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Abstract Finding underlying molecular mechanisms of
diseases is one of the important issues in biomedical research.
In which, prediction of novel disease-associated genes is
mostly focused.Manymethods have been proposed based on
biological networks and shown effectively for the problem.
These network-based methods are usually relied on a “dis-
ease module” principle that functionally similar genes are
associatedwith similar phenotypes or diseases.Among them,
methods solely based on gene/protein networks only exploit
that principle by structural modules in the gene/protein net-
works. Meanwhile, others based on integration of these
networks with a disease similarity network better exploit the
principle and consequently result in higher prediction per-
formance. In these studies, the disease similarity network is
extracted from a disease similarity matrix which was cal-
culated using text mining techniques on OMIM records.
Considering that diseases have been recently well annotated
by human phenotype ontology (i.e., a controlled vocabu-
lary database) and semantic similarity measures can be used
to calculate similarities among them. Therefore, it would
be more accurate to construct disease similarity network
based on semantic similarity measures on phenotype ontol-
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ogy database. In this study, we constructed such network and
integrated them with several kinds of gene/protein networks.
Experiment results show that the ontology-baseddisease sim-
ilarity network much improves the prediction performance
compared to the one based on OMIM records, irrespective
of gene/protein networks. In addition, we show ability of our
method in predicting novel Alzheimer’s disease-associated
genes, in which 19 out of top 100 ranked candidate genes are
supported with evidences from literature.

Keywords Disease-associated gene · Human phenotype
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1 Introduction

Disease gene prediction, the task of identifying the most
plausible candidate disease genes, is an important issue in
biomedical research andmany studies have been done for this
[1,2]. Identification of disease-associated genes also leads to
more effective researches about therapies for genetic diseases
and gradually approaches a future of personalized medicine
[3–5]. In past decades, linkage analysis was usually used to
identify novel disease genes, inwhich susceptible loci includ-
ing hundreds of genes are investigated, and thus it is much
costly for doing many experiments in wet lab. Therefore,
ranking/prioritization methods for such candidate genes are
introduced (i.e., genes are ranked by their relevance to a dis-
ease of interest). Highly ranked genes are further investigated
to find out associated biomedical evidences. And therefore,
the goal of gene ranking/prioritization is to predict novel
disease-associated genes.

The prediction of novel disease-associated genes are usu-
ally approached by three main directions: (1) functional

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193995608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s40595-016-0063-3&domain=pdf
http://dx.doi.org/10.1007/s40595-016-0063-3


198 Vietnam J Comput Sci (2016) 3:197–205

annotation based; (2) machine learning based; and (3) net-
work based. In which, functional annotation-based methods
have prioritized candidate genes by measuring the degree
of similarity of each candidate genes to a set of known dis-
ease genes based on profiles which were built from many
functional annotation data sources [6–8]. Therefore, those
methods mostly focused on the integration of various bio-
logical datasets to obtain more accurate similarity. However,
those approaches are limited in that functional annotation
data sources have not covered whole human genome yet.
For the second approach, many learning techniques have
been applied to predict disease-associated genes. In which,
the problem is considered as a classification one, where a
classifier is learned from training data; then the learned clas-
sifier is used to predict whether or not a test/candidate gene
is a disease gene. Briefly, at the early, machine learning-
based studies usually approached disease gene prediction
as a binary classification problem [9], where the learning
samples are comprised of positive training samples and neg-
ative training samples [9] such as decision trees (DT) [10,11]
k-nearest neighbor (kNN) [12], naive Bayesian classifier
[13,14], binary support vector machine classifier [15–17],
artificial neural network (ANN) techniques [18] and random
forest (RF) [9]. In these binary classifier-basedmethods, pos-
itive training samples are constructed from known disease
genes, whereas negative training samples are the remaining
which are not known to be associated with diseases. This is
the limitation of binary classifier-based solutions for the dis-
ease gene prediction problem, since the negative training set
should be actual non-disease genes.However, construction of
this set is nearly impossible in biomedical researches. There-
fore, more advanced machine learning techniques, which
do not require to define a the negative training set, have
been recently introduced for this problem [19]. However,
the problem was still formulated as a classification, while it
should be a ranking/prioritization one. Therefore, methods
for prediction of disease-associated genes have extended to
network-based ones [20,21] and shown to outperform func-
tional annotation- and machine learning-based ones [22,23].
These network-basedmethods aremostly based onbiological
networks, which are constructed based on various kinds of
biomedical data, and therefore they are not limited by the cov-
erage of functional annotation data sources. In addition, these
methods can be considered as positive and unlabeled learning
techniques where the rankings of candidate genes are esti-
mated based on their relative similarities to known disease
ones and others. Moreover, the dominance of network-based
methods is also because they are based on a principle of
“disease module” (e.g., functionally similar genes are asso-
ciated with similar phenotypes or diseases). Amongmethods
solely based on gene/protein networks, a method using a ran-
dom walk with restart (RWR) algorithm [22,24,25] is more
dominant compared to other methods such as nearest neigh-

bor, shortest path and clustering [26]. Because this algorithm
calculates a global similarity among candidate and known
disease genes on whole network and therefore not only genes
directly connected to disease genes are considered, but also
indirect ones. This algorithmhas been successfully applied to
other problems such as prediction of disease-associatedmiR-
NAs [27] and protein complexes [28]. However, this method
can only exploit the “disease module” in the gene/protein
network (i.e., genes/proteins associated with the same or
similar diseases usually form functional/physical modules
on gene/protein interaction networks [29–31]).

Recently, a variant of RWR algorithm, namely RWRH,
was proposed for a heterogeneous network. This algorithm
was then applied to predict disease-associated genes on a het-
erogeneous network of proteins and disease phenotypes [32].
This network was constructed by integrating a disease sim-
ilarity network based on text mining algorithms on OMIM
records [33] and a protein interaction network. As a result,
it was reported that RWRH better exploit “disease module”
principle than RWR [22] since then OMIM-based disease
similarity network was additionally integrated [32]. More
importantly, the RWRHalgorithm can be extended to use any
network of genes/proteins as well as disease similarity one.
Indeed, a recent RWRH-based method has used a semantic
similarity network of genes instead of the protein interac-
tion network [34] and shown to outperform the original one
[32]. We also note that a disease similarity network can be
constructed based on shared disease gene [30], shared path-
ways [35], shared miRNA [36], shared protein complex [37],
shared disease ontology [38] and disease comorbidity [39].
Similarly to RWR, RWRH algorithm has been successfully
applied to other problems such as prediction of novel drug–
target interactions [40] as well as novel disease-associated
miRNAs [41] and long non-coding RNAs [42].

In this study, we extended the use of RWRH algorithm
to the prediction of disease-associated gene by integrating
semantic similarities among diseases and a gene/protein net-
work.More specifically, considering that disease phenotypes
have been recently annotated by human phenotype ontology
(shortly called HPO) [43] (i.e., controlled vocabulary data-
base) and a number of semantic similarity measures have
been proposed to calculate the similarity between anno-
tated biomedical objects [44], it would be more accurate
to calculate the similarity among diseases based on such
the measures. Therefore, we constructed a disease similar-
ity network using a semantic similarity measure on HPO.
Then, this network was integrated with a gene/protein net-
work by known disease phenotype–gene associations. We
compared our method with the one relied on the OMIM-
based disease similarity network as in [32,34]. In which, the
gene/protein network can be the protein interaction network
as in [32], the gene semantic similarity network as in [34]
as well as one constructed based on expression profiles of
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Fig. 1 Construction of
heterogeneous networks of
genes/proteins and diseases.
Disease similarity network and
gene/protein network are
connected by a bipartite network
of known disease-gene
associations

genes. Experimental results show that the performance of our
method is better than that based on the OMIM-based disease
similarity network irrespective of the gene/protein networks.
This indicates that HPO-based similarity calculation of dis-
eases improves the performance of RWRH algorithm for the
prediction of disease-associated genes. In addition, we used
our method to find novel genes associated with Alzheimer’s
disease. The evidence search from literature about the asso-
ciations between 100 highly ranked candidate genes and
Alzheimer’s disease confirmed 19 of them, which are not
yet recorded in public disease–gene association database.

2 Methods

2.1 Construction of heterogeneous networks of diseases
and genes

To build heterogeneous networks of diseases and genes, we
constructed two kinds of networks: (1) gene/protein network,
which connects genes/proteins by functional interactions; (2)
disease similarity network, where a link between two dis-
eases is specified by their similarity. Then, we connected
these two networks by a bipartite network consisting of

known disease–gene associations. Figure 1 shows construc-
tion of such heterogeneous networks of genes/proteins and
diseases.

Gene/protein networks
Protein–protein interaction network
First, we collected a human protein interaction network

(shortly called PPINet) containing 10,486 genes and 50,791
interactions fromNCBI FTP repository.1 Proteins in this net-
work are connected by physical interactions. Therefore, we
considered PPINet as an unweighted network.

Gene expression-based similarity network
Second, we constructed a weighted gene network based

on gene expression data (shortly calledGENet).More specif-
ically, a gene co-expression database comprising 19,777
human genes was downloaded from COXPRESSdb [45]. To
measure the similarity between a pair of genes, we employed
the mutual rank method, which evaluates the strength of co-
expression [46]. The mutual rank ranges from 0 to 19,776

and the normalized value wi j = (19,776−MR(vi ,v j ))

19,776 , where
MR(vi , v j ) denotes the mutual rank between gene vi and
v j . The GENet was constructed by replacing the original
weight of each link in the PPINet network with the normal-

1 ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/interactions.gz.
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Table 1 Size of gene/protein
networks and number of testing
disease phenotypes for
corresponding heterogeneous
networks

# Gene/protein network Size (number of genes/proteins,
number of interactions)

Number of testing
disease phenotypes

1 PPINet (10,486, 50,791) 2639

2 GENet (9852, 49,404) 2533

3 GONet (7897, 41,466) 2345

ized mutual rank value of gene pairs that participate in the
network.

Gene ontology-based similarity network
Third, we constructed another weighted gene network

based on gene ontology data (shortly called GONet). To con-
struct this network, we used the UniProtKB [47] corpus in
the GO annotation database [48]. There were 18,245 Homo
sapiens proteins in total. Among them, there were 15,576
proteins annotated with molecular function terms, 14,911
proteins annotated with biological process terms, and 16,983
proteins annotated with cellular component terms. Then, to
construct the network, we first needed to introduce the infor-
mation content (IC). The IC of a term e in the corpus is
defined as follows:

IC(e) = −log (p(e)) ,

where p(e) is the probability of e occurring in the cor-
pus, i.e., p(e) = f (e)

f (root) such that f (e) = Annot(e) +
∑

c∈Children(e) f (c). In this formula, Annot(e) means the
number of proteins annotatedwith e in the corpus,Children(e)
represents the set of children terms of e in the GO graph and
root is root term of the GO graph. Then, the semantic similar-
ity between the two GO terms, ei and e j , based on the most
informative common ancestor approach [49], is calculated as
follows:

simTerm(ei , e j ) = max
c∈P(ei ,e j )

(IC(c)),

where P(ei , e j ) is the set of shared ancestors of ei and e j .
The functional similarity between a pair of genes vi and v j

is calculated as the maximum of simTerm values between all
possible pairs of terms as follows:

simGene(vi , v j ) = max
ei∈T (vi ), e j∈T (v j )

(
simTerm(ei , e j )

)
,

where T (v) represents the set of terms annotating v. This
value is normalized in range [0, 1] to account for an unequal
number of GO terms for both genes as follows:

wi j = 2 × simGene(vi , v j )

simGene(vi , vi ) + simGene(v j , v j )
.

By employing the sub-ontology databases of biological
process, cellular component and molecular function individ-

ually (i.e., root terms for these gene sub-ontology graphs are
biological process, cellular component and molecular func-
tion, respectively), three GO-based weighted networks were
constructed, in which the original weight of each link in the
PPINet network was replaced by the normalized similarity
valuewi j of two genes participating in each link.We referred
to these as the BPNet, CCNet and MFNet networks, respec-
tively. Finally, we integrated them using “per-edge average”
method to construct GONet network as follows:

w̄i j = 1

M

M∑

k=1

(wi j )k

where M is number of networks containing interaction
between gene vi and v j . (wi j )k is the weight of interaction
between vi and v j in network k.

After selecting most connected component, we finally
obtained PPINet, GENet and GONet networks with size as
shown in Table 1.

2.2 Disease similarity networks

OMIM-based disease similarity network
First, following the same procedure as in [32,34], we

collected a phenotypic disease similarity matrix from [50],
where an element of thematrix represents degree of similarity
between two phenotypes. The similarities in this matrix were
calculated based on various textmining algorithms onOMIM
records, which describe diseases using natural language [33].
By selecting only five neighbors which have largest simi-
larities for each node, we constructed a phenotypic disease
similarity network (shortly called OMIMNet) consisting of
19,791 interactions among 5080 phenotypes.

HPO-based disease similarity network
Second, to construct another disease similarity network,

we calculated similarity among disease phenotypes based
on human phenotype ontology (HPO, a controlled vocabu-
lary database) [43] (i.e., root term for this ontology graph
is All). More specifically, we collected HPO terms and cor-
responding annotation data at Human Phenotype Ontology
database 2 [43]. Then, we followed the same procedure as for

2 http://www.human-phenotype-ontology.org/.
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gene ontology-based similarity networks to calculate simi-
larity between every pair of disease phenotypes. Similarly, by
selecting only five neighbors which have largest similarities
for each node, we constructed a HPO-based disease simi-
larity network (shortly called HPONet) consisting of 34,476
interactions among 6521 phenotypes.

2.3 A bipartite network

The bipartite network are known disease–gene associations
collected from NCBI FTP repository.3 This connects a total
of 3284 diseases and 2761 genes.

2.4 RWRH-based method

Given a connected weighted graph G(V , E) with a set
of nodes V = {v1, v2, . . ., vN } and a set of links E =
{(vi , v j )|vi , v j ∈ V }, a set of source/seed nodes S ⊆ V
and a N × N adjacency matrix W of link weights. Here,
we are going to introduce algorithms for measuring relative
importance of node vi to S. Bymodeling a heterogeneous net-
work of genes and diseases as a graph, ranking/prioritization
of candidate genes/diseases is to predict novel genes/diseases
associated with a disease of interest (d). The rankings of can-
didate genes/diseases are based on their relative importance
to a set of known d-associated genes and d. This value also
measures how much a candidate gene/disease is associated
with d.

2.5 Random walk with restart (RWR) algorithm

Random walk with restart (RWR) is a variant of the random
walk and it mimics a walker that moves from a current node
to a randomly selected adjacent node or goes back to source
nodes with a back-probability γ ∈ (0, 1). RWR can be for-
mally described as follows:

Pt+1 = (1 − γ )W
′
Pt + γ P0,

where Pt is a N ×1 probability vector of |V | nodes at a time
step t of which the i th element represents the probability
of the walker being at node vi ∈ V , and P0 is the N×1
initial probability vector. W

′
is the transition matrix of the

graph, the (i , j) element in W
′
, denotes a probability with

which a walker at vi moves to v j among V \{vi }. All nodes
in the network are eventually ranked according to the steady-
state probability vector P∞. The steady state of each node
represents its relative importance to the set of source nodes S.

This algorithmwas used for disease gene prediction based
on a homogeneous network of genes/proteins [22,24]. In
which, the transition matrix W

′
is defined as follows:

3 http://ftp.ncbi.nlm.nih.gov/gene/DATA/mim2gene_medgen.

(W
′
)i j = (WG)i j

∑
j (WG)i j

,

where WG is adjacency matrix of the network of genes/
proteins.

In addition, the set of source nodes (S) was specified by
genes known to be associated with d. Therefore, the initial
probability vector was defined as follows:

P0 =
{ 1

|S| if vi ∈ S
0 otherwise.

2.6 Random walk with restart on heterogeneous
network (RWRH) algorithm

This algorithm can be considered a variant of the RWR algo-
rithm, since it was defined in the same formula as for RWR.
The difference is construction of transition matrix W

′
. More

specifically, W
′
was defined as follows:

W
′ =

[
W

′
G W

′
GD

W
′
DG W

′
D

]

,

where W
′
G and W

′
D are intra-subnetwork transition matri-

ces of a network of genes/proteins and a disease similarity
network, respectively.W

′
GD,W

′
DG are inter-subnetwork tran-

sition matrices. Let λ be the jumping probability the random
walker jumps from the network of genes/proteins to the dis-
ease similarity network or vice versa. Then, these matrices
were defined as follows:

(W
′
GD)i, j = p(d j |gi ) =

{ (λWGD)i j∑
j(WGD)i j

if
∑

j (WGD)i j �= 0

0 otherwise,

(W
′
DG)i, j = p(g j |di ) =

{ λ(WGD) j i∑
j(WGD) j i

if
∑

j (WGD) j i �= 0

0 otherwise,

(W
′
G)i, j =

⎧
⎪⎨

⎪⎩

(WG)i j∑
j(WG)i j

if
∑

j (WGD)i j = 0

(1−λ)(WG)i j∑
j (WG)i j

otherwise,

(W
′
D)i, j =

⎧
⎪⎨

⎪⎩

(WD)i j∑
j(WD)i j

if
∑

j (WGD) j i = 0

(1−λ)(WD)i j∑
j (WD)i j

otherwise,

where WD and WGD are adjacency matrices of the disease
similarity and the bipartite networks.

By letting η be the parameter to weight the importance
of each network, the initial probability vector was defined as
follows:
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P0 =
⎧
⎨

⎩

(1 − η) 1
|S| ifvi ∈ S

η if vi ≡ d
0 otherwise.

In case we are interested in a disease class/group, which con-
tains set of diseases (D), P0 was defined as follows:

P0 =

⎧
⎪⎨

⎪⎩

(1 − η) 1
|S| if vi ∈ S

η 1
|D| if vi ∈ D

0 otherwise.

For these two algorithms, all remaining genes in the net-
works, which are not known to be associated with d or D,
were selected as candidates for ranking.

3 Results and discussion

3.1 Performance comparison

Note that, our method was based on the construction of
heterogeneous networks by integrating HPONet network
with a gene/protein network. Therefore, three heterogeneous
networks were constructed for our method, i.e., HPONet-
PPINet, HPONet-GENet and HPONet-GONet. Meanwhile,
heterogeneous networks in [32,34] were OMIMNet-GONet
and OMIMNet-PPINet, respectively. In addition to these five
heterogeneous networks, we constructed OMIMNet-GENet
for the comparison. To compare the performance of our
method with that of others, we used leave-one-out cross-
validation (LOOCV) method for each disease phenotype in
a set of disease phenotypes which associates with at least
one gene in the gene/protein networks. Due to the differ-
ences in size of gene/protein networks, the number of testing
disease phenotypes was little different for different hetero-
geneous networks as shown in Table 1. Based on results of
RWRH algorithm for prediction of disease-associated genes
[32,34] and prediction of disease-associated miRNAs [41],
we set back-probability (i.e., γ ), jumping probability (i.e.,
λ) and subnetwork importance weight (i.e., η) to 0.5, 0.6
and 0.7, respectively. For each disease phenotype (d), in
each round of LOOCV, we held out one known d-associated
gene. The rest of known d-associated genes and d were used
as seed nodes. The held-out gene and remaining genes in
the homogeneous network, which were not known to be
associated with d, were ranked by the methods. Then, we
plotted the receiver operating characteristic (ROC) curve
and calculated the area under the curve (AUC) to compare
the performance of the methods. This curve represents the
relationship between sensitivity and (1−specificity), where
sensitivity refers to the percentage of known d-associated
genes thatwere ranked above aparticular threshold and speci-
ficity refers to the percentage of genes whichwere not known
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Fig. 2 Performance comparison. Our method is represented by
HPONet-PPINet, HPONet-GENet and HPONet-GONet; and others by
OMIMNet-PPINet, OMIMNet-GENet and OMIMNet-GONet

to be associated top ranked below this threshold. Figure 2
shows that the performance of our method (i.e., HPONet-
PPINet, HPONet-GENet and HPONet-GONet) was better
than that of study [34] (i.e., OMIMNet-GONet), study [32]
(i.e., OMIMNet-PPINet) and OMIMNet-GENet. In addi-
tion, the performance of heterogeneous networks, which
were based on HPO, were comparable (i.e., AUC values
for HPONet-PPINet, HPONet-GENet and HPONet-GONet
were 0.927, 0.926 and0.926, respectively). Similarly, the per-
formance of heterogeneous networks, which were based on
OMIM, were comparable (i.e., AUC values for OMIMNet-
PPINet, OMIMNet-GENet and OMIMNet-GONet were
0.736, 0.73 and 0.71, respectively). These results indi-
cate that HPO-based calculation of the disease similarity
network (i.e., HPONet) better reflects functional relations
among diseases than that based on text mining algorithms
on OMIM records for the prediction of disease-associated
genes.

3.2 Case study: Alzheimer’s disease

In this experiment, we tried to predict novel genes associated
with Alzheimer’s disease (Shortly called AD) (MIM ID is
104300). AD is a multi-factorial and fatal neurodegenerative
disorder for which the mechanisms leading to profound neu-
ronal loss are incompletely recognized. There are 16 genes
are known to be associated with AD [33]; however only
eleven of them are available in the gene/protein networks. To
predict novel genes associated with this disease, we selected
the heterogeneous network comprising HPONet and GENet.
Then we used these eleven genes and the MIM ID of AD
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Table 2 Nineteen evidenced Alzheimer’s disease-associated genes in top 100 ranked candidate genes

Rank Gene Entrez ID Gene symbol PubMed ID

1 6622 SNCA 19022350, 21056999, 22836259, 23820587

2 348 APOE 11803456, 12000192, 12232782, 12498968, 12876259, 12960780, 14741429, 15165699, 15181247,
15184600, 15184629, 15455263, 16165272, 16796589, 17050040, 17089130, 17101827, 17374951,
17474819, 17524782, 17613540, 17659844, 17854398, 18058831, 18083276, 18205760, 18416843,
18505684, 18525129, 19116453, 19199875, 19339712, 19398704, 20198498, 20473139, 20479234,
20535486, 20538374, 21143177, 21283692, 21297273, 21297948, 21409287, 21556001, 21803501,
22016362, 22179327, 22269984, 22383234, 22502727, 22596266, 22712640, 22815080, 22899317,
23050006, 23183136, 23293020, 23571587, 23581910, 23627755, 23663404, 23668794, 23771217,
23948883, 24312462, 24388797, 24446209, 24473795, 24599963, 24603451

3 5621 PRNP 18349519, 19556894

9 1312 COMT 15488308, 22483294, 23034259, 24477323

21 4137 MAPT 15848182, 16165272, 16182262, 17920160, 18431250, 18431254, 18586097, 18806919, 19153649,
19523877, 19524111, 19560101, 20473135, 20678074, 21342022, 21348938, 21442128, 21489990,
23554879, 23597931, 25378699

24 7329 UBE2I 19765634

28 1508 CTSB 23024364

29 5663 PSEN1 12668610, 15159497, 15622541, 17229472, 17594345, 18028191, 18479822, 18525293, 19667325,
19796846, 22133015, 23850332

34 627 BDNF 12192623, 15838855, 15935057, 16054753, 19088493, 19522715, 22212405, 22364688, 24334212

37 5054 SERPINE1 19604604

38 5327 PLAT 22027013

41 4035 LRP1 15048651, 18706476, 22027013

42 5329 PLAUR 11814408

50 1815 DRD4 23034259

53 7345 UCHL1 16626667, 22660851, 22726800

73 5071 PARK2 19716418

83 6667 SP1 16378688, 23435408

94 5340 PLG 22027013

95 3952 LEP 21633502

as source nodes, and other genes in the homogeneous net-
work as candidates. After all candidate genes were ranked,
we selected 100 highly ranked candidates for evidence search
about the association between them and AD from literature
on PubMed using Entrez Programming Utilites [51]. Table
2 shows 19 evidenced candidate genes. For instance, study
[52] (PubMed ID: 16378688) showed that SP1 deposition
in hyper-phosphorylated tau deposits may have functional
consequences in the pathology of AD. In addition, it was
suggested that UBE2I polymorphisms might be associated
with a risk of AD [53] (PubMed ID: 19765634). Also, low
protein levels of UCHL1 are associated with high protein
levels of BACE1 in sporadic AD brains [54] (PubMed ID:
22726800). Finally, enhancing CTSB activity could lower
Abeta, especially Abeta42, in AD patients with or without
familial mutations [55] (PubMed ID: 23024364). Other not
yet evidenced genes in the top 100 genes can be good can-
didates for biologists for further investigation (see Online
Resource 1).

4 Conclusions

It was reported in previous studies that disease similarity
improves the performance of prediction of novel disease-
associated genes, since it better exploits the “disease mod-
ule” principle. Based on this, methods on a heterogeneous
networks comprising a disease similarity network and a
gene/protein network are superior to those which are solely
based on the gene/protein network. However, construction
of the disease similarity network in previous studies are
limited since they mostly based on an out-of-date disease
similarity matrix, which was constructed using text mining
algorithms on OMIM records. Considering that human phe-
notype ontology is now available and it well annotates to
disease phenotypes, disease similarity can be semantically
calculated based on such the controlled vocabulary using
semantic-based similarity measures. Therefore, in this study,
instead of using theOMIM-based disease similarity network,
we construct a HPO-based one using a semantic similarity
measure. Using the random walk with restart algorithm on
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a heterogeneous network, we compared the performance of
the heterogeneous network built based on our method with
that based on the OMIM-based disease similarity network.
Simulation results show that our method is better irrespective
of gene/protein networks. This indicates that the HPO-based
disease similarity network better exposed functional simi-
larities among diseases than that of OMIM-based one. A
case study on Alzheimer’s disease has been done to show the
ability of our method in predicting novel disease-associated
genes. We also note that, many other semantic similarity
measures proposed to calculate similarity between annotated
biomedical entities can be used to construct disease similar-
ity networks. In addition, these networks can be constructed
based on shared pathways [35], shared miRNA [36], shared
protein complex [37], shared disease ontology [38] and dis-
ease comorbidity [39]. Therefore, it would be interesting for
future studies to test which one is best for the prediction of
novel disease-associated genes.
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