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1. Higher dimensional local fields andL-functions

A. N. Parshin

1.0. Introduction

1.0.1. Recall[P1], [FP] that if X is a scheme of dimensionn and

X0 ⊂ X1 ⊂ . . . Xn−1 ⊂ Xn = X

is a flag of irreducible subschemes (dim(Xi) = i ), then one can define a ring

KX0,...,Xn−1

associated to the flag. In the case where everything is regularly embedded, the ring is
an n-dimensional local field. Then one can form an adelic object

AX =
∏′

KX0,...,Xn−1

where the product is taken over all the flags with respect to certain restrictions on
components of adeles[P1], [Be], [Hu], [FP].

Example. Let X be an algebraic projective irreducible surface over a fieldk and let
P be a closed point ofX , C ⊂ X be an irreducible curve such thatP ∈ C .

If X andC are smooth atP , then we lett ∈ OX,P be a local equation ofC at
P and u ∈ OX,P be such thatu|C ∈ OC,P is a local parameter atP . Denote byC
the ideal defining the curveC nearP . Now we can introduce a two-dimensional local
field KP,C attached to the pairP,C by the following procedure including completions
and localizations:

ÔX,P = k(P )[[u, t]] ⊃ C = (t)
|

(ÔX,P )C = discrete valuation ring with residue fieldk(P )((u))
|

ÔP,C := ̂(ÔX,P )
C

= k(P )((u))[[t]]
|

KP,C := Frac(ÔP,C ) = k(P )((u))((t))
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200 A. N. Parshin

Note that the left hand side construction is meaningfulwithoutany smoothness condition.

Let KP be the minimal subring ofKP,C which containsk(X) andÔX,P . The ring
KP is not a field in general. ThenK ⊂ KP ⊂ KP,C and there is another intermediate
subringKC = Frac(OC) ⊂ KP,C . Note that in dimension 2 there is a duality between
points P and curvesC (generalizing the classical duality between points and lines in
projective geometry). We can compare the structure of adelic components in dimension
one and two:

KP KP,C

��
� ??

?

KP

??
?

KC

��
�

K K

1.0.2. In the one-dimensional case for every characterχ: Gal(Kab/K) → C ∗ we
have the composite

χ′:A∗ =
∏′

K∗
x

reciprocity map
−−−−−−−−→ Gal(Kab/K)

χ
−→ C ∗.

J. Tate[T] and independently K. Iwasawa introduced an analytically definedL-function

L(s, χ, f ) =
∫

A∗

f (a)χ′(a)|a|sd∗a,

whered∗ is a Haar measure onA∗ and the functionf belongs to the Bruhat–Schwartz
space of functions onA (for the definition of this space see for instance[W1, Ch. VII]).
For a special choice off andχ = 1 we get theζ -function of the schemeX

ζX (s) =
∏

x∈X

(1−N (x)−s)−1,

if dim (X) = 1 (adding the archimedean multipliers if necessary). Herex runs through
the closed points of the schemeX and N (x) = |k(x)|. The product converges for
Re(s) > dim X . For L(s, χ, f ) they proved the analytical continuation to the whole
s-plane and the functional equation

L(s, χ, f ) = L(1− s, χ−1, f̂ ),

using Fourier transformation (f 7→ f̂ ) on the spaceAX (cf. [T], [W1], [W2]).
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Part II. Section 1. Higher local fields andL-functions 201

1.0.3. Schemes can be classified according to their dimension

dim (X) geometric case arithmetic case

. . . . . . . . .

2 algebraic surface/Fq arithmetic surface

1 algebraic curve/Fq arithmetic curve

0 Spec(Fq) Spec(F1)

whereF1 is the “field of one element”.
The analytical method works for the row of the diagram corresponding to dimension

one. The problem to prove analytical continuation and functional equation for the
ζ -function of arbitrary schemeX (Hasse–Weil conjecture) was formulated by A. Weil
[W2] as a generalization of the previous Hasse conjecture for algebraic curves over
fields of algebraic numbers, see[S1],[S2]. It was solved in the geometric situation by
A. Grothendieck who employed cohomological methods[G]. Up to now there is no
extension of this method to arithmetic schemes (see, however, [D]). On the other hand,
a remarkable property of the Tate–Iwasawa method is that it can be simultaneously
applied to the fields of algebraic numbers (arithmetic situation) and to the algebraic
curves over a finite field (algebraic situation).

For a long time the author has been advocating (see, in particular, [P4], [FP]) the
following:

Problem. Extend Tate–Iwasawa’s analytic method to higher dimensions.

The higher adeles were introduced exactly for this purpose.In dimension one the
adelic groupsAX and A∗

X are locally compact groups and thus we can apply the
classical harmonic analysis. The starting point for that isthe measure theory on locally
compact local fields such asKP for the schemesX of dimension 1. So we have the
following:

Problem. Develop a measure theory and harmonic analysis onn-dimensional local
fields.

Note thatn-dimensional local fields are not locally compact topological spaces for
n > 1 and by Weil’s theorem the existence of the Haar measure on a topological group
implies its locally compactness[W3, Appendix 1].

In this work several first steps in answering these problems are described.
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202 A. N. Parshin

1.1. Riemann–Hecke method

When one tries to write theζ -function of a schemeX as a product over local fields
attached to the flags of subvarieties one meets the followingobstacle. For dimension
greater than one the local fields are parametrized by flags andnot by the closed points
itself as in the Euler product. This problem is primary to anyproblems with the measure
and integration. I think we have to return to the case of dimension one and reformulate
the Tate–Iwasawa method. Actually, it means that we have to return to the Riemann–
Hecke approach[He] known long before the work of Tate and Iwasawa. Of course, it
was the starting point for their approach.

The main point is a reduction of the integration over ideles to integration over a
single (or finitely many) local field.

Let C be a smooth irreducible complete curve defined over a fieldk = Fq .
Put K = k(C). For a closed pointx ∈ C denote byKx the fraction field of the

completionÔx of the local ringOx.
Let P be a fixed smoothk-rational point ofC . Put U = C \ P , A = Γ(U,OC ).

Note thatA is a discrete subgroup ofKP .
A classical method to calculateζ -function is to write it as a Dirichlet series instead

of the Euler product:

ζC (s) =
∑

I∈Div (OC )

|I|sC

whereDiv (OC ) is the semigroup of effective divisors,I =
∑

x∈X nxx, nx ∈ Z and
nx = 0 for almost allx ∈ C ,

|I|C =
∏

x∈X

q−
∑

nx|k(x):k|.

Rewrite ζC(s) as

ζU (s)ζP (s) =

(∑

I⊂U

|I|sU

)( ∑

supp(I)=P

|I|sP

)
.

DenoteA′ = A \ {0}. For the sake of simplicity assume thatPic(U ) = (0) and
introduceA′′ such thatA′′ ∩ k∗ = (1) andA′ = A′′k∗. Then for everyI ⊂ U there
is a uniqueb ∈ A′′ such thatI = (b). We also write|b|∗ = |(b)|∗ for ∗ = P,U . Then
from the product formula|b|C = 1 we get |b|U = |b|−1

P . Hence

ζC (s) =

( ∑

b∈A′′

|b|sU

)(∑

m>0

q−ms

)
=

( ∑

b∈A′′

|b|−s
P

)∫

a∈K∗

P

|a|sP f+(a)d∗a
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Part II. Section 1. Higher local fields andL-functions 203

where in the last equality we have used local Tate’s calculation, f+ = i∗δ
ÔP

, i:K∗
P →

KP , δ
ÔP

is the characteristic function of the subgroupÔP , d∗(Ô∗
P ) = 1. Therefore

ζC(s) =
∑

b∈A′′

∫

a∈K∗

P

|ab−1|sP f+(a)d∗a

=
∑

b∈A′′

∫

c=ab−1
|c|sP f+(bc)d∗c =

∫

K∗

P

|c|sPF (c)d∗c,

whereF (c) =
∑

b∈A′ f+(bc).
Thus, the calculation ofζC(s) is reduced to integration over the single local field

KP . Then we can proceed further using the Poisson summation formula applied to the
function F .

This computation can be rewritten in a more functorial way asfollows

ζC(s) = 〈| |s, f0〉G · 〈| |
s, f1〉G = 〈| |s, i∗(F )〉G×G = 〈| |s, j∗ ◦ i

∗(F )〉G,

whereG = K∗
P , 〈f, f ′〉G =

∫
G
ff ′dg and we introduced the functionsf0 = δA′′ =

sum of Dirac’sδa over all a ∈ A′′ andf1 = δOP
on KP and the functionF = f0⊗f1

on KP × KP . We also have the norm map| |:G → C ∗, the convolution map
j:G×G→ G, j(x, y) = x−1y and the inclusioni:G×G→ KP ×KP .

For the appropriate classes of functionsf0 and f1 there areζ -functions with a
functional equation of the following kind

ζ(s, f0, f1) = ζ(1− s, f̂0, f̂1),

where f̂ is a Fourier transformation off . We will study the corresponding spaces of
functions and operations likej∗ or i∗ in subsection 1.3.

Remark 1. We assumed thatPic(U ) is trivial. To handle the general case one has to
consider the curveC with several points removed. Finiteness of thePic0(C) implies
that we can get an open subsetU with this property.

1.2. Restricted adeles for dimension 2

1.2.1. Let us discuss the situation for dimension one once more. We consider the case
of the algebraic curveC as above.

One-dimensional adelic complex

K ⊕
∏

x∈C

Ôx →
∏′

x∈C
Kx
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204 A. N. Parshin

can be included into the following commutative diagram

K ⊕
∏

x∈C Ôx −−−−→
∏′

x∈CKxy
y

K ⊕ ÔP −−−−→
∏′

x6=PKx/Ôx ⊕KP

where the vertical map induces an isomorphism of cohomologies of the horizontal
complexes. Next, we have a commutative diagram

K ⊕ ÔP −−−−→
∏′

x6=PKx/Ôx ⊕KPy
y

K/A −−−−→
∏′

x6=PKx/Ôx

where the bottom horizontal arrow is an isomorphism (the surjectivity follows from
the strong approximation theorem). This shows that the complex A ⊕ ÔP → KP is
quasi-isomorphic to the full adelic complex. The construction can be extended to an
arbitrary locally free sheafF on C and we obtain that the complex

W ⊕ F̂P → F̂P ⊗
ÔP

KP ,

whereW = Γ(F, C \ P ) ⊂ K , computes the cohomology of the sheafF.
This fact is essential for the analytical approach to theζ -function of the curveC .

To understand how to generalize it to higher dimensions we have to recall another
applications of this diagram, in particular, the so called Krichever correspondence from
the theory of integrable systems.

Let z be a local parameter atP , so ÔP = k[[z]] . The Krichever correspondence
assigns points of infinite dimensional Grassmanians to(C,P, z) and a torsion free
coherent sheaf ofOC -modules onC . In particular, there is an injective map from
classes of triples(C,P, z) to A ⊂ k((z)). In [P5] it was generalized to the case of
algebraic surfaces using the higher adelic language.

1.2.2. Let X be a projective irreducible algebraic surface over a fieldk, C ⊂ X be
an irreducible projective curve, andP ∈ C be a smooth point on bothC andX .

In dimension two we start with the adelic complex

A0⊕ A1 ⊕ A2→ A01⊕ A02⊕ A12→ A012,

where

A0 = K = k(X), A1 =
∏

C⊂X

ÔC , A2 =
∏

x∈X

Ôx,

A01 =
∏′

C⊂X
KC , A02 =

∏′

x∈X
Kx, A12 =

∏′

x∈C
Ôx,C , A012 = AX =

∏′
Kx,C .
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Part II. Section 1. Higher local fields andL-functions 205

In fact one can pass to another complex whose cohomologies are the same as of the
adelic complex and which is a generalization of the construction for dimension one. We
have to make the following assumptions:P ∈ C is a smooth point on bothC andX ,
and the surfaceX \ C is affine. The desired complex is

A⊕ AC ⊕ ÔP → BC ⊕BP ⊕ ÔP,C → KP,C

where the ringsBx, BC , AC andA have the following meaning. Letx ∈ C . Let

Bx =
⋂

D 6=C
(Kx ∩ Ôx,D) where the intersection is taken insideKx;

BC = KC ∩ (
⋂
x6=P

Bx) where the intersection is taken insideKx,C ;

AC = BC ∩ ÔC , A = K ∩ (
⋂

x∈X\C Ôx).

This can be easily extended to the case of an arbitrary torsion free coherent sheafF
on X .

1.2.3. Returning back to the question about theζ -function of the surfaceX over
k = Fq we suggest to write it as the product of three Dirichlet series

ζX (s) = ζX\C (s)ζC\P (s)ζP (s) =

( ∑

I⊂X\C

|I|sX

)( ∑

I⊂C\P

|I|sX

)( ∑

I⊂Spec(̂OP,C )

|I|sX

)
.

Again we can assume that the surfaceU = X \C has the most trivial possible structure.
Namely, Pic(U ) = (0) and Ch(U ) = (0). Then every rank 2 vector bundle onU is
trivial. In the general case one can remove finitely many curvesC from X to pass to
the surfaceU satisfying these properties (the same idea was used in the construction of
the higher Bruhat–Tits buildings attached to an algebraic surface[P3, sect. 3]).

Therefore any zero-idealI with support inX \ C , C \ P or P can be defined
by functions from the ringsA, AC andOP , respectively. The fundamental difference
between the case of dimension one and the case of surfaces is that zero-cyclesI and
ideals of finite colength onX are not in one-to-one correspondence.

Remark 2. In [P2], [FP] we show that the functional equation for theL-function on
an algebraic surface over a finite field can be rewritten usingthe K2-adeles. Then it
has the same shape as the functional equation for algebraic curves written in terms of
A∗ -adeles (as in[W1]).
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1.3. Types for dimension 1

We again discuss the case of dimension one. IfD is a divisor on the curveC then the
Riemann–Roch theorem says

l(D)− l(KC −D) = deg (D) + χ(OC),

where as usuall(D) = dim Γ(C,OX (D)) andKC is the canonical divisor. IfA = AC

andA1 = A(D) then

H1(C,OX (D)) = A/(A(D) +K), H0(C,OX (D)) = A(D) ∩K

whereK = Fq(C). We have the following topological properties of the groups:

A

A(D)

K

A(D) ∩K

A(D) +K

locally compact group,

compact group,

discrete group,

finite group,

group of finite index ofA.

The groupA is dual to itself. Fix a rational differential formω ∈ Ω1
K , ω 6= 0 and

an additive characterψ of Fq . The following bilinear form

〈(fx), (gx)〉 =
∑

x

resx(fxgxω), (fx), (gx) ∈ A

is non-degenerate and defines an auto-duality ofA.
If we fix a Haar measuredx on A then we also have the Fourier transform

f (x) 7→ f̂ (x) =
∫

A

ψ(〈x, y〉)f (y)dy

for functions onA and for distributionsF defined by the Parseval equality

(F̂ , φ̂) = (F, φ).

One can attach some functions and/or distributions to the subgroups introduced above

δD = the characteristic function ofA(D)

δH1 = the characteristic function ofA(D) +K

δK =
∑

γ∈K

δγ whereδγ is the delta-function at the pointγ

δH0 =
∑

γ∈A(D)∩K

δγ .

There are two fundamental rules for the Fourier transform ofthese functions

δ̂D = vol(A(D))δA(D)⊥ ,
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Part II. Section 1. Higher local fields andL-functions 207

where

A(D)⊥ = A((ω)−D),

and

δ̂Γ = vol(A/Γ)−1δΓ⊥

for any discrete co-compact groupΓ. In particular, we can apply that toΓ = K = Γ⊥.
We have

(δK , δD) = #(K ∩ A(D)) = ql(D),

(δ̂K , δ̂D) = vol(A(D))vol(A/K)−1(δK , δKC−D) = qdegDqχ(OC )ql(KC−D)

and the Parseval equality gives us the Riemann–Roch theorem.
The functions in these computations can be classified according to their types. There

are four types of functions which were introduced by F. Bruhat in 1961[Br].
Let V be a finite dimensional vector space over the adelic ringA (or over an

one-dimensional local fieldK with finite residue fieldFq ). We put

D = {locally constant functions with compact support},

E = {locally constant functions},

D
′ = {dual toD = all distributions},

E
′ = {dual toE = distributions with compact support}.

EveryV has a filtrationP ⊃ Q ⊃ R by compact open subgroups such that all quotients
P/Q are finite dimensional vector spaces overFq .

If V, V ′ are the vector spaces overFq of finite dimension then for every homomor-
phism i:V → V ′ there are two maps

F(V )
i∗−→ F(V ′), F(V ′)

i∗

−→ F(V ),

of the spacesF(V ) of all functions onV (or V ′ ) with values inC. Here i∗ is the
standard inverse image andi∗ is defined by

i∗f (v′) =

{
0, if v′ /∈ im(i)
∑

v 7→v′ f (v), otherwise.

The mapsi∗ and i∗ are dual to each other.
We apply these constructions to give a more functorial definition of the Bruhat

spaces. For any tripleP , Q, R as above we have an epimorphismi:P/R → P/Q

with the corresponding map for functionsF(P/Q)
i∗

−→ F(P/R) and a monomorphism

j:Q/R→ P/R with the map for functionsF(Q/R)
j∗
−→ F(P/R).
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Now the Bruhat spaces can be defined as follows

D = lim
−→ j∗ lim

−→ i∗ F(P/Q),

E = lim
←− j∗ lim

−→ i∗ F(P/Q),

D
′ = lim
←− j∗ lim

←− i∗ F(P/Q),

E
′ = lim
−→ j∗ lim

←− i∗ F(P/Q).

The spaces don’t depend on the choice of the chain of subspaces P,Q,R. Clearly we
have

δD ∈ D(A),

δK ∈ D
′(A),

δH0 ∈ E
′(A),

δH1 ∈ E(A).

We have the same relations for the functionsδOP
andδA′′ on the groupKP considered

in section 1.
The Fourier transform preserves the spacesD andD′ but interchanges the spaces

E and E′. Recalling the origin of the subgroups from the adelic complex we can say
that, in dimension one the types of the functions have the following structure

E

� �
D D′

� �
E′

01

� �
1 0

� �
∅

corresponding to the full simplicial division of an edge. The Fourier transform is a
reflection of the diagram with respect to the middle horizontal axis.

The main properties of the Fourier transform we need in the proof of the Riemann-
Roch theorem (and of the functional equation of theζ -function) can be summarized as
the commutativity of the following cube diagram

D ⊗D
′

j∗ //

i∗

��

E

α∗

��

D ⊗D
′
yy

99ttttttttt
i∗ //

j∗

��

E
′

{{

;;wwwwwwwwww

β∗

��

E
′

β∗ // F(F1)

E
α∗

//yy

99tttttttttttt
F(F1)

vvvvvvvvv
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coming from the exact sequence

A
i
−→ A⊕ A

j
−→ A,

with i(a) = (a, a), j(a, b) = a− b, and the maps

F1
α
−→ A

β
−→ F1

with α(0) = 0, β(a) = 0. Here F1 is the field of one element,F(F1) = C and the
arrows with heads on both ends are the Fourier transforms.

In particular, the commutativity of the diagram implies theParseval equality used
above:

〈F̂ , Ĝ〉 = β∗ ◦ i
∗(F̂ ⊗ Ĝ)

= β∗ ◦ i
∗(F̂ ⊗G) = β∗ ̂j∗(F ⊗G)

= α∗ ◦ j∗(F ⊗G) = β∗ ◦ i
∗(F ⊗G)

= 〈F,G〉.

Remark 3. These constructions can be extended to the function spaces on the groups
G(A) or G(K) for a local fieldK and a group schemeG.

1.4. Types for dimension 2

In order to understand the types of functions in the case of dimension 2 we have to look
at the adelic complex of an algebraic surface. We will use physical notations and denote
a space by the discrete index which corresponds to it. Thus the adelic complex can be
written as

∅ → 0⊕ 1⊕ 2→ 01⊕ 02⊕ 12→ 012,

where∅ stands for the augmentation map corresponding to the inclusion of H0. Just
as in the case of dimension one we have a duality ofA = A012 = 012 with itself defined
by a bilinear form

〈(fx,C), (gx,C )〉 =
∑

x,C

resx,C(fx,Cgx,C ω), (fx,C ), (gx,C ) ∈ A

which is also non-degenerate and defines the autoduality ofA.
It can be shown that

A0 = A01∩ A02, A⊥
01 = A01, A⊥

02 = A02, A⊥
0 = A01⊕ A02,
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and so on. The proofs depend on the following residue relations for a rational differential
form ω ∈ Ω2

k(X)

for all x ∈ X
∑

C∋x

resx,C (ω) = 0,

for all C ⊂ X
∑

x∈C

resx,C (ω) = 0.

We see that the subgroups appearing in the adelic complex arenot closed under the
duality. It means that the set of types in dimension two will be greater then the set of
types coming from the components of the adelic complex. Namely, we have:

Theorem 1 ([P4]). Fix a divisor D on an algebraic surfaceX and let A12 = A(D).
Consider the latticeL of the commensurability classes of subspaces inAX generated
by subspacesA01,A02,A12.

The latticeL is isomorphic to a free distributive lattice in three generators and has
the structure shown in the diagram.

012

qqqqqqqqqq

MMMMMMMMMM

01 + 12

MMMMMMMMMM 01 + 02

qq
qq

q

qq
qq

q
MM

MM
M

MM
MM

M

02 + 12

qqqqqqqqqq

2 + 01

vv
vv

vvv
vv

MMMMMMMMMM 0 + 12

MM
MM

M

MMMMM

1 + 02

qqqqqqqqqq

HH
HH

HH
HH

H

01

HH
HH

HHH
HH

0 + 1 + 2

qqqqqqqqqq

MMMMMMMMMM 12

qqqqq

qq
qq

q

02

vv
vv

vv
vvv

0 + 1

MMMMMMMMMMM 1 + 2

qq
qq

q

qq
qq

qq
MM

MM
M

MM
MM

MM

0 + 2

qqqqqqqqqqq

1

LLLLLLLLLLLLL 0 2

rrrrrrrrrrrrr

∅

Remark 4. Two subspacesV, V ′ are called commensurable if(V +V ′)/V ∩ V ′ is of
finite dimension. In the one-dimensional caseall the subspaces of the adelic complex
are commensurable (even the subspaces corresponding to different divisors). In this
case we get a free distributive lattice in two generators (for the theory of lattices see
[Bi ]).
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Just as in the case of curves we can attach to every node some space of functions
(or distributions) onA. We describe here a particular case of the construction, namely,
the spaceF02 corresponding to the node02. Also we will consider not the full adelic
group but a single two-dimensional local fieldK = Fq((u))((t)).

In order to define the space we use the filtration inK by the powersMn of the
maximal idealM = Fq((u))[[t]]t of K as a discrete valuation (of rank 1) field. Then
we try to use the same procedure as for the local field of dimension 1 (see above).

If P ⊃ Q ⊃ R are the elements of the filtration then we need to define the maps

D(P/R)
i∗−→ D(P/Q), D(P/R)

j∗

−→ D(Q/R)

corresponding to an epimorphismi:P/R → P/Q and a monomorphismj:Q/R →
P/R. The mapj∗ is a restriction of the locally constant functions with compact support
and it is well defined. To define the direct imagei∗ one needs to integrate along the
fibers of the projectioni. To do that we have to choose a Haar measure on the fibers for
all P , Q, R in a consistent way. In other words, we need a system of Haar measures
on all quotientsP/Q and by transitivity of the Haar measures in exact sequences it is
enough to do that on all quotientsMn/Mn+1.

SinceOK/M = Fq((u)) = K1 we can first choose a Haar measure on the residue
field K1. It will depend on the choice of a fractional idealM

i
K1

normalizing the Haar

measure. Next, we have to extend the measure on allMn/Mn+1. Again, it is enough
to choose a second local parametert which gives an isomorphism

tn:OK/M→M
n/Mn+1.

Having made these choices we can put as above

F02 = lim
←− j∗ lim

←− i∗ D(P/Q)

where the spaceD was introduced in the previous section.
We see that contrary to the one-dimensional case the spaceF02 is not intrinsically

defined. But the choice of all additional data can be easily controlled.

Theorem 2([P4]). The set of the spacesF02 is canonically a principal homogeneous
space over the valuation groupΓK of the fieldK .

Recall thatΓK is non-canonically isomorphic to the lexicographically ordered group
Z⊕ Z.

One can extend this procedure to other nodes of the diagram oftypes. In particular,
for 012 we get the space which does not depend on the choice of the Haarmeasures.

The standard subgroup of the type02 is BP = Fp[[u]]((t)) and it is clear that

δBP
∈ F02.

The functionsδBC
and δ

ÔP,C
have the types01, 12 respectively.
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Remark 5. Note that the whole structure of all subspaces inA or K corresponding to
different divisors or coherent sheaves is more complicated. The spacesA(D) of type12

are no more commensurable. To describe the whole lattice onehas to introduce several
equivalence relations (commensurability up to compact subspace, a locally compact
subspace and so on).
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