same data to multiple applications for, say,
a MON application sniffing incoming traffic). As calls to the
general memory allocator are expensive, buffers are allocated
in advance as a contiguous virtual memory block, e.g., during
application initialisation. Because the entire buffer is a single
block of memory, it can be mapped into a protection domain
in a single operation.

Buffers encapsulate data into what we term soft segments,
the software equivalent of hardware-supported memory seg-
ments. Ideally, they should be implemented using hardware
segments, but the current implementation uses a set of pages
protected by the MMU.

Setting up and tearing down shared memory (e.g., using
the POSIX mmap call) is expensive. Per-page copy avoidance
mechanisms incur this cost for each block. Even though the
benefits outweigh these costs, profits are not maximised. In
our shared rings, mapping costs are amortised over all blocks
and consumers, rendering them irrelevant.

E. Indirection Details

As DBufs may reside in different protection domains and
the Beltway system does not assume a single address space,
IBuf elements have to be valid across all address spaces. For
this reason an IBuf entry contains a 3-tuple that serves as
a pointer: a globally unique identifier of the corresponding
DBuf, an index into that buffer to select a block of data, and an
offset into the block. Prior to accessing, say, a network packet
for the first time, the IBuf pointer is translated into a local
pointer that is cached for subsequent accesses. An example
IBuf entry is illustrated in Figure 2. It provides a global pointer
to a byte in a buffer on one of the network cards.

IBufs also contain a length field to complement the pointer,
as well as a field to store classification results. For instance, an

IBuf producer in MON can be a classifier that weeds out non-
TCP traffic and stores the destination port in the classification
field. If the next processing step (e.g., a filter or transcoder)
selects packets based on classification results only, no accesses
to DBufs are required at all. Only IBufs are accessed, which
is attractive for cache behaviour. In practise, we found that the
offset and classifier fields in IBufs are useful when handling
encapsulated data blocks corresponding to byte streams (such
as TCP segments or movie frames). For instance, the index
may point to the start of a TCP segment, the offset to the
data, while the classifier stores the flow id. In Section VI-0c
we discuss in-place TCP reassembly for MON along these
lines.

When reading from or writing to a DBuf, calls directly
access the local data ring. When accessing an IBuf, however,
we do not return the IBuf contents. Instead, we silently resolve
the corresponding DBuf and return a block from there (pro-
vided the IBuf pointer is valid). Transparent indirection makes
application programming simpler, because it gives applications
a private view on data without needing a separate interface. If
the DBuf referenced from an IBuf element is not accessible in
the current address space it is silently mapped in, in a manner
reminiscent of page-fault handling.

Beltway buffers can be viewed as a second virtual memory
layer with an unconventional addressing scheme. One might
object that it is simpler to build queues with pointers. An
IBuf index lookup is fairly expensive because a locally valid
address must be recalculated. The benefits of our approach
are that indices remain valid across address spaces. We do not
presuppose a single address space system, as that would limit
applicability. It is also not necessary, because overhead can be
amortised to reduce cost.

F. A Uniform, POSIX-based Buffer Interface

No ring buffer design is optimal for all combinations of
tasks, domains and users. Some tasks process data in fixed-
size segments, while others access continuous byte-streams.
Between some protection domains memory regions can be
shared, while others leverage hardware support for pushing
data across. Moreover, between domains differences in hard-
ware alignment and endianness must be taken into account.
Dealing with such buffer peculiarities usually leads to special-
isation within the core code-path, the opposite of a structured
OS. In contrast, Beltway buffers hide these implementation
details behind a common interface. All buffers, anywhere in
the system (even the kernel), look alike to the consumer. This
choice has allowed us to freely experiment with novel buffer
implementations.

Instead of defining our own interface, we build on the well-
known POSIX file API. The POSIX API is used to directly
access all Beltway buffers. By itself the POSIX file API is
a convenient API for FS applications. On top of this we im-
plemented other communication interfaces, most importantly
BSD Sockets, UNIX pipes and the packet capture (PCAP)
interface for MON applications (like tcpdump, ntop and

snort). We will discuss these interfaces and their use of
buffering in Section VI.

Our implementation of the POSIX file API is sufficiently
flexible to allow multiple processes to share a single buffer
to implement a multicast pipe, and also to implement effi-
cient communication abstractions similar to the splice call
proposed by McVoy [13]. Splice controls a kernel buffer
from userspace. It allows data to be moved to/from the buffer
from/to arbitrary file descriptors. FS greatly benefits from
splice as disk data is no longer copied to userspace. MON
programs benefit from it when saving interesting data to disk.

Following the POSIX convention, a Beltway buffer is
opened using:

open (const char *name, int flags [, mode t mode [, size t size]])

The name argument is optional and can be used for named
buffers (similar to named pipes). The fourth, also optional,
parameter sets buffer size. read, write, lseek and close
all follow convention. Semantics are also similar, but not
identical. The two main differences between streams and files
are that streams can be in theory of infinite length, and that
only part of the stream (the sliding window) can be accessed
at any time, whereas files are of fixed length and randomly-
accessible [8]. This is reflected in the possibility of repeated
calls for the same data failing in streams.

A known performance drawback of the POSIX API is that it
is based on copy semantics, that is, read and write always
create private copies of blocks for the caller. Such semantics
are safe, but often wasteful, as they must be implemented
using copying or VM modifications such as copy-on-write.
For this reason, alternative communication methods have been
designed, such as U-Net [9] and IO-Lite [7]. To circumvent
these costs with only minimal changes to the application,
we extend the API with only a single function: peek, an
alternative to read that uses weak move semantics in the
nomenclature of Brustoloni and Steenkiste [3]. With weak
move semantics actors may read blocks, but not modify them,
because blocks can be shared. Instead of making a private
copy, the subsystem returns a pointer to the original location
(somewhere in a DBuf). The function is identical to read
apart from the second argument, which takes a double instead
of a single pointer:

ssize t peek(int fd, void **buf, size t count);

G. Security

These semantics are easily enforced between memory pro-
tection domains by sharing the pages underlying a buffer as
read-only. This is one example of a more generic, uncon-
ventional, approach to access control afforded by long-lived
shared buffers. In Beltway, each buffer has a single access
control policy, Similar to POSIX file access, buffer access is
restricted to an access control group (gid) or user (uid). Unlike
files, buffers can also be shared only within process groups
(pid). Protection is enforced per buffer and protection domain
pair; access rights are checked only on the first access to a
ring from a domain.

p−DBuf v−DBuf d−DBuf c−DBuf

= delimiter metadata in
separate ring

no delimiters
(handled by IBuf)

fixed−size
slots buffer

Fig. 3. Different implementations of DBufs

Coarsening of access control removes one type of runtime
cost. Beltway buffer function calls are handled in the context
of the caller, whereas traditionally calls must cross to the
kernel to guarantee correctness. Making the API orthogonal
to the user/kernel ABI saves context-switches and consequent
cache invalidations. It trivially enables zero-copy network
monitoring. More in general, it allows copy-free transport
between groups of processes and devices. With multiple NICs
(or multi-ring NICs) private, secure zero copy networking can
be configured for multiple applications, users or groups.

The stricter POSIX semantics must still remain enforceable.
In Beltway buffers, read is left unaltered. By default, write
is backed by a statically mapped ringbuffer, which in principle
allows applications to alter buffer contents after the call
returns. When untrusted processes can harm others or the
OS kernel by circumventing said policies, strict enforcement
through memory protection (and thus context-switching) can
be enabled on a case-by-case basis. With private transmission
queues applications can only harm their own communication,
against which no protection is necessary.

H. Disk access

Beltway buffers integrate the page cache (the cache for disk
data managed by the OS) to enable reading from the cache
without runtime privilege escalation.

In this scenario a single shared cache – as commonly
employed – is not sufficient because of security reasons.
Instead, each consumer may have three buffers for caching:
a private cache, a cache shared by its group, and a cache
shared by everyone. Just like other buffers in the Beltway
buffer system, the cache is shared according to access rights
attached to pid, uid, gid, or other. The disk cache can safely be
made visible from userspace and shared with other consumers.

FS like applications often consist of a loop over a read
from disk and a write to a socket. This scenario has been
optimised through sendfile in many UNIX OSes. Beltway
buffers have a more general solution that works between any
collection of rings. By enabling what we call the fast splice
optimisation, the two connected operations lead to splice-
like functionality without requiring a change in interface.
Using peek no data is even copied to userspace. With the
optimisation, a write call compares its passed data pointer to
the last block seen by peek or read. If they match, and the
write is to an IBuf (e.g., for network transmission), instead of
data the generally smaller IBuf element is copied. Even if a
read is used instead of a peek administrators may configure
buffers as having splice-like behaviour. Although the read
incurs a copy, the write copy and user/kernel-mode switch

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000

B
uf

fe
r

si
ze

 (
K

B
)

T
hr

ou
gh

pu
t (

M
bp

s)

resize round

scalable size
scalable rate

static size
static rate

Fig. 4. Scalable buffer performance

are saved. As a result, even unmodified legacy applications
experience significant speed-ups. This cannot be made the
default behaviour, because it causes data corruption when a
process modifies data. For FS applications like webservers it
will be turned on, while for decoders it will be off.

V. SPECIALISATION

We now show how modifying the buffer benefits throughput,
drop rate and other characteristics. So far we have seen two
types of buffers, DBuf and IBuf, which differ in task: the first
hold variable sized blocks such as network packets, the second
small, fixed-size indices. Could adapting the underlying buffer
implementation to the use-case improve performance? Figure 3
shows a few example implementations. In this chapter we will
show multiple, orthogonal, design trade-offs. Where applicable
we note defaults for specific tasks. These can always be
overridden through flags in the open call.

A. Increasing Memory Bus Throughput

To maximise memory throughput we leverage mechanisms
such as prefetching, burst reading and, most importantly,
caching. Optimising code for these features is complex,
because cache hierarchies and memory technologies differ
widely. We will not discuss ways to optimise code to a specific
hardware environment. Instead, we consider a more general
rule-of-thumb: a decrease in runtime memory usage will lead
to an increase in throughput. Before we employ this rule we
note its main exception: data alignment to hardware boundaries
(cachelines, pages) benefits performance; squeezing the last bit
out of each allocation is therefore not the goal. Furthermore,
only waste that influences performance needs to be minimised.
Most of the waste incurred by shared rings is due to statically
allocated, unused memory, with no impact on cache utilisation.
We discern two types of waste: external and internal.

1) On-demand Resizing: External waste is the unused part
of the ring spanning from the head to the tail. Memory locality
can be increased by reducing this gap, but a buffer tuned too
well to the average case will overflow during bursts. The trade-
off between memory locality and overflow is hard to make
in general, but clearly some inefficiency is unavoidable when
buffers are pre-allocated.

External waste can be limited by adapting the buffer size
at runtime. To investigate this idea, we built a resizable buffer
that —unlike heap-allocation— is contiguous and for which
resizing is more costly than static operation. When resizing is
requested, a new memory area is allocated (akin to rehashing).
While there are references to the old area both must be probed.

Fig. 5. performance of different ring implementations

Thereafter the old area is released. Computational overhead is
minimal, but memory pressure considerable during resizing.
Buffer sizes are based on powers of two, therefore pressure is
either 1.5 or 3 times as high as originally.

To circumvent the memory pressure issue, we have also
implemented a pseudo-resizable buffer that does not change
the underlying memory area, but instead reduces the perceived
size. Only part of the ring is used, similar to how a deck of
cards is “cut”. The added logic makes calls more expensive
than for a static ring. Both scalable buffers trade off compu-
tational complexity for an increase in locality of reference.
We compared the pseudo-resizing buffer to a static ring in
Figure 4, which shows throughput in consecutive rounds of
resizing, as well as the size of the buffers. The sudden hike in
throughput is a result of the sequential nature of ring access:
for a static distance between consumer and producer, either the
entire intermediate working-set fits it the cache, or LRU causes
each consumer access to result in a miss. The resizable buffer
was observed to perform similarly. Automatic runtime scaling
is implemented using high and low watermarks on producer-
consumer distance. Resizable buffers thus automatically adapt
to cache and working-set size. Not visible in this figure is
the computational overhead of adaptation. Unoptimised code
did show up to a 10% overhead, but this disappeared with
compiler optimisation.

2) Slot Compression: Internal waste is unused space within
an allocated block. Traditional slotted buffers have a high
percentage of internal waste, because slots are tailored to upper
bounds. In case of Ethernet frames slots must be at least
1514 bytes, while the majority of packets are much smaller.
Minimum sized packets with the highest ratio of waste to data
(up to 95% of space is unused) are quite common [14].

Internal waste is removed completely by switching to vari-
able sized slots. In such a v-DBuf, a marker denoting the
length of a block precedes the block itself. Direct access
is identical to access to a slotted buffer, but seeking is
considerably more expensive, because a simple computation
no longer suffices: markers must be read, which adds memory
lookups. Also, there is no concept of a single loop in the ring.
If no valid pointer is known, e.g., because of overflow, the only
option is to update all the way to the shared offset, because
there is no way to discern markers from data after-the-fact.

Both drawbacks, seeking cost and overflow handling, can
be overcome by placing the headers out-of-band, in a separate
– smaller – circular buffer. The small buffer fits more headers
in a single cacheline, reducing seeking cost. Marker validation

 40

 80

 120

 160

 100 10000 1e+06

T
hr

ou
gh

pu
t (

M
B

ps
)

Bytes per call (logscale)

P 16K
P 256K

P 4M
P 64M
R 16K

R 256K
R 4M

R 64M

Fig. 6. Impact of ring size and datablock size

is identical to that of IBuf indices. Apart from this a double
ring buffer – or d-DBuf – is identical to a v-DBuf. Figure 5
shows the throughput for different types of buffer. We keep
the distance between consumer and producer sufficiently large
to prevent caching from skewing the results. We use different
packet sizes to incorporate both the computational (per packet)
and the memory-read (per byte) overhead . The compared
buffers differ slightly in size, as for each we chose the bounds
so that they are cheapest to calculate with (powers of 2).
For example, a v-DBuf is larger than a p-DBuf, because it
also contains markers. For reference, we also show allocation
strategies using the dlmalloc general allocator (“malloc”)
and a buffered version of the same, which allocates 10 slots
at a time (“10malloc”).

The figure shows that baseline ring buffer performance is
about twice as high as that of the general allocator. Although
buffering malloc calls amortises costs for small blocks, it does
not increase maximally obtainable results. We further see that
p-DBufs indeed suffer from internal waste. For maximum
sized slots p-DBuf performance is in line with that of v-DBuf
and d-DBuf. As packet size is reduced, so is relative p-DBuf
throughput. Up to 30% of throughput is wasted in the worst
case. d-DBuf and v-DBuf results are on par. This was to be
expected, as the only advantage of d-DBufs (seeking) are not
evaluated in this test.

Figure 6 shows the impact of buffer size and per-call block
size on throughput. We show only the v-DBUF, results are
similar for other implementations. Both the buffer sizes and
the read/peek sizes range from 64B to 64MB. The results for
buffers smaller than 16KB coincide with that of 16KB. Again
the influence of cache sizes on throughput is clearly visible.

B. Handling Resource Exhaustion

Because ringbuffers are statically allocated, they may suffer
from memory exhaustion long before heap allocation fails.
For this reason Beltway buffers must handle out-of-memory
(OOM) errors themselves. In a ringbuffer an OOM condition
occurs if the consumer is a whole buffer length behind the
producer. Aside from standard tail-drop, Beltway buffers can
choose from three lossy synchronisation strategies that are
particularly suited to network traffic: Slow Reader Preference
(SRP), Medium Reader Preference (MRP), and Fast Reader
Preference (FRP). All methods are based on the idea that
performance (and fairness) can be improved if occasional
packet loss is acceptable. They differ in how far they deviate
from tail-drop. As its name implies, MRP is a compromise

between the other two. We will first introduce the extremes
and then show how MRP manages to be nearly as fast as (and
scales with) FRP, but gives the stable droprate expectations of
SRP.

SRP is also known as non-blocking tail-drop. It silently
stops producers from accessing the ring by dropping all
write() calls. SRP is named slow reader because it must
recalculate the position of the slowest consumer to know
whether write requests must be dropped, and the slowest reader
determines the throughput. Calculation involves a sort over all
read pointers. It thus scales worse than linearly (n log n) with
the number of readers.

To circumvent the calculation we developed FRP. FRP
blocks nor drops; the writer simply overwrites whatever is
in the buffer. Consumers individually compare their location
to that of the producer to calculate whether an item has been
overwritten. For this to work pointers must be absolute, not
truncated to ring-length. Resolution then becomes trivial: if
the consumer is behind the producer more than a complete
loop, its position is moved forward. FRP is more fair than SRP,
because only slow consumers are punished for their behaviour
and fast consumers are no longer slowed down by tardy
readers. Especially in multi-user environments it is important
to shield processes from each other. A secondary advantage is
that with FRP producers do not have to be aware of consumer
metadata. Across the userspace/kernelspace boundary an FRP-
enabled buffer is easily shared read-only. With SRP/tail-drop
processes must notify in-kernel producers of their position,
either through shared memory or (costly) system calls.

Unfortunately, FRP introduces complexity of its own. On
a miss we need to decide how many blocks are skipped:
moving the tail forward by a single slot minimises droprate in
the short term, but because OOM handling is more expensive
than normal processing this can result in thrashing. Because
an FRP-enabled buffer is completely lock-free, data can be
overwritten during a read. We place the burden of guaranteeing
correct behaviour on the consumer, forcing it to check block
validity both before and after accessing it. If need be, buffers
can export blocks in a safe manner at the cost of an extra
copy. For legacy applications this copy is free because it
comes with the POSIX read(..) call. Real FRP-aware
applications see higher throughput, because they can replace
the copy with peek plus cheaper bounds checks. Streaming
media and network monitoring applications are easily made
FRP-aware. Even non-streaming applications can increasingly
handle occasional data-corruption, e.g., modern block-based
p2p clients.

Medium Reader Preference (MRP) logically sits between
FRP and SRP. The model is simple and centred around a
single shared read pointer R that is updated by each consumer
c, which also maintains a private read pointer rc. The producer
simply treats the buffer as tail-drop with a single read pointer
R. When a consumer with read pointer rorig

c is scheduled it
consumes n bytes of data and subsequently executes R = rorig

c

and rorig
c +=n. In other words, it updates R to its own previous

read pointer. Assuming consumers are scheduled in round

robin fashion, all other consumers now have exactly one
chance to read these n bytes before c is scheduled again, at
which point it will set R to rorig

c +n. Now the n bytes may be
overwritten. Functionally, MRP mimics SRP except for very
tardy readers. Performance-wise it resembles FRP, because
slow readers cannot hold up fast readers and synchronisation
is minimal. It combines the advantages of both.

By default Beltway buffers employ SRP to guarantee appli-
cation data integrity, but developers can manually switch to
FRP or MRP. Doing so will benefit MON applications as they
switch between tasks for network packets. Deep within the OS
FRP already replaces SRP, because there we do not have to
cater to application expectations and FRP can more effectively
exploit hardware characteristics such as burst transfer.

C. Peripheral Hardware Integration

Network devices generally

kernel
PCI

NIC

F4

F3

F2

F1

userspace

Fig. 7. Remote address spaces

communicate with the host
through ringbuffers, which
makes integration into Belt-
way straightforward in prin-
ciple. The strict separation
of buffer interface and im-
plementation further makes it
feasible in practice. Technical details, such as hardware bugs,
are dealt with cleanly through device-specific ring implemen-
tations. Architecture specific hints for caching (e.g., Intel’s Di-
rect Cache Access) can be embedded here as well. Upcoming
header splitting, whereby transport layer headers and payload
are sent to separate rings, will enable zero copy data reception.
Finally, with lower per-packet stack traversal cost, Beltway
buffers reduce the need for Large Receive Offloading (LRO)
and TCP Segmentation Offloading (TSO).

In high-speed communication, peripheral media are another
critical link. Special care must be taken to keep them from
becoming the performance bottleneck. For example, Figure 7
shows a high-performance NIC that gives direct host access
to its on-board DBuf. With Beltway buffers, the application or
kernel interface is not different from that of host-buffers. Only
latency and throughput differ, and are affected by the chosen
buffer implementation. A zero-copy implementation intuitively
appears optimal, but fails to make use of hardware support,
such as DMA. For sequential access DMA is considerably
faster, if used correctly. A practical issue concerns DMA
efficiency with metadata updates. The PCI bus is a clocked
bitpipe shared via bus arbitration. To maximise throughput, the
bus must be used in burst mode and bus arbitration must be
avoided. In other words, data must only be transferred in one
direction. FRP is uniquely suited to this scenario and therefore
the default synchronisation strategy across a shared bus.

VI. PRACTICAL USE IN NETWORKING

To demonstrate practical use, we engineered popular net-
work APIs to use Beltway buffers: BSD sockets and the packet
capture (pcap) library. Additionally, with an in-place TCP

reassembly routine we demonstrate how shared ringbuffers can
bring about savings higher up in the network stack.

a) PCAP: The pcap library implements an application
programming interface for network packet capture. It is
used by well-known MON tools such as tcpdump, nmap,
Ethereal, and Snort. We provide the same functionality
by pushing all incoming packets into a DBuf and all interesting
references (as selected by a standard BPF filter) into an IBuf.
Pcap on top of Beltway has several advantages over traditional
implementations. First, packet copying is minimised, not only
across vertical boundaries (like kernel-userspace), but also
horizontally. For instance, administrators may start up tcpdump
alongside existing applications and simply share the original
buffers. Second, rather than pulling each packet individually
out of the kernel, we minimise context switching by accessing
the DBuf directly from userspace and processing many packets
in one timeslice.

b) BSD Sockets: We also implemented sockets on top
of Beltway. In this case, too, all calls operate on locally
accessible DBufs and IBufs. recv, send and related calls
are protocol-specific wrappers around read and write that
combine data with headers. The accept call works almost
the same: it waits on an IBuf containing elements pointing
to new flows. To wait on multiple file-descriptors, select
and poll are used. Standard implementations of these have
been shown to scale inefficiently [15]. To circumvent polling
on multiple IBufs, we supply a separate IBuf into which all
data destined for any of a process’s file descriptors is written.
The solution is not generic, but implements the standard use
of select: to wait for any of all open streams to become
active.

c) In-place TCP Stream Reassembly: Recreating a con-
tinuous stream of data from packets is expensive because
commonly it incurs a full payload copy. TCP is especially
difficult, as it allows data to partially overlap. Beltway buffers
offers a TCP reassembly mode where streams are reassembled
in-place, i.e. in zero-copy fashion. In the common case, when
packets do not overlap and arrive in-order, our method removes
the cost of copying payload completely. Instead, we incur the
substantially smaller cost of bookkeeping the start and length
of each TCP segment.

Our TCP reassembly design is based on the insight that
consumers do not need access to the streams continuously.
They only need to receive blocks in consecutive order. In in-
place TCP, segments are received in DBufs. The offset pointer
in the IBuf is then set to point to the start of the segment
payload, rather than the start of the encapsulating packet.
Executing a read() call results in returning an amount of
data of at most one segment’s payload length in size. peek()
even returns a pointer directly into the original segment.

To quantify how indirect stream reassembly measures up
to regular copy-based reassembly we compared them head-
to-head. The two functions share the majority of code, only
differing in segment bookkeeping. Indirect reassembly outper-
formed the copy-based method for all but the smallest packets
(below 100B). Only in that case is accounting cost discernible.

posix 16kB 64kB 256kB 1MB 4MB pthreads
cswitch 155633 62996 17427 4630 1192 622 837
pgfault 646 706 743 887 1461 3760 582

TABLE I
BREAKDOWN OF PIPE OVERHEAD

VII. EVALUATION

We now compare our work head-to-head to Linux 2.6.16.
All tests were executed on an AMD Sempron 3000+ with
128KB of (unified) L2 cache memory.

We begin with an IPC test. Figure 8 compares UNIX
pipe throughput of Linux and Beltway buffers. Beltway does
not use the peek optimisation, thus both systems copy the
same amount of data. Any performance improvement comes
from a reduction in context switching. As upper bound on
achievable performance we also show a threaded application
that communicates through

shared memory.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000

M
B

ps

Bytes per call

posix
pthread

16KB
64KB

256KB
1MB
4MB

Fig. 8. Evaluation of pipes

This application
outperforms Linux
pipes by a factor of
2.5. In between them
are 5 SRP v-DBufs
of varying size.
The fastest buffer is
neither the largest,
nor the smallest.
Initially, performance
grows with buffer
size as the number
of context switches drops. Ultimately, however, the TLB
runs out of entries and starts thrashing, which nullifies
further context switch savings. Table I plots the number of
context switches and page-faults incurred as a function of
call size. As expected, context switch count diminishes with
size. Page fault overhead only becomes pronounced when
the working set exceeds TLB size (here 256kB). Indeed,
peak throughput occurs with rings sized between 64 and
256KB (for 4KB pages). We observed the same result for the
threaded application, but have only plotted its optimal result
for brevity.

A conservative configuration of Beltway buffers outper-
forms linux pipes. Next, we compare this configuration to one
using peek, with and without the fast splice optimisation.
Figure 9 shows sustainable throughput for an FS scenario,
where data is read from the page cache and written to a
network transmission IBuf. Highest throughput is obtained
with p/o: the peek equivalent of read-only access. The rate
can even exceed the physical bus limit, as no data is directly
touched. This mode has no practical use, however, and is only
shown as upper bound on performance. Barely slower is fast
peek/write, which combines peek with splicing. This
does not touch any data either, but writes out an index. read
cost becomes apparent when comparing these results with
the other two, read/only and fast read/write. They
are an order of magnitude slower. Worst results are obtained
when we cannot use splicing, but instead must write out data:

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000T
hr

ou
gh

pu
t (

M
B

ps
, l

og
sc

al
e)

callsize (B)

p/o
fast p/w

r/o
fast r/w

p/w
r/w

Fig. 9. Read and write performance

throughput drops again, to a third. We observe that writing is
the main bottleneck from the observation that peek/write
and read/write are equally fast, while we see in other
cases that peek clearly outperforms read.

Figure 10 compares cost, in terms of CPU utilisation, of
Beltway tcpdump to two Linux configurations: with minimal
and maximal capture length (68 and 1500 bytes per packet). To
investigate scalability we process only a moderate datastream:
100 Mbps of maximum sized packets (i.e., 75000 pps).
The figure shows that our version is about 25% faster for
a single application. More interesting savings occur when
we run applications in parallel. Whereas standard tcpdump
scales linearly with the number of packets, our version incurs
no significant overhead for up to 9 applications. With 10
applications, however, the system starts thrashing. By inspect-
ing the number of voluntary and forced context switches
independently we learnt that, although involuntary switching
increases with each application, thrashing does not occur until
the number of voluntary switches starts decreasing. That is a
sign that applications cannot process all data during their slot,
which starts a snowball effect: thrashing.

Although we expected standard tcpdump to be memory
bound, Figure 10 shows that the minimal and maximal cap-
ture length versions have roughly the same overhead. Thus,
tcpdump is not directly memory bound. Indeed, 100 Mbit of
data may be copied tens of times before a modern memory
bus is saturated. The real bottleneck is that tcpdump switches
for each packet. Standard tcpdump switches 19 times as much
as a single Beltway buffers tcpdump instance (77000 vs 4400).
Even for 10 parallel applications, our version switches only a
5th the amount of a single standard tcpdump (16000).

In short, we can monitor traffic in parallel with other
applications with minimal performance degradation. More
interestingly, as switching costs seem to dominate overhead,
the same advantages exist when accessing non-overlapping
data.

Finally, we applied Beltway buffers in an intrusion pre-
vention system (IPS) embedded in a programmable network
card based on the Intel IXP2400 network processor. The
IPS applied in-place TCP reassembly, full payload regular
expression scanning and layer-7 protocol validation. Despite
the computational overhead, the system achieved a throughput
of almost 1 Gbps in the worst case. Interested readers are
referred to [2].

 0

 50

 100

 0 4 8 12 16

C
P

U
 u

til
iz

at
io

n

number of applications

Linux Max
Linux Min

Beltway

Fig. 10. Tcpdump scalability

VIII. CONCLUSIONS

Beltway buffers is a buffer management system that reduces
I/O overhead, in particular for network applications. Beltway
buffers consigns all data to shared ring buffers to amortise
allocation and data movement overhead. Efficient access to
these buffers additionally reduces context switching and cache
invalidation. The Beltway buffer system provides a familiar
POSIX file API to its users, which makes it backwards
compatible with existing Unix-like operating systems.

ACKNOWLEDGEMENTS

We would like to thank Peter Druschel, Philip Homburg,
Kees Verstoep and Tomas Hruby for commenting on earlier
versions of this paper.

REFERENCES

[1] “splice(2) - linux man page,” http://linux.die.net/man/2/splice, 2006.
[2] W. de Bruijn, A. Slowinska, K. van Reeuwijk, T. Hruby, L. Xu, and

H. Bos, “Safecard: a gigabit ips on the network card,” in Proceedings of
9th International Symposium on Recent Advances in Intrusion Detection
(RAID’06), Hamburg, Germany, September 2006.

[3] J. C. Brustoloni and P. Steenkiste, “Effects of buffering semantics on i/o
performance,” in Operating Systems Design and Implementation, 1996,
pp. 277–291.

[4] P. Druschel, M. B. Abbott, M. A. Pagals, and L. L. Peterson, “Network
subsystems design,” IEEE Network, vol. 7, no. 4, pp. 8–17, 1993.

[5] P. Druschel and L. L. Peterson, “Fbufs: A high-bandwidth cross-domain
transfer facility,” in Symposium on Operating Systems Principles, 1993,
pp. 189–202.

[6] J. Pasquale, E. W. Anderson, and K. Muller, “Container shipping:
Operating system support for i/o-intensive applications,” IEEE
Computer, vol. 27, no. 3, pp. 84–93, 1994. [Online]. Available:
citeseer.ist.psu.edu/pasquale94container.html

[7] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Io-lite: a unified i/o
buffering and caching system,” ACM Transactions on Computer Systems,
vol. 18, no. 1, pp. 37–66, 2000.

[8] R. Govindan and D. P. Anderson, “Scheduling and ipc mechanisms
for continuous media,” in Proceedings of 13th ACM Symposium on
Operating Systems Principles. ACM SIGOPS, 1991, pp. 68–80.

[9] T. von Eicken, A. Basu, V. Buch, and W. Vogels, “U-net: a user-level
network interface for parallel and distributed computing,” in Proceedings
of SOSP15, 1995.

[10] I. Pratt and K. Fraser, “Arsenic: A user-accessible gigabit ethernet
interface,” in INFOCOM, 2001, pp. 67–76. [Online]. Available:
citeseer.ist.psu.edu/pratt01arsenic.html

[11] V. Jacobson and B. Felderman, “A modest proposal to help speed up
& scale up the linux networking stack,” http://www.linux.org.au/conf/
2006/abstract8204.html?id=382, 2006.

[12] J. Cleary, S. Donnelly, I. Graham, A. McGregor, and M. Pearson,
“Design principles for accurate passive measurement,” in Proceedings
of PAM, Hamilton, New Zealand, Apr. 2000.

[13] L. McVoy, “The splice I/O model,” www.bitmover.com/lm/papers/splice.
ps, 1998.

[14] K. Claffy, G. J. Miller, and K. Thompson, “The nature of the beast:
recent traffic measurements [...],” in Proc. of INET’98, 1998.

[15] A. Chandra and D. Mosberger, “Scalability of linux Event-Dispatch
mechanisms,” in Proceedings of USENIX 2001, 2001, pp. 231–244.

