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Abstract A culture isolated from ascospores of Hypoxylon rickii, a xylariaceous ascomycete collected in Martinique, had

yielded botryane, noreremophilane and abietane-type terpenoids in a preceding study, but additional metabolites were

detected by extensive HPLC–MS analysis in other fractions. Herein we report the further isolation of four new sesquiter-

penoids with a silphiperfol-6-ene skeleton from extracts of H. rickii. The planar structures were elucidated by NMR and

HRMS data as 13-hydroxysilphiperfol-6-ene (1), 9-hydroxysilphiperfol-6-en-13-oic acid (2), 2-hydroxysilphiperfol-6-en-

13-oic acid (3) and 15-hydroxysilphiperfol-6-en-13-oic acid (4). For compounds 2–4 we propose the trivial names rickinic

acids A–C. Their stereochemistry was assigned by ROESY correlations as well as by the specific optical rotation. Addi-

tionally, the known compounds, botryenanol, dehydrobotrydienol, cyclo(Phe-Pro), cyclo(Pro-Leu), (?)-ramulosin and a-

eleostearic acid were isolated. The antimicrobial and cytotoxic activities of the new compounds are also reported.
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1 Introduction

The exploration of the highly diverse fungal family Xylari-

aceae in terms of secondary metabolite production has

revealed a tremendous amount of natural products from most

of the biosynthetic pathways. Whereas polyketides and PKS-

NRPS hybrid molecules occur in the stromata [1–6] and

cultures of the family members [7, 8], terpenes were so far

exclusively reported from cultures. Important examples of

the latter structural class produced by the Xylariaceae are the

antifungal sordarins fromRosellinia andHypoxylon spp. [9],

the neuropeptide gamma receptor antagonists, xylarenals A

and B from Xylaria [10], the phytotoxic hymatoxins from

‘‘Hypoxylon’’ (current name Entoleuca) mammatum [11],

the antihypertensive vinigrol from Virgaria [12], the

antibacterial hypocoprins from Hypocopra [13], or

botryanes from Daldinia concentrica [14].

Although the genus Hypoxylon is one of the largest

within the Ascomycota and its representatives are fre-

quently encountered as endophytes, little is known about

their secondary metabolite production capabilities in cul-

tures. Recently, we evaluated the diversity of natural

products produced by the ex-epitype strain of H. rickii.

Subsequently, various terpenoids of the botryane,

noreudesmane and abietane scaffold were isolated from a

single large scale fermentation of the strain [15]. We now

report the isolation, structure elucidation and biological

activity of four new silphiperfolene-type terpenoids and six

known natural products from the same fungus.

2 Results and Discussion

A 70 L fermentation of a H. rickii strain was processed by

separating the mycelia from the culture broth and extraction

of the corresponding biomass with acetone. The crude

extract was pre-fractionized by MPLC and we focused on

the isolation of the hydrophobic components by using

HPLC. Besides several not further characterized fatty acids,

we isolated the new metabolite 1 (Fig. 1) by subsequent

HPLC. Compound 1 was obtained as a colorless oil; its

molecular formula C15H24O was deduced from the molec-

ular ion cluster [M?H]? at m/z 219.1737 in the HRESIMS

spectrum, which is implying 4 degrees of unsaturation.

Proton and 1H,13C-HSQC NMR experiments revealed the

presence of three methyls, six methylenes (one of which was

oxygenated) and two methines. Furthermore, the carbon

NMR spectrum suggested two sp2 hybridized and two sp3

hybridized quaternary carbons. The structural backbone of 1

was determined by 1H,1H COSY and 1H,13C HMBC

correlations. Starting form methyl H3-15 the extensive

spin system H2-11/H2-10/H-9(H3-15)/H-1/H2-2/H2-3 was

determined by 1H,1H COSY and TOCSY correlations

(Fig. 2). By 1H,13C HMBC correlations from methylenes

H2-5 and H2-13 along with methyl H3-14 the C-5/C-6(C-

13)/C-7/C-14 partial structure was determined. Finally,
1H,13C HMBC correlations from H-1, H2-2, H2-3, H2-5, H2-

9, H2-10, H2-11, H3-12, H3-14 to quaternary carbon C-8

demonstrated the 13-hydroxysilphiperfol-6-ene structure.
1H,1H ROESY correlations between H3-15 and Hb-11 on

the b-face and H3-12 and Ha-11 on the a-face specify the

typical 1S*,4S*,8S*,9R* configuration of silphiperfolene-

type sesquiterpenoids. Because compound 1 bears no

additional optical centers, the negative specific optical

rotation of 1 defines the absolute configuration as

1S,4S,8S,9R, since (-)-silphiperfol-6-ene has been synthe-

sized from (R)-(?)-pulegone [16].

To provide additional material H. rickii was cultivated

in 10 L scale in YM medium. 13-Hydroxysilphiperfol-6-

ene (1) could not be detected, but three oxidized deriva-

tives (2–4) were isolated by preparative MPLC and HPLC.

Metabolite 2 was obtained as a colorless oil; its molecular

formula C15H22O3 was determined by the [M?H]?

molecular ion cluster at m/z 251.1649 in the HRESIMS
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spectrum. The main difference in the proton spectrum of 2

compared to 1 was the shortfall of signals for methine H-9

and methylene H2-13. This result was confirmed by the

carbon spectrum, in which additional signals for a carboxyl

and oxygenated quaternary sp3 hybridized carbon atoms

were observed. 1H,13C HMBC correlations from H2-5 to

C-13 identified the carboxylic acid carbon atom as C-13.

Singulet methyl H3-15 showed 1H,13C HMBC correlations

to oxygen bearing C-9 besides C-1 and C-10. Therefore, 2

was identified as 9-hydroxysilphiperfol-6-en-13-oic acid.

The configuration of stereocenter C-9 was assigned as S as

a consequence of the 1H,1H ROESY correlation between

methyls H3-15 and H3-14. This correlation demonstrates

that the oxygenation occurred with retention of the con-

figuration of methyl group CH3-15. 2 was named rickinic

acid A.

Rickinic acid B (3) has the same molecular formula

C15H22O3 as 2, which was obtained by HRESIMS data.

Proton, carbon and 1H,13C HSQC NMR spectra were

highly similar to that of 2. However, the key differences

were the replacement of the methylene signal for C-2 by an

oxygenated methine, and the replacement of oxygenated

quaternary carbon C-9 by a methine. Therefore, 3 was

identified as 2-hydroxysilphiperfol-6-en-13-oic acid. The
1H,1H ROESY correlations from H-2 to H-1/Hb-3 and Hb-5

on the b-face respectively from H3-12 to Ha-3 and Ha-5 on

the a-face of the molecule indicated a 2R configuration.

With rickinic acid C (4) another metabolite was isolated

with a C15H22O3 molecular formula. The proton and
1H,13C HSQC NMR spectra showed the oxidation of

methyl CH3-15 to a hydroxymethyl group, thus identifying

4 as 15-hydroxysilphiperfol-6-en-13-oic acid.

Besides the new metabolites 1–4, we isolated several

known metabolites (Fig. 3) botryenanol (5), dehy-

drobotrydienol (6), cyclo(Phe-Pro) (7), cyclo(Pro-Leu) (8),

(?)-ramulosin (9) and a-eleostearic acid (10) from differ-

ent cultivations of H. rickii [17–22].

The bioactivity of 1–4 was evaluated against S. cere-

visiae, C. albicans, B. subtilis, E. coli and the mouse

fibroblast cell line L929. We detected weak antifungal

activity of 2 against the yeast S. cerevisiae

(MIC = 66.7 lg/mL), weak antibacterial activity of 4

against B. subtilis (MIC = 33.3 lg/mL) and weak cyto-

toxic activity of 3 (IC50 = 20 lg/mL).

The sesquiterpenoids 1–4 belong to a family of com-

pounds with a silphiperfolene core structure. These com-

pounds are known to be produced by members of the plant

family Asteraceae [23, 24]. However, no fungal metabolite

with this particular core structure has been described to the

best of our knowledge. The role of these metabolites for

H. rickii in nature remains elusive. The compounds might

be produced to modulate its host plant, similarly to the

fungal production of gibberellin-type phytohormons [25].

Though, the silphiperfolene metabolites might also be side

products in the biosynthesis of botryanes. Presilphiper-

folanol has been proposed as precursor of triquinane [26]

as well as botryane [27] type sesquiterpenes. Even though

presilphiperfolanol as potential common precursor has not

been detected so far, this might explain the co-occurrence

of silphiperfolene and botryane-type metabolites in cul-

tures of H. rickii.

The identification of compounds 5 and 6 continues the

list of known botryane-type terpenoids from H. rickii [15].

This class of secondary metabolites has already been

reported from other xylariaceous fungi like Daldinia con-

centrica and a Geniculisporium sp. [14, 28] and seems

therefore common within the family. The same is true for

the isocoumarin derivative (?)-ramulosin (9) which fre-

quently occurs in the genus Hypoxylon [29]. The latter has

been shown to exhibit phytotoxic and antifungal effects

[30]. The production of diketopiperazines in the Xylari-

aceae is so far only known from Rosellinia necatrix [31]

and therefore 7 and 8 are the first report of this particular

compound class from another member of the family.
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3 Experimental

3.1 General Experimental Procedures

Optical rotations were determined with a Perkin-Elmer 241

spectrometer and UV spectra were recorded with a Shi-

madzu UV–Vis spectrophotometer UV-2450. NMR spectra

were recorded with Bruker Avance III 700 spectrometer

with a 5 mm TCI cryoprobe (1H 700 MHz, 13C 175 MHz)

and Avance III 500 (1H 500 MHz, 13C 125 MHz) spec-

trometers. HRESIMS mass spectra were obtained as pre-

viously described [32]. Isolation of pure compounds was

achieved if not indicated otherwise with a preparative

HPLC (Gilson, Middleton, USA) equipped with a GX-271

Liquid Handler, a 172 DAD, a 305 and 306 pump (with

50SC Piston Pump Head). As stationary phase a VP

Nucleodur C18 ec column (125 9 40 mm, 7 lm;

Macherey–Nagel) was used. The mobile phase was com-

posed of deionised water (Milli-Q, Millipore, Schwalbach,

Germany) with 0.1 % acetic acid (solvent A1; Roth) and

acetonitrile (ACN) with 0.1 % acetic acid (solvent B1).

Flow rate was set to 15 ml/min.

3.2 Fungal Material

Stromata (fruiting bodies) of H. rickii MJF10324 were

collected in 2010 from the Caribbean island Martinique by

J. Fournier. The strain was designated as epitype of the

species [33]. The culture was derived by multispore iso-

lation on YMG medium (1.0 % malt extract, 0.4 % glu-

cose, 0.4 % yeast extract, pH 6.3) using the method

outlined by Stadler et al. [34] and has been deposited in

public culture collections (MUCL 53309, CBS 129345).

3.3 Cultivation in 70 L Scale and Isolation of 1 and 10

Large-scale fermentation of the strain was carried out as

previously described [14] in HLX media (3.0 % sucrose,

1.0 % casamino acids, 0.1 % K2HPO4, 0.1 % yeast extract,

0.05 % MgSO4 9 7H2O, 0.05 % KCl, 0.001 % FeS-

O4 9 7H2O). The fermentation was aborted after 7 days as

sugars (sucrose, fructose) were depleted. Compound 1 and

10 were obtained from the acetone crude extract of the

biomass (12 g) by preparative RP MPLC and subsequent

HPLC. The conditions for the RP MPLC were as follows: a

ODS/AQ C18 column (480 9 30 mm, Kronlab) as sta-

tionary phase, mobile phase composed of solvent A2 [90 %

deionised water (Milli-Q), 10 % methanol] and solvent B2

(methanol), linear gradient of solvent B2 from 10 to 100 %

in 60 min, followed by isocratic conditions at 100 % sol-

vent B2 for 20 min, flow rate of 30 ml/min, UV peak

detection at 210 nm. Compound 1 (2 mg) was purified

from the MPLC fraction with a retention time (RT) of

58.5–64.0 min (390 mg) using a linear gradient from 55 to

100 % solvent B1 in 25 min followed by isocratic condi-

tions at 100 % for 15 min at a RT = 26.0 min. Compound

10 (RT: 14.0 min; 2 mg) was isolated from another MPLC

fraction (RT: 64.0–67.0 min; 1.8 g) by RP HPLC (linear

gradient from 90 to 100 % B1 in 20 min, followed by

15 min isocratic conditions).

13-Hydroxysilphiperfol-6-ene (1): amorphous powder,

[a]D
25-29 (c 0.2 MeOH); 1H (700 MHz) and 13C (175 MHz)

NMR data (methanol-d4), see Tables 1 and 2; HRESIMS:

m/z 203.1791 (calcd for C15H23, [M?H-H20]?, 203.1794),

219.1737 (calcd for C15H23O, [M?H]?, 219.1743).

a-Eleostearic acid (10): colorless oil; 13C NMR (chloro-

form-d, 125 MHz) d 14.1, 22.4, 24.8, 28.0, 29.1, 29.2, 29.7,

29.9, 31.5, 32.7, 33.9, 126.2, 129.0, 130.5, 132.1, 133.2,

135.5, 178.8; HRESIMS:m/z 279.2319 (calcd for C18H31O2,

[M?H]?, 279.2319); spectroscopic and spectrometric data

are in good agreement with the literature [22].

3.4 Cultivation in 10 L Scale and Isolation of 2–4

and 6–8

A seed culture of the strain with a total volume of 200 mL

was prepared in YMG medium (1.0 % malt extract, 0.4 %

glucose, 0.4 % yeast extract, pH 6.3), incubated at 22 �C
and 140 rpm for 5 days, homogenized with an ultratorax

and incubated again for 2 days (22 �C, 140 rpm). A BR

15.4 bioreactor (B. Braun Melsungen AG, Germany) filled

with 10 L YMG medium and supplemented with 0.5 %

talcum powder (Sigma-Aldrich, St. Louis, USA) was

inoculated with 100 mL of the seed culture. The temper-

ature was set at 26 �C. The stirrer speed was set to

Table 1 13C data of 1 (175 MHz, methanol-d4) and 2–4 (175 MHz,

chloroform-d)

1 2 3 4

1 60.5, CH 60.3, CH 63.1, CH 54.3, CH

2 29.9, CH2 25.0, CH2 72.5, CH 30.3, CH2

3 40.6, CH2 41.7, CH2 47.3, CH2 40.1, CH2

4 50.8, C 49.8, C 45.1, C 49.5, C

5 49.2, CH2 46.5, CH2 47.7, CH2 46.4, CH2

6 132.4, C 123.3, C 123.4, C 123.1, C

7 141.1, C 162.6, C 162.4, C 162.7, C

8 73.4, C 73.8, C 73.5, C 73.7, C

9 42.8, CH 80.0, C 34.9, CH 49.9, CH

10 37.8, CH2 43.2, CH2 37.2, CH2 31.6, CH2

11 30.9, CH2 28.3, CH2 30.3, CH2 30.0, CH2

12 24.9, CH3 23.1, CH3 24.7, CH3 23.8, CH3

13 59.4, CH2 169.0, C 168.4, C 168.0, C

14 11.0, CH3 13.4, CH3 13.7, CH3 13.7, CH3

15 19.8, CH3 28.7, CH3 21.2, CH3 66.2, CH2
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150 rpm, aeration rate was set to 0.07 vvm and remained

constant during fermentation. The culture was harvested

after 7 days as sugars (sucrose, fructose) were depleted.

Thereafter, the mycelium was separated from the culture

fluid by vacuum filtration to yield a total amount of 525 g

wet biomass, which was later extracted with 1.8 L acetone

in an ultrasonic bath for 1 h. The acetone extract was fil-

tered and evaporated to yield an aqueous phase, which was

further processed by extraction with 3 9 100 mL ethyl

acetate in a separating funnel. Subsequently the organic

phases were combined and evaporated to yield 221 mg of

oily mycelial crude extract (ME) in total.

The culture filtrate was extracted by 2 % XAD-16

(200 g) over 2 h at room temperature. The XAD was sep-

arated by filtration and extracted with methanol (500 mL).

The extract was evaporated to yield an aqueous phase,

which was further processed by extraction with 3 9 50 mL

ethyl acetate. The combined organic extracts were filtrated

over Strata X column to yield 643 mg crude extract.

The crude extract was subjected to silica gel chro-

matography using gradient elution with portions of

dichloromethane/methanol mixtures (250 mL) of 100/0,

99/1, 98/2, 97/3, 95/5, 90/10, 85/15, 80/20, 70/30, 50/50,

25/75, 0/100 to give 12 fractions. Fraction 2 (303 mg) was

fractionized with preparative HPLC (PLC 2020, Gilson,

Middleton, USA). A VP Nucleodur C18 ec column

(150 9 40 mm, 7 lm; Macherey–Nagel) was used as sta-

tionary phase. The mobile phase was composed of deio-

nised water (Milli-Q) as solvent A and methanol (MeOH)

as solvent B. A flow rate of 30 ml min-1 was used for the

following gradient: 10–80 % solvent B in 30 min, after-

wards in 5 min to 100 % B, isocratic conditions at 100 %

for 10 min. UV detection was carried out at 210 and

254 nm and fractions were collected and combined

according to the observed peaks. 2 (0.9 mg) was obtained

at a retention time (RT) = 30.7–31.0 min.

Fraction 5 (89 mg) was subjected to preparative HPLC

as described above (but gradient: 30–100 % solvent B in

30 min, isocratic conditions at 100 % for 10 min) to yield

3 (0.6 mg) at a RT = 18.7–21.7 min and 4 (0.3 mg) at

RT = 14.3–15.5 min.

Fraction 1 (242 mg) subjected to preparative HPLC as

described above (but gradient: 0–70 % solvent B in 40 min,

afterwards in 5 min to 100 % B, isocratic conditions at 100 %

for 5 min) to yield 7 (0.8 mg) and 8 at a RT = 19.6–20.2 and

RT = 17.7–18.6 min, respectively. Fractions from 35.1 to

36.4 min were combined and fractionated again (gradient:

40–80 % acetonitril in 40 min, afterwards in 5 min to 100 %

ACN, isocratic conditions at 100 % for 5 min, VP Nucleodur

C18 ec column (250 9 21 mm, 7 lm; Macherey–Nagel) to

yield 6 (2.4 mg) at a RT = 20.5–22 min.

Rickinic acid A (2): amorphous powder, [a]D
25 ?2.2 (c 0.02

CHCl3); UV (MeOH)kmax (loge) 234 nm (4.7); 1H (700 MHz)

and 13C (175 MHz) NMR data (chloroform-d), see Tables 1

and 2; ESIMS: m/z 250.95 [M?H]?, 248.86 [M-H]-; HRE-

SIMS:m/z 251.1649 (calcd for C15H23O3,[M?H]?, 251.1642).

Rickinic acid B (3): amorphous powder, [a]D
25 ?12

(c 0.1 CHCl3); UV (MeOH) kmax (log e) 234 nm (4.5); 1H

(700 MHz) and 13C (175 MHz) NMR data (chloroform-d),

see Tables 1 and 2; ESIMS: m/z 251.02 [M?H]?, 248.96

Table 2 1H data of 1 (700 MHz, methanol-d4) and 2–4 (700 MHz, chloroform-d)

1 2 3 4

1 1.66, m 2.07, m 1.90, m 1.99, td (7.7, 2.6)

2a

2b

1.39, m

1.71, m

1.62, m

1.71, m

4.33, ddd (10.3, 7.7, 6.0) 1.46, m

1.77, m

3a

3b

1.52, m

1.65, m

1.61, m

1.64, m

1.58, dd (12.5, 10.3)

1.92, dd (12.5, 6.0)

1.56, m

1.63, m

5a

5b

2.13, dq (16.0, 1.7)

2.37, dq (16.0, 2.2)

2.36, dd (16.0, 1.7)

2.53, dd (16.0, 2.2)

2.39, dd (16.5, 1.7)

2.52, dd (16.5, 2.2)

2.35, dq (16.2, 1.7)

2.54, dq (16.2, 2.2)

9 1.47, m 2.10, m 1.73, m

10a

10b

1.77, m

1.26, m

1.76, m

1.76, m

1.85, m

1.35, m

1.85, m

1.49, m

11a

11b

1.63, m

1.56, m

1.85, m

1.50, m

1,68, m

1.68, m

1.68, m

1.64, m

12 1.03, s 1.08, s 1.02, s 1.05, s

13 4.04, s

14 1.61, dd (2.2, 1.7) 2.06, dd (2.2, 1.7) 2.05, dd (2.2, 1.7) 2.03, dd (2.2, 1.7)

15 0.99, d (6.5) 1.32, s 1.06, d (6.5) 3.64, dd (10.5, 5.8)

3.55, dd (10.5, 7.5)
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[M-H]-; HRESIMS: m/z 251.1648 (calcd for

C15H23O3,[M?H]?, 251.1642).

Rickinic acid C (4): amorphous powder, [a]D
25 ?11

(c 0.1 CHCl3); UV (MeOH) kmax (log e) 220 nm (sh); 1H

(700 MHz) and 13C (175 MHz) NMR data (chloroform-d),

see Tables 1 and 2; ESIMS: m/z 233.01 [M?H-H20]?,

248.94 [M-H]-; HRESIMS: m/z 251.1648 (calcd for

C15H23O3,[M?H]?, 251.1642).

Dehydrobotrydienol (6): colorless oil; 13C NMR (chlo-

roform-d, 125 MHz) d 19.0, 26.3, 31.1, 32.2, 40.9, 50.4,

54.0, 58.8, 71.1, 123.1, 130.5, 134.4, 136.4, 144.1, 152.3;

HRESIMS: m/z 257.1517 (calcd for C15H22O2Na,

[M?H]?, 257.1512); spectroscopic and spectrometric data

are in good agreement with the literature [18].

Cyclo(Phe-Pro) (7): colorless oil; 13C NMR (chloro-

form-d, 125 MHz) d 22.6, 28.4, 36.8, 45.5, 56.2, 59.2,

127.6, 129.1, 129.4, 135.9, 165.1, 169.5; HRESIMS: m/z

245.1297 (calcd for C14H17N2O2, [M?H]?, 245.1285);

spectroscopic and spectrometric data are in good agree-

ment with the literature [19].

Cyclo(Pro-Leu) (8): colorless oil; 13C NMR (chloro-

form-d, 125 MHz) d 21.2, 22.8, 23.3, 24.8, 28.2, 29.7, 38.7,

45.6, 53.4, 59.0, 166.1, 170.3; HRESIMS: m/z 211.1461

(calcd for C11H19N2O2, [M?H]?, 211.1441); spectroscopic

and spectrometric data are in good agreement with the

literature [20].

3.5 Small-Scale Cultivation and Isolation of 5 and 9

Two submerged cultures were grown in each case in

200 mL YMG medium supplemented with 3 g talcum

powder on a rotary shaker at 140 rpm and 23 �C. Cultures

were harvested after 12 days as free glucose was con-

sumed. Afterwards the supernatant was separated from the

biomass by vacuum filtration and extracted with 200 mL

ethyl acetate. The organic phases were combined, dried

over sodium sulfate and evaporated to yield 50 mg crude

extract. The latter was fractionated by RP HPLC using the

following conditions: a VP 250/21 Nucleodur100-5 C18 ec

column (Macherey–Nagel) equipped with a Kromasil 100

C18 pre-column (50 9 20 mm, 7 lm; AkzoNobel) as

stationary phase, solvents A1 and B1 as mobile phase,

linear gradient from 20 to 70 % solvent B1 in 40 min, then

from 70 to 100 % B1 in 5 min, followed by 10 min iso-

cratic conditions, flow rate of 15 ml/min. Compound 5

(1.4 mg) was obtained at a RT = 33.0 min and 9 (1.5 mg)

at a RT = 35.0 min.

Botryenanol (5): Colorless oil; 13C NMR (chloroform-d,

125 MHz) d 20.9, 21.4, 23.8, 29.1, 29.3, 36.8, 39.1, 51.8,

54.2, 58.5, 70.5, 71.9, 139.0, 164.7, 170.3, 192.6; HRE-

SIMS: m/z 317.1728 (calcd for C17H26O4Na, [M?H]?,

317.1723); spectroscopic and spectrometric data are in

good agreement with the literature [17].

(?)-Ramulosin (9): Colorless amorphous powder, [a]D
25

?12 (c 0.1 CH3OH); 13C NMR (chloroform-d, 125 MHz) d
21.0, 21.8, 29.1, 29.6, 33.0, 37.5, 76.6, 96.8, 171.9, 174.8;

HRESIMS: m/z 183.1026 (calcd for C10H15O3, [M?H]?,

183.1016); spectroscopic and spectrometric data are in

good agreement with the literature [21].

3.6 Biological Assays

Antibacterial, antifungal and cytotoxic assays were per-

formed as described by Surup et al. [35].
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