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Abstract

Economists are often interested in the coefficient of a single endogenous explanatory
variable in a linear simultaneous equations model. One way to obtain a confidence
set for this coefficient is to invert the Anderson-Rubin test. The “AR confidence
sets” that result have correct coverage under classical assumptions. In this paper,
however, we show that AR confidence sets also have many undesirable properties.
Their coverage conditional on quantities that the investigator can observe, notably
the Sargan statistic, can be far from correct. It is well known that they can be
unbounded when the instruments are weak. Even when they are bounded, their
length may be very misleading. We argue that, at least when the instruments are
not so weak that inference is hopeless, it is much better to obtain confidence intervals
by bootstrapping either the IV or LIML ¢ statistic on the coefficient of interest in a
particular way that we propose.
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1. Introduction

Classical confidence intervals are, at least implicitly, defined by “inverting” a test. A
confidence set at level 1 — «, which may or may not be a single bounded interval,
is simply the set of parameter values for which a test at level o does not reject the
null hypothesis. This seems to imply that inverting an exact test must lead to a
confidence set that has good properties. However, as we show in this paper, that is
not necessarily so.

In the linear simultaneous-equations model with weak instruments, the asymptotic
distributions of ¢ statistics often provide poor guides to their finite-sample distribu-
tions; see Staiger and Stock (1997). As a consequence, confidence intervals based
on inverting t tests often have very poor coverage. One proposed solution to this
problem is to invert tests which have better finite-sample properties. Several papers,
including Dufour (1997), Zivot, Startz, and Nelson (1998), and Dufour and Taamouti
(2005), therefore suggest inverting the test of Anderson and Rubin (1949), which is
exact under classical assumptions. We shall refer to the resulting confidence set as
an “AR confidence set.”

In this paper, we argue that, although AR confidence sets have correct uncondi-
tional coverage, at least under classical assumptions, they have many undesirable
properties. Although some of these properties have previously been studied, notably
by Zivot, Startz, and Nelson (1998), we offer some new theoretical results together
with supporting simulation evidence. AR confidence sets do not have correct cover-
age conditional on the type of confidence set that actually occurs. Moreover, when
they are bounded, their length depends on the value of the Sargan statistic for the
validity of the overidentifying restrictions. Therefore, any AR confidence set that
is actually observed does not have correct coverage. It can be empty, misleadingly
short, misleadingly long, or unbounded.

Having correct coverage unconditionally, while desirable, is by itself not very useful.
One can always create a (1 — «)% confidence set with the correct unconditional
coverage by setting it equal to the empty set with probability a and the real line
with probability 1 — . But such a straw-man confidence set provides no useful
information. Unfortunately, when the instruments are weak, the AR confidence set
may not be much more informative than this straw-man one. Even when they are
strong, it never has the correct conditional coverage.

Forchini and Hillier (2003) have argued that the AR statistic is not in fact pivotal,
because it does not depend on the parameter of interest everywhere in the para-
meter space, and that confidence sets based on it are therefore invalid. Our paper is
concerned with the more detailed properties of AR confidence sets, but some of the
issues that arise below are related to this important point.

There are actually two different problems with AR confidence sets. The first problem
is that they may be unbounded. This problem can arise whenever the instruments
in a linear simultaneous-equations model are weak, and it can also affect confidence
sets based on inverting other tests. See Dufour (1997) and Zivot, Startz, and Nelson
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(1998). The second problem is that they may be empty or extremely short. This
problem can arise whenever we invert a test that has more than one degree of freedom.
In the Appendix, we show that it can occur when we invert an F' test in the classical
normal linear regression model.

In the next section, we introduce Anderson-Rubin confidence sets and show that there
are four types of them. In Section 3, we explore the important relationship between
AR confidence sets and the Sargan statistic for overidentification. Construction of
an AR confidence set is similar to inverting an F' test, and this is discussed in the
Appendix. In Section 4, we use simulation experiments to study the properties of
AR confidence sets. In Section 5, we describe a procedure that can be used to obtain
confidence sets by inverting bootstrap ¢ tests. Simulation evidence shows that it
works very well, provided the instruments are not so weak that reliable inference is
basically impossible. We argue that confidence sets based on this bootstrap procedure
are clearly superior to AR confidence sets. Although they may be unbounded, they
cannot be empty or extremely short.

2. Anderson-Rubin Confidence Sets

We deal with the two-equation linear model

Y1 =Py +Zv+w (1)
y2:W7T—|—’U,2:Z7Tl+W27TQ+’U,2. (2)

Here y; and y- are n-vectors of observations on endogenous variables, Z is an n X k
matrix of observations on exogenous variables, and W is an n x [ matrix of exogenous
instruments with the property that 8(Z), the subspace spanned by the columns of
Z, lies in §(W), the subspace spanned by the columns of W. The n x (I — k) matrix
W, is constructed in such a way that §(Z, Ws) = §(W'). Equation (1) is a structural
equation, and equation (2) is a reduced-form equation.

The disturbance vectors w; and us are assumed to be serially uncorrelated and
homoskedastic, with mean zero and contemporaneous covariance matrix

2
PO102 05

5= [ o3 p0‘10‘2:|
For the AR test to be exact, we also need the disturbances to be normally distributed.
We assume that the model is overidentified, which implies that [ > k+1. The number

of overidentifying restrictions is [ — k — 1.

The Anderson-Rubin statistic for a test of the hypothesis that 3 = [y is

—1 — P —
AR(Bo) = n (y1 ﬁosz) (Y1 — Boy2) , (3)
I =k (y1 — Boy2) "Mw (y1 — Boye)
where My =1 - W(W W) "W T =1- Py, My =1— Z(Z'2)'Z =1 Py,
and P| = Mz — My = Py — Pz. Under the null hypothesis, the AR statistic (3)
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is distributed as F'(I — k,n — ). This statistic is, of course, minimized at the LIML
estimator ﬁLIML-

Let g be the 1 — o quantile of the F(Il — k,n — [) distribution. Then [, belongs to
the confidence set at level 1 — « if and only if AR(5p) < ¢. This inequality can be
reformulated as

(y2 Ay2) 83 — 2(y1' Aya) Bo + yi Ay > 0, (4)

where A = cMw — Py, with ¢ = ¢(l — k)/(n — ). Zivot, Startz, and Nelson (1998)
study this inequality in some detail and obtain the result that the AR confidence set is
unbounded whenever the F' statistic for wo = 0 in (2) is less than ¢. It is worth going
through the argument that leads to this important result, because it also shows that
there are four types of AR confidence set and explains the circumstances in which
they occur.

The discriminant of the quadratic equation obtained by replacing the inequality in (4)
by an equality is
D = 4(yr' Ays)? — 4y Ayy yo' Ays. (5)

If D < 0, the equation has no real roots, so that the inequality (4) is either always
or never satisfied. It is always satisfied if the coefficient of 32 is positive, since the
left-hand side tends to 4+o00 as |Bg] — oo. In this case, the confidence set is the
entire real line. However, it is never satisfied if yo' Ay, < 0, which implies that the
confidence set is empty.

If D > 0, the equation has two real roots. If yo' Ay, < 0, the quadratic function of 3,
on the left-hand side of (4) tends to —oo as y — oo. It has a single maximum. The
inequality (4) is therefore satisfied between these roots, so that the interval between
them is the confidence set. If yo Ay, > 0, the quadratic has a single minimum, and
(4) is satisfied in the set composed of the disjoint union of the open infinite interval
from the upper root to +0o and that from the lower root to —oc.

Whether D < 0 or D > 0, the confidence set is unbounded whenever y,' Ay, > 0.
This condition can be rewritten as

cys Mwyz — y2Prys > 0.
Using the definition of ¢ and a little algebra allows us to rewrite this inequality as

Y2 Prya /(1 — k)
Yy Mwya/(n—1)

<q. (6)

The quantity on the left-hand side of (6) is the ordinary F' statistic for w5 = 0 in
equation (2), and ¢ is the critical value for a test at level o based on this statistic,
which tests the null hypothesis that the structural equation (1) is not identified. Thus,
as Zivot, Startz, and Nelson (1998) showed, the AR confidence set is unbounded (with
or without a hole in the middle) whenever we cannot reject the hypothesis that the
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instruments that are not also explanatory variables (namely, the columns of W)
have no explanatory power for ys.

There is no point calculating an AR confidence set whenever the inequality (6) holds,
because a set that consists of the entire real line, perhaps with a hole in the middle,
tells us nothing useful about the value of 3. In contrast to the confidence set, the
identifiability test statistic does provide valuable information, since it provides a
natural measure of the strength of the instruments; see Stock and Yogo (2005).

We have seen that there are four types of AR confidence set. The set is a bounded
interval when D > 0 and the test statistic on the left-hand side of (6) is significant.
It is empty when D < 0 and this identifiability test statistic is significant. It is the
entire real line when D < 0 and the test statistic is insignificant, and it is the disjoint
union of two open intervals when D > 0 and the test statistic is insignificant. The
fact that some types of AR confidence set are unbounded when the instruments are
sufficiently weak can be viewed as a consequence of a fundamental result of Dufour
(1997), who showed that no valid confidence set which is almost surely bounded exists
in the neighborhood of a point where the parameter is not identified.

Figure 1 illustrates all four types of interval by graphing AR((y) against (3. The
dashed horizontal line is the critical value, g. Two variants of the bounded interval
case are shown. In one of these, the interval is very short, and in the other it is quite
long. What type of interval we obtain depends on «. In particular, the probability
that the interval is an empty set diminishes as a becomes smaller and ¢ consequently
becomes larger. Note that all five intervals in the figure are for samples drawn from
the same data-generating process, for which the instruments are moderately weak.

Unconditionally, the AR confidence set always has the correct coverage. However,
once we observe what type of set it is, that is no longer the case. By construction,
the empty set undercovers, and the real line overcovers. The bounded interval and
the disjoint interval can either overcover or undercover. As the figure illustrates, the
bounded interval can be very much too short. Thus we cannot interpret an observed
AR confidence set, even a bounded interval, in the way we would like to interpret a
confidence interval. On average, at least when the model is well identified, bounded
intervals must overcover, in order to offset the failure of empty sets to cover at all.
But there will always be bounded intervals like the one shown in the top panel of
Figure 1 which give the misleading impression that we have estimated 8 much more
accurately than is actually the case.

3. Relations with the Sargan Test

The Sargan statistic for overidentifying restrictions (Sargan, 1958) is most commonly
computed as 1/6% times the minimized value of the IV criterion function, that is,

1 A - 1 R N
52 (y1 — Bivye) ' Pw (y1 — Bivyz) = 52 (y1 — Bivye) "Pi(yr — Bivyz),  (7)
1

—
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where BIV is the IV (or two-stage least squares) estimate of (3, and the estimated
variance 67 denotes n~ 0, Mz, with @; = y; — frvys. The equality in (7) follows
from the fact that

(Mz — Mw)(y1 — Bivyz) = (I — Mw)(y1 — Bivyz) = Pw (y1 — Bivys),

because Z must be orthogonal to the IV residuals.

It is evident that the numerator of the expression on the right-hand side of equation
(7) would be identical to the numerator of the AR statistic (3) if Srv were replaced
by By. The latter will always be larger than the former, because BIV minimizes
the numerator. That is why the AR statistic has [ — k degrees of freedom in the
numerator, while the Sargan statistic (which, of course, is not exact) has | — k — 1.
It is not hard to show that the numerator of (3) can be rewritten as

(y1 — Brvye) "Pi(y1 — Bivyz) + (Bivyz — Boya) "Pi(Bivyz — Boyz). (8)

The first term in (8) is the numerator of the Sargan statistic (7). Thus, if the Sargan
and AR statistics had the same denominator, the latter would always be larger than
the former. This is not always true in finite samples, because the denominators are
not the same, although they both estimate o7 consistently under the null. But there
is inevitably a very strong tendency for large values of the Sargan statistic to be
associated with large values of the AR statistic.

In order to analyze the statistical properties of the AR confidence set and its relation-
ship to the Sargan statistic, we need to specify a data-generating process. Following
Davidson and MacKinnon (2008), we use the DGP:

Y1 = By + uq,
Yo = aw + U,

(9)

where w € §(W) is an n-vector with ||w|? =1, and

U] = rvy + pug, [’01

} ~N(,I), r*+p*>=1. (10)
U2

U2 = V2,

The fact that there is just a single instrument w in the DGP is entirely consistent
with there being [ of them in equation (2). What matters is the total explanatory
power of all the instruments for y,. According to (9), all of this explanatory power
comes from the vector w, and the other columns of W are simply noise. Since it is
only $(W) that matters, we are perfectly free to perform a linear transformation on
W that makes this the case.

The instrument vector w is normalized to have squared length unity. By employing
this normalization, we are implicitly using weak-instrument asymptotics; see Staiger
and Stock (1997). The strength of the instruments is measured by the parameter a.
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The square of this parameter is the so-called scalar concentration parameter; see
Phillips (1983, p. 470) and Stock, Wright, and Yogo (2002). For simplicity, all vari-
ances have also been normalized to unity.

As we have seen, the AR confidence set is a bounded interval if and only if D > 0
and yo Ay, < 0. In this case, the length of the interval is the distance between the
two roots of the quadratic equation (4), which is —v/D/y3  Ayy. Under the DGP (9),
the limit of this ratio as a — oo is zero. The quantity that has a non-trivial limit as
a — oo is thus the length of the interval times a. It can be shown that this limit is
the square root of

c(y1 — By2) 'Mw (y1 — By2) — (y1 — By2) (P1 — Pu)(y1 — By2), (11)
where P, = w'(w'w) 'w'. The first term in (11) is ¢ times a random variable
that follows the x?(n — [) distribution. The second term is an independent random
variable that follows the x2(I —k—1) distribution. Of course, both of these quantities
would have to be multiplied by o7 if we had not set it to unity. The distribution of
the second term, and its independence from the first term, both follow from the fact
that the matrix P, — P, = Pw — Pz — P, projects onto the [ — k — 1 components
of W that do not lie in §(w, Z).

Expression (11) is random and may be either positive or negative. It is most likely to
be negative when « is large, so that ¢, the 1 — o quantile of F(I — k,n — 1), is small.
There is evidently a non-empty confidence set only when it is positive. Since we are
considering the limit as a — oo, there is no danger that the set will be unbounded.

It is interesting to see how expression (11) is related to a slightly modified version of
the Sargan statistic (7). The modified statistic is

= — a"Mwa, (12)

where 4 = y; — Bwyg. This differs from (7) because, instead of using the usual
variance estimate 62, it uses the same one as the AR statistic for testing 3 = frv.

The numerator of S is

WP = (y1 — Bivy2) "Pi(y1 — Bivye) = v Pi(y1 — Bivys), (13)

where the secpnd equality follows from the moment condition y5' Py (y; — Blvyg) =0
that defines Bry. This moment condition implies that

.
5 Y2 Piyy

By = Y2y 14
v yo P1yo (14)

Substituting (14) into the rightmost expression in (13) yields

W' Pri =y Pyyr — yi Prya(yo Prys) 'y Piys
= le(Pl - PP1y2)y1 = ul—r(Pl - Pplyz)uh
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where Pp,,, projects orthogonally on to §(P;y2). Thus from (12) we have
(uq" Pry2)?

Y2 P1y:
If we replace y2 by aw + us and retain only the leading-order terms as a — oo,

the term that is subtracted in the rightmost expression here tends to (w'u;)? =

wy P,u;, where the equality follows from the fact that w'w = 1. Thus, in the limit,

518 = ui' (P — Py)u1 = (y1 — By2) (P1 — Py)(y1 — By2). (16)

518 = ui (P — Pp,y,)u1 = ui Pru; — (15)

It is easy to see that Bry tends to 3 as a — oo. From (14),

By = (aw + u2) TPy (Blaw + uz) + u) _ 5y

(aw + u2) TPy (aw + us)

(aw + uz) "Pruy
(a'w + ’LLQ)TP1 (CL’LU + ’U,Q) ’

Since the second term in the rightmost expression here is O(a)/ O(a?) = O(a™1), that
expression vanishes as a — oo. The consistency of Gy implies that

@' Mwa/(n—1) = (y1 — By2) ' Mw (y1 — By2)/(n — 1) + O(a™")
as a — 0o. Thus the first term in (11) can be replaced by
q(l — K)o Mwa = q(1 — k)52,

Similarly, by (16), the second term can be replaced by 62S. We conclude that, in
the limit as a — oo, the length of the bounded AR interval, if it exists, is simply

1 (q(l — k) = S)

This is a deterministic function of &1 and S, which is proportional to the former and
nonlinear in the latter. As S increases, the interval becomes shorter and eventually
ceases to exist.

12, (17)

Although this result is strictly true only in the limit, it may be expected to pro-
vide a good guide whenever a is reasonably large, that is, whenever the instruments
are reasonably strong. It implies that, when the AR confidence set is a bounded
interval, its coverage will vary inversely with the magnitude of the Sargan statistic.
Thus an investigator who obtains a bounded interval and observes that the Sargan
statistic is particularly large or small may reasonably infer that the interval is likely
to undercover in the former case and overcover in the latter. This may be especially
problematic in practice if, as will very often be the case, the overidentifying restric-
tions are not quite satisfied. In consequence, observed Sargan statistics may well tend
to be larger than they should be by chance, and bounded AR intervals consequently
shorter.

The fundamental reason for the result that the AR confidence set depends on the
value of the Sargan statistic is that the AR statistic has more than one degree
of freedom. Something very similar to this result is true whenever we construct
a confidence interval by inverting a test with more than one degree of freedom.
In the Appendix, as an example, we show what happens when one constructs a
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confidence interval by inverting an F' test. In that case, there turns out to be no
need to consider a limiting argument. This makes it clear that the only reason we
needed a limiting argument to obtain (17) is that the Sargan statistic does not have
an exact distribution when a is finite.

4. Properties of AR Confidence Sets

In this section, we use simulation experiments to study various properties of AR
confidence sets, including their conditional coverage. We generate artificial data
from the DGP specified by (9) and (10). Because this DGP uses weak instrument
asymptotics, the sample size does not matter much once it exceeds a threshold size.
In Davidson and MacKinnon (2010), we found that the performance of various test
statistics for # changed very little once n exceeded 400. We therefore set n = 400 in
all our experiments. For each DGP, we generated 500,000 simulated datasets.

The key parameters in our experiments are a, p, and [ — k. To save space, we report
results only for [ — k = 7, which means that the model is moderately overidentified.
Results for substantially smaller or larger values of [ — k£ might look quite different,
but that would primarily be because a needs to increase with [ — k in order to keep
the strength of the instruments constant. The basic structure of the results does not
seem to change much with [ — k.

Figure 2 shows how the frequencies of the four types of 95% AR confidence set
depend on a and p. The figure has four panels, which correspond to four different
values of a. The value of p, which varies from 0.00 to 0.99 by increments of 0.01, is
on the horizontal axis. Negative values are not included, because the figures would
simply be symmetric around p = 0.

When a = 1, the instruments are extremely weak, and when a = 8 they are minimally
strong. In the former case, the 95% AR confidence set is unbounded about 90% of
the time. For most values of p, the unbounded set is usually the entire real line.
However, as p becomes larger, the case of two unbounded segments becomes more
common, until it almost completely drives out the real-line case when p = 0.99. The
results for a = 2 are similar to those for a = 1, except that the bounded interval
becomes somewhat more common (but it still occurs less than 25% of the time), and
the two unbounded sets become somewhat less common.

The results change dramatically when we move from a = 2 to a = 4. The 95% AR
confidence set is now bounded more than 80% of the time, and the empty set is a
good deal more common than it was before. Finally, when a = 8, there is just a
handful of unbounded confidence sets in 50 million replications, and the bounded
interval occurs between 97.1% and 97.4% of the time. The empty set occurs very
slightly more often as p increases.

Figure 3 shows conditional coverage for four types of confidence set for the same
experiments as Figure 2. We do not bother to show coverage for the real line or
the empty set. Instead, we show it for bounded intervals when the Sargan statistic,
computed in the usual way as (7), either exceeds the 0.90 quantile of the x2(I —k—1)
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distribution (“S large”) or falls short of the 0.50 quantile (“S modest”). Several
striking results are apparent from the figure.

e When a is small, the bounded interval may either overcover slightly (when p
is small) or undercover severely (when p is large and a = 1). When a is not
small, the bounded interval always overcovers, as it must do in order to offset
the undercoverage associated with the empty set.

e The two-segment confidence set undercovers when p is small. However, as p
increases, its coverage increases, and it eventually overcovers. This type of con-
fidence set does not occur when a = 8.

e The coverage of the bounded interval changes dramatically when we condition
on the Sargan statistic. When the latter rejects at the nominal 0.10 level, the
bounded interval always undercovers, often severely. In contrast, when it fails
to reject at the 0.50 level, the bounded interval always overcovers except for
larger values of p when a = 1. This overcoverage is generally quite extreme.
For example, when a = 8, the 95% bounded AR interval always covers at least
99.8% of the time when the Sargan statistic fails to reject at the 0.50 level.

These results suggest that the length of a bounded AR confidence interval will gen-
erally provide a poor guide to the precision with which the parameter (3 is estimated.
To investigate this conjecture, we calculated the dispersion of BLIML as the difference
between its 0.025 and 0.975 quantiles over the 500,000 replications. In Figure 4, we
compare this with the median and with the 0.01 and 0.99 quantiles of the lengths of
the 95% AR confidence sets when they are bounded intervals. Ideally, the median
length of the bounded AR intervals should be very similar to the dispersion of the
estimates, and the upper-tail and lower-tail quantiles of interval length should not
be too much higher or lower than the median.

The results of this exercise for a = 4, a = 8, and a = 16 are shown in the three left-
hand panels of Figure 4. We do not present results for smaller values of a because
most of the AR confidence sets were unbounded (see Figure 2) and because it is
unreasonable to expect any method to produce reliable results in these cases. Note
that the vertical axis is logarithmic.

It is evident that the median length of the bounded 95% AR interval is generally a
poor guide to the dispersion of BLIML. The former always overestimates the latter,
and the problem does not go away as a becomes larger. Moreover, the length of the
bounded AR intervals evidently varies greatly. When a = 4, the upper-tail quantile
of the distribution of their lengths can be more than 80 times the dispersion of BLIML,
while the lower-tail quantile can be no more than 1/4 of the dispersion. Of course, as
the theory of Section 3 makes clear, there are a few bounded intervals that are just
barely longer than zero, but these are evidently well to the left of the 0.01 quantile.
For large a, this must occur whenever ¢(I — k) — S in equation (17) is just barely
positive.

For comparison, the left-hand panels of Figure 4 also show the median and the 0.01
and 0.99 quantiles of the lengths of the 95% Wald LIML intervals. By the latter,
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we simply mean the usual confidence interval obtained by inverting a t test, which is
equal to BLIML plus or minus 1.96 standard errors. For comparability, these are only
plotted for replications where there was a bounded AR interval. The Wald LIML
intervals tend to be much shorter than the AR intervals. When a = 4, and to a
lesser extent when a = 8, they tend to be too short. In contrast, for a = 16, the
median length of the Wald LIML intervals is just about equal to the dispersion of
the BLIML. Moreover, even their 0.99 quantile is smaller than the median length of
the AR intervals in that case.

The three right-hand panels of Figure 4 show the dispersion of BIV and the median
and 0.01 and 0.99 quantiles of the lengths of the 95% Wald IV intervals. For a = 16,
these are almost indistinguishable from the results for the Wald LIML intervals. For
the other values of a, the Wald IV intervals tend to be a bit shorter than the Wald
LIML intervals. In particular, the 0.99 quantiles of their lengths are always smaller.

Several things stand out when we compare the bounded AR intervals with the Wald
LIML and Wald IV ones for the replications where the former exist:

e The IV estimates are substantially less dispersed than the LIML ones for a = 4,
moderately less dispersed for a = 8, and slightly less dispersed for a = 16. This
implies that the AR and Wald LIML intervals should be longer than the Wald
IV ones. In fact, the AR intervals tend to be much longer in all cases, while the
Wald LIML ones are only a little bit longer even when a = 4.

e Whereas the median length of the AR intervals always overstates the dispersion
of BLIML, that of the Wald LIML intervals always understates it (but not by
much when a = 16). In contrast, the median length of the Wald IV intervals
provides an excellent guide to the dispersion of BIV for a = 8 and a = 16. For
a = 4, it provides a slight underestimate.

e The lengths of the Wald intervals vary much less than those of the AR intervals.
For example, when a = 4, the upper-tail quantile of the lengths of the Wald IV
intervals is always less than 1.6 times the dispersion of Gy .

These results suggest that one would never want to use an AR confidence set when
the instruments are reasonably strong. Even when they exist, AR intervals are much
less informative than Wald ones. They do not have correct coverage conditional on
being bounded and non-empty. Moreover, they do not provide reliable information
about the dispersion of BLIML; they can be much too long or much too short.

In contrast, when a = 16, even the Wald IV interval works quite well. Its length
provides a good guide to the dispersion of BI\/, and its coverage is reasonably good.
Coverage varies from 91.7% to 95.1% and always exceeds 94% for |p| < 0.5. The
Wald LIML interval works even better, with coverage between 94.4% and 94.7%
when a = 16 for all values of p. It is natural to ask whether one can improve upon
these asymptotic Wald intervals by using the bootstrap. That turns out to be the
case, and it is the topic of the next section.
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5. Bootstrap Confidence Sets

There are numerous ways to bootstrap tests and confidence sets for § in the linear
simultaneous equations model given by (1) and (2). Some of these are discussed
in Davidson and MacKinnon (2008, 2010). However, the earlier paper does not
discuss confidence sets at all, and the later one presents simulation results only for
tests. In this section, we therefore provide some evidence on the performance of
bootstrap confidence sets. Our objective is not to provide a detailed study of the
many bootstrap methods that can be used to make inferences about (3. It is simply to
demonstrate that there exist bootstrap methods based on Wald (that is, t) statistics
which provide excellent coverage, at least when the instruments are not too weak, and
do not suffer from some of the undesirable features of AR confidence sets. However,
the bootstrap must be used with care, as we show that there also exist bootstrap
methods which can sometimes be less reliable than asymptotic ones.

The oldest, and conceptually the simplest, bootstrap DGP for the linear simultaneous
equations model is the pairs bootstrap, which was proposed by Freedman (1984).
The idea is simply to resample the rows of the matrix [y; yo Z Ws]|. Each such
bootstrap sample, indexed by 7 = 1,..., B, is then used to compute a bootstrap test
statistic

X

By —
s(B7)

where 6 could be either the IV or LIML estimate of [, ﬁ* is the corresponding
estimate from the j* bootstrap sample, and s(ﬁj) is the standard error of ﬂ* which
may or may not be robust to heteroskedasticity of unknown form. Using 6, (ﬁ),
and the B values of t7, one then constructs an equal-tail percentile ¢ confidence
interval (also called a studentized bootstrap confidence interval) in the usual way;
see, among many others, Davison and Hinkley (1997) or Davidson and MacKinnon

(2004, Chapter 5).

Y

Figure 5 shows the coverage of asymptotic and pairs bootstrap confidence intervals
based on t statistics for BIV and BLIML. Since the DGP given by (9) and (10)
has disturbances that are independent and identically distributed, we do not use
heteroskedasticity-robust standard errors, but it would generally be advisable to do
so in practice. To reduce computational costs, the bootstrap experiments use only
100,000 replications, instead of 500,000. For the same reason, p is varied from 0.00
to 0.99 by increments of 0.03 instead of 0.01. The bootstrap results are based on
B = 399 bootstrap samples, which is a much smaller number than one would want
to use in practice, but it is sufficient for a simulation experiment. Results are shown
for a = 2.8284, a = 4, a = 5.6569, a = 8, a = 11.3137, and a = 16. Each of these is
larger than its predecessor by a factor of v/2. The instruments vary from extremely
weak to very strong.

It is evident from the upper left-hand panel that asymptotic confidence intervals
based on LIML ¢ statistics always undercover. However, this undercoverage is very
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modest for a = 11.3137 and a = 16, and it is not severe even for a = 8. Using the
pairs bootstrap (lower left-hand panel) improves the results substantially. In most
cases, the bootstrap intervals overcover. This overcoverage is most severe for a = 4
and a = 5.6569, but even in those cases it is fairly modest.

The performance of confidence intervals based on IV ¢ statistics is much worse than
that of ones based on LIML ¢ statistics; see the two right-hand panels of Figure 5.
The asymptotic intervals overcover when p is small and undercover, often severely,
when p is large. In contrast, the pairs bootstrap intervals always undercover. Using
the pairs bootstrap improves matters greatly for large values of p, but it actually
makes them worse for small ones. For the two largest values of a, however, the
undercoverage of the pairs bootstrap intervals is always quite modest.

The pairs bootstrap is by no means the only one for linear simultaneous equations
models. In Davidson and MacKinnon (2008), we proposed the restricted efficient,
or RE, bootstrap. As we will demonstrate shortly, confidence intervals based on the
RE bootstrap perform very much better than ones based on the pairs bootstrap.
However, they are more complicated and expensive to compute.

The RE bootstrap has two key features. The bootstrap DGP is conditional on a
particular value of 3 (hence “restricted”), and it uses an efficient estimate of =
(hence “efficient”). For any specified value 3y, we can run regression (1) to obtain
parameter estimates & and residuals w;. The latter may be rescaled by multiplying
them by a factor of (n/(n — k))*/2. We then run the regression

= W + du; + residuals. (18)

This yields parameter estimates 7 and adjusted residuals uy = yo, — War. The latter
should be rescaled by multiplying them by a factor of (n/(n—1))*/2. It can be shown
that 7r is asymptotically equivalent to the estimate one would obtain by using FIML
or 3SLS. This estimate was used by Kleibergen (2002) in a different context.

Generating a bootstrap sample using the RE bootstrap is quite simple. We form
two vectors of bootstrap disturbances, u] and w3, with elements u]; and u}, for
1 =1,...,n, resampled from the pairs of rescaled residuals. We then set

y; = Wr + u;, and

Y, = ﬁon + Z7 + uj.

If we generate B bootstrap samples, we can compute an equal-tail bootstrap P value
for the hypothesis that g = (y. It is simply

P*(Bo) = % (217 <7), (T;z%)>, (20)

where I(-) is the indicator function, 7 = (3 —ﬁo)/s(ﬁ), and 77 = (B; - Bo)/s(ﬁ;).
Here  may denote either frv or Srivr, and 5 is the corresponding estimate from
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the j* bootstrap sample. It is important to calculate the standard errors S(B) and
S(B;) in the same way. By using the equal-tail P value (20), we do not impose
symmetry on the distribution of 7.

The wild restricted efficient, or WRE, bootstrap (Davidson and MacKinnon, 2010)
is very similar to the RE bootstrap, except that the i*" pair of rescaled residuals
remains associated with the i** observation. To generate the bootstrap disturbances,
one simply multiplies each pair of rescaled residuals by a random variable v} with
mean zero and variance one. See Davidson and Flachaire (2008) for more about the
wild bootstrap. Unless heteroskedasticity is clearly absent, it would probably be wise
to use heteroskedasticity-consistent standard errors and the WRE bootstrap. In sam-
ples of reasonable size (more than a few hundred observations) with heteroskedastic
disturbances, this combination should work just about as well as ordinary standard
errors and the RE bootstrap when the disturbances are actually homoskedastic.

Using the RE bootstrap to obtain a confidence set is a bit complicated. Consider
the upper limit, ﬂu Start with an initial estimate, say ﬂl (one obvious candidate
is the upper limit of the asymptotic confidence 1nterva1) and compute p (ﬁi) using
equation (20). If p*(3L) > a, then (! is too small; if p*(5L) < a, then it is too
large. Try another candidate, say ﬁg, which must be larger than 61 in the former
case and smaller in the latter case. Calculate p (ﬂg) and repeat if necessary. The
way in which Bﬁ is chosen may have a significant impact on computational cost, but
it should have no effect on the properties of the RE bootstrap confidence set.

If, after m tries, we have found 47! and 8™ such that p*(371) — o and p*(37) —
have opposite signs, then Bu must lie between them. At this point, various numerical
methods can be used to find it. Since p*(p) is not differentiable, we must use a
method that does not need derivatives. In Davidson and MacKinnon (2010), we used
golden section search, but in this paper we use bisection, which is easier to program
and somewhat faster. Note that exactly the same set of random numbers must be
used for all the bootstrap samples. Otherwise, the value of p*(5y) would be different
each time we evaluated it.

The procedure for finding the lower limit, Bl, is essentially the same as the one for
finding the upper limit, with obvious changes in sign at various points.

In the above description of the algorithm, we have implicitly assumed that, if Gy is
sufficiently large or sufficiently small, p*(8y) must be less than a. However, that is
not always true. The confidence set has no upper bound if p*(Gy) > « as (3 tends to
plus infinity, and it has no lower bound if p*(8y) > « as fy tends to minus infinity.
In practice, we may reasonably conclude that the confidence set is unbounded from
above (below) if p*(5y) > « for a very large positive (negative) value of Gy.

Like AR confidence sets, unbounded RE bootstrap confidence sets may contain holes.
It is therefore important to check for unboundedness even if the procedure described
above has apparently located both Bu and Bl- If there are values of (3, greater than Bu
or less than 3, for which p*(Bo) > «, it is easy enough to locate the other end of
the hole. However, we do not recommend using unbounded confidence sets to make
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inferences. The fact that a confidence set is unbounded strongly suggests that the
instruments are so weak as to make reliable inference impossible.

The fact that RE bootstrap confidence sets may be unbounded (and in fact often are
unbounded for small values of a; see below) is actually a good feature. The important
result of Dufour (1997) implies that any confidence set which has approximately
correct coverage when the instruments are weak must be unbounded with positive
probability. The fact that RE bootstrap confidence sets can be unbounded makes it
possible for them to have extremely good coverage.

Figure 6 shows coverage for RE bootstrap confidence sets based on LIML (left panel)
and IV (right panel) estimates for the same simulations (including the same random
numbers to generate the data) as the two lower panels of Figure 5. Note the scales
of the vertical axes! For ¢ > 8 in the LIML case and a > 11.3137 in the IV case, it is
impossible to see any evidence that coverage is not precisely 95%. For the two largest
values of a, there is also no statistical evidence that coverage differs from 95%, either
unconditionally or conditional on p, for either the IV or LIML intervals.

For the RE bootstrap LIML confidence sets, there is very slight undercoverage when
a = 5.6569, noticeable undercoverage when a = 4, and more serious undercoverage
when a = 2.8284. The undercoverage is always more severe for small values of p than
for large ones. For the RE bootstrap IV confidence sets, there can be either overcov-
erage (for a = 2.8284 and, except for small values of p, for a = 4) or undercoverage
(for a = 5.6569, except for large values of p, and for a = 8, except for small values
of p). But the magnitudes of both overcoverage and undercoverage are very small
indeed. To see how extraordinarily well the RE bootstrap confidence sets perform,
compare Figure 6 with Figure 5.

Figure 7 shows the proportion of RE bootstrap confidence sets that are actually
bounded intervals. For comparison, the proportion of AR confidence sets that are
bounded is also shown. No results are presented for a = 16 and a = 11.3137, because
all the RE bootstrap sets were bounded intervals in those cases. For the LIML case,
the fraction of bounded intervals is negligibly different from 100% when a = 8 and
never less than 98.5% when a = 5.6569. For smaller values of a, it is comparable to
the proportion of bounded AR confidence sets, although it is much more sensitive to
the value of p. For the IV case, the fraction of bounded intervals is smaller and more
dependent on the value of p than for the other two cases.

Whenever some RE bootstrap confidence sets are unbounded, it is inevitable that
others should be bounded but extremely long. Even for the larger values of a, where
this does not happen, the RE bootstrap intervals tend to be somewhat longer than
the asymptotic ones (which is not surprising, since their coverage is much better).
However, they tend to be much shorter and much less variable in length than AR
intervals. For example, when a = 16, the 0.99, 0.50, and 0.01 quantiles of the RE
bootstrap IV intervals for p = 0.51 are 0.333, 0.254, and 0.201, respectively. There is
just a small amount of dependence on p, so results for p = 0.51 are quite typical, and
we do not need a figure. The same quantiles of the RE bootstrap LIML intervals are
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virtually identical, at 0.330, 0.253, and 0.200. In contrast, the quantiles of the AR
intervals are 0.540, 0.379, and 0.112. The dispersions of the IV and LIML estimates
(see the discussion of Figure 4) are 0.243 and 0.250, respectively, so the lengths of
the RE bootstrap intervals, in striking contrast to those of the AR intervals, provide
reasonably reliable guides to the dispersion of the estimates.

6. Conclusion

In this paper, we have studied the properties of confidence sets based on inverting
the Anderson-Rubin test, and we have proposed a bootstrap procedure that appears
to have very much better properties. The fundamental problem with AR confidence
sets is not that they can be unbounded when the instruments are weak. That feature
is shared by the RE bootstrap confidence sets that we propose. Moreover, as Dufour
(1997) showed, it is a necessary feature of any confidence set which has approximately
correct coverage when the instruments are weak.

Instead, the fundamental problem with AR confidence sets is that they are obtained
by inverting a test which has more than one degree of freedom, specifically, | — k
of them. As a result, the length (and even the existence) of an AR confidence set,
when it is not unbounded, depends on the value of the Sargan statistic. When the
instruments are reasonably strong, the AR confidence set will be empty whenever
the Sargan statistic is sufficiently large. Bounded AR confidence intervals will be
misleadingly short if the Sargan statistic is large, and they will be misleadingly long
if the Sargan statistic is small. The coverage of bounded AR intervals is not correct
(they have to overcover to make up for the empty sets that undercover), and their
coverage conditional on the value of the Sargan statistic is much worse. We therefore
do not recommend the use of AR confidence sets in any circumstances.

In Section 5, we proposed a procedure for constructing confidence intervals by in-
verting bootstrap tests. Unlike most such procedures, this one employs restricted
and efficient estimates of the bootstrap DGP. It can be used with any asymptotically
valid test, but we applied it only to ¢ tests based on IV and LIML estimates. For suf-
ficiently strong instruments, where the resulting confidence sets are always bounded
intervals, this procedure appears to work perfectly. For weaker ones, where some of
the confidence sets are unbounded, its coverage is not perfect, but it still appears to
be extremely good.

Appendix

In this appendix, we study the properties of confidence sets that are constructed by
inverting F' tests in the classical normal linear model

Y= wﬂ + X2ﬁ2 + Z7 + u, u -~ N(O7 021)7 (21)

where y and « are n x 1 vectors, X5 is an n x ko matrix, Z is an n x k3 matrix.
We wish to construct a confidence set for 3 by inverting the F' test for the joint
hypothesis

H(B) : B =060 B2=0,
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assuming of course that the true B, is indeed zero. The null model can be written as
y— wﬁo = Z’Y + u,
and the alternative as
y—x0 =Y+ Zv +u, (22)

where Y =[x X3]. Clearly, (21) and (22) are just different parametrizations of the
same model.

The F statistic for a test of H((3p) at nominal level « is

1Pary (y — 30) |1/ (k2 + 1)

F@) =My molP/n—k)

where k = ko + k3 + 1. Any value of fy for which F(Gy) < ¢, where ¢ is the
1 — a quantile of the Fj,41 ,— distribution, belongs to the confidence set formed
by inverting the F' test. The inequality F'(3y) < ¢ can be expressed as a quadratic
inequality in [y, as follows:

(CUTPMzYw)ﬁg - 2(wTPMZYy)ﬂO + yT(PMzY —cMy Z])y <0, (23)
where ¢ = (kg + 1)g/(n — k). The discriminant of the quadratic is
A=4((z"Pryyy)’ — 2 Puyyr y (Puyy — cMiy 2)y), (24)
and A < 0 if and only if

(" Prg,yy)?

25
wTPMZYw ( )

Y (Pryy — cMyy z))y >

The right-hand side of this inequality is the squared norm of the projection of y on
to the direction of Pps,yx. But

PMZYw = PszMZ{B = Mzw,

and so the right-hand side of (25) is simply y' Ppr,2y.

If we subtract y' Par, 2y from both sides of (25), the first term inside the parentheses
on the left-hand side becomes Pns,y — Pargqe. Since

Priyy = Pyga + Py, 7%5, (26)
the inequality (25) can then be rewritten as
yT(PM[m z1 X2 CM[Y Z])y >0,
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which can be rearranged as

T
y P, Z]Xzy/kQ

> (1+—)q. 27
yTM[Y Z]y/(n—k) ( kg)q ( )

The left-hand side of this inequality is distributed as Fj, ,—, and so the probability
that A < 0 can be readily calculated. The numerical value depends on the nominal
coverage 1 — «, the sample size n, and the numbers k£ and ko of regressors in the
model (21).

The probability that A < 0 is the probability of obtaining an empty confidence set,
because the coefficient of 52 in (23) is always positive, so that, if the corresponding
quadratic equation has no real roots, the quadratic function is everywhere positive,
and the inequality is satisfied nowhere. This probability is, of course, less than a.

Suppose without loss of generality that the true value of 3 is zero and the true value
of o is one. Then the confidence set covers zero if and only if it is non-empty, that is,
A > 0, and the two real roots of the quadratic have opposite signs. The product of
the roots is the ratio of the last term on the left-hand side of (23) to the coefficient
of 2. Since the latter is always positive, the roots have opposite signs if and only if

y' (Pymyy — cMy 7))y <0, (28)

since this inequality implies that A > 0; compare (25). The inequality (28) can be

rewritten as
Y ' Prryyy/ (ke + 1)

= q,
yTM[Y Z]’y/(” — k)

and the probability that the inequality is satisfied is of course just 1 — «, since the
left-hand side of (29) is distributed as Fy,4+1 n—k-

Consider next the statistic for the F' test of the part of H(fy) that has nothing to
do with [y, namely that 35 = 0. This statistic is

(29)

Iy—l—P]\4[a3 Z]Xzy/kQ

Fs = .
g yTM[Y Z]y/<n — k)

(30)

From (26), the left-hand side of (29) can be rewritten as

ko o Y ' Prr,oy/ (ko + 1)
ko +1 y' My z1y/(n—k)’

and so, if we write s2 = y' M, v zY/(n — k), the coverage event can be expressed as

P
kaFy + L0228 < (4 1)g,
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or, equivalently,
Y Priyoy < 57 ((k2 + 1)g — ko F2). (31)

The two sides of this inequality are independent, and the left-hand side is distributed
as x2(1). Therefore, conditional on F, and s2, coverage is given by the CDF of y2(1)
evaluated at the right-hand side of (31).

Observe from (27) and (30) that the event A < 0 can be written as ko Fy > (k2 +1)q,
which means that (31) cannot be satisfied if A < 0. Moreover, the length of the

confidence interval, when it exists, is the distance between the two roots of the
quadratic in (23), that is, 2v/A/x Pas,y 2. It can be seen from (24) and (30) that

A= 4:cTPMZyw 52((k2 +1)g— ngg),

and so the length of the interval, when it exists, is

28(([€2 + 1)q — ]{72F2)1/2

(wTPMZYw>1/2

(32)

This may be compared with expression (17) for the bounded AR interval. We see
from (31) and (32) that conditional coverage is given by the CDF of x?(1) evaluated
at 4 times the squared length of the confidence interval multiplied by «' P,y .

It is evident from expression (32) that, if ﬁg differed substantially from a zero vector,
and Fy were consequently a large number, (kg + 1)q — ko F> would be negative, and
there would not exist a bounded interval. That could happen either by chance or
because B3 # 0. It seems very unsatisfactory that the length, and even the existence,
of a confidence interval for # should depend on the value of 3. That is one of the
reasons why the interval discussed in this appendix would never be used in practice.
But the AR confidence set suffers from exactly the same defects. The analog of 3
not being quite zero is the overidentifying restrictions not being quite satisfied.
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Figure 1. Five types of Anderson-Rubin confidence set
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Figure 7. Proportions of bounded confidence intervals as functions of p
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