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Abstract The sterilising cytoplasm from Triticum timopheevii
is presently considered to be the most promising as regards to
the seed production of triticale hybrid cultivars. This study was
aimed at the utilisation of Diversity Arrays Technology (DArT)
for the preliminary identification of genomic regions with loci
controlling male sterility/fertility in the field-grown F, genera-
tion of the interline hybrid between male sterile line CMS-
Salvo 15/1 and restorer line Stan I. The fertility of plants was
examined by visual scoring as well as by the assessment of seed
setting within bagged spikes. For DNA analyses, 92 individ-
uals representing opposite phenotypes (male sterile vs. fully
male fertile) were chosen from the whole F, population, which
consisted of 414 plants. The constructed genetic map consists
of 759 DArT markers distributed in 24 linkage groups that
cover a distance of 974.4 cM. Application of the interval
mapping method and the Kruskal-Wallis test enabled the iden-
tification of six genomic regions engaged in the restoration of
male fertility within the mapping population. The most effec-
tive restorer genes were found on chromosomes of the sixth
homeologic group, i.e. on 6R (the most efficient), 6A and
6B. Additionally, linkage groups assigned to chromosomes
IBS, 3A and 3A/3B were important for the determination
of male fertility.

Keywords Cytoplasmic male sterility - Triticale - Triticum
timopheevii cytoplasm

Triticale (% Triticosecale Wittm.) is an artificial allo-hexaploid
species obtained by breeders as a result of intergeneric crosses
between wheat and rye. The first cultivars of this crop were
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registered over 50 years ago. Recently, this cereal has become
successively more common year on year. Over the last two
decades, breeders of triticale have become increasingly more
interested in the exploration of heterosis (Oettler et al. 2003,
2005; Goral et al. 2005; Tams et al. 2005). Practicable organi-
sation of seed production for hybrid cultivars could be
achieved via application of the cytoplasmic male sterility
(CMYS) system in triticale. Among the few sources of sterilising
cytoplasm available for this crop, the cytoplasm of Triticum
timopheevii Zhuk. is considered to be one of the most prom-
ising, due to its small number of deleterious effects (Cauderon
etal. 1985; Nalepa 1990; Spiss and Goral 1994). Utilisation of
the 7. timopheevii CMS system in the breeding of hybrid
cultivars may be strongly facilitated by a better understanding
of the genetic mechanisms leading to microsporogenesis dis-
orders in triticale plants carrying this cytoplasmic system.
Unfortunately, current knowledge about the genetic back-
ground of male sterility in this cereal is very limited. The
majority of research concerning genes restoring male fertility
in plants with 7. timopheevii cytoplasm is focused on wheat.
The cytoplasm originating from Triticum timopheevii is also
important in wheat hybrid cultivar breeding programmes, as it
leads to male sterility symptoms in this cereal. Curtis and
Lukaszewski (1993) reported on the capability of a rye gene
located on the long arm of the 6R chromosome to restore male
fertility in wheat with the 7. timopheevii cytoplasm. The same
authors indicated that the next less effective restorer gene is
located on the 4RL chromosome. Several genes controlling the
production of pollen in the CMS-T. timopheevii system have
been reported on six chromosomes of Triticum aestivum
L. (RfI-1A; Rf2-7D; Rf3-1B; Rf4-6B; Rf5-6D; Rf7-7B) and
the effective Rf3 locus located on the 1BS chromosome has
been precisely mapped (Ma and Sorrells 1995; Kojima et al.
1997). Quantitative trait loci (QTL) analysis allowed for the
localisation of additional less efficient restorers on chromo-
somes 2A, 4B and 6A (Ahmed et al. 2001). In rye (the second
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ancestor of the triticale), QTL analyses performed on F, map-
ping populations resulted in the detection of genes restoring
male fertility in CMS systems on chromosomes 1R, 3R, 4R,
5R and 6R (Miedaner et al. 2000; Stojatowski et al. 2004).

Different molecular markers, like RAPD, ISSR, SSR,
AFLP and SCAR, were applied for genetic research on
triticale (Masoj¢ 2000; Stojatowski and Goéral 2002; Goral
et al. 2005; Tams et al. 2005; Stojalowski et al. 2006) but
none of these techniques resulted in the construction of a
genetic map. The development of Diversity Arrays Technol-
ogy (DATT, Jaccoud et al. 2001) opened up new possibilities
in the exploration of triticale genome, because it allowed for
the construction of the first genetic maps covering the entire
genome of this artificial species (Tyrka et al. 2011; Alheit et
al. 2011). This study was aimed at the application of DArT
markers for mapping the triticale genome, as well as the
utilisation of a developed linkage map for the localisation
of genes restoring male fertility in plants carrying the 7.
timopheevii cytoplasm.

The F, population used in this study consisted of 414
individuals and was developed by the pollination of male
sterile inbred line CMS-Salvo 15/1 by restorer line Stan I.
The male sterile maternal component of the cross was kindly
provided by H. Goéral (The Agricultural University in Krakow,
Poland) and the pollinator line was obtained from A.
Fukaszewski (University of California, Riverside, CA, USA).
All individuals of F; progeny were fully male fertile. Seeds of
the F, population were harvested after the self-fertilisation of
one F plant.

Individual plants of the F, progeny were grown with a
25x%25-cm spacing during the 2010/11 vegetation season in
a field belonging to the West Pomeranian University of
Technology in Szczecin, Poland. In two subsequent days
with stable weather conditions, the evaluation of male fer-
tility was conducted via visual scoring of two to three spikes
per plant at the flowering stage, according to the 5-step scale
proposed by Goral et al. (2006), where 1 corresponds to
absolute sterility and 5 to full fertility of anthers. In addition,
three to five spikes of each plant were bagged before
flowering and visual observations of fertility were verified
after harvest, by the evaluation of seed setting under isolation.

DNA was isolated from young leaves harvested in early
spring and kept in a deep freezer at =70 °C. The GenElute
Plant Mini Kit from Sigma-Aldrich was employed for this
purpose. Marker analyses were performed on parental lines,
as well as on 92 individuals taken from the segregating
F, population. The group of segregants consisted of plants
representative of two opposite phenotypes: male sterile
(MS) and male fertile (MF). As only 12 fully sterile in-
dividuals were identified in the whole population, the MS
group was supplemented by 26 partially male sterile plants
that produced few (1-19) grains per spike. The MF group
consisted of 54 completely fertile individuals (producing not
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less than 54 grains per spike and visually scored as 5 on the
valuation scale). Only plants revealing a consistent assess-
ment by visual scoring and observation of seed setting under
bags were considered for the marker analyses. These were
performed with the use of DArT (Jaccaud et al. 2001).

The genetic map of triticale was constructed with the use
of JoinMap® 3.0 software (Van Ooijen and Voorrips 2001).
The localisation of DArT markers on triticale and rye genetic
maps reported by Alheit et al. (2011), Milczarski et al. (2011)
and Tyrka et al. (2011) were applied for the assignment of
linkage groups to entire chromosomes. For grouping analyses,
the LOD=4.0 level was initially established, but in some
cases, when markers formerly mapped on different chromo-
somes were included in the same linkage group, the LOD
level was increased to 5.0 or 6.0.

Agreement of the distribution of male sterility within the
studied population (data obtained by visual scoring and
analysis of seed setting under bags) with the normal popu-
lation was tested using the Lilliefors test. Interval mapping,
the permutation test and the Kruskal-Wallis test (K-W test)
were performed with the use of MapQTL® 5.0 software,
revealing relationships between segregations of molecular
markers and male fertility restoration (Van Ooijen 2004).
Putative localisation of the gene(s) controlling male fertility
restoration was considered when the LOD value exceeded
3.0, and additional thresholds of significance for declaring
the presence of a given QTL were estimated from 1,000
permutations of the data (Doerge and Churchill 1996). As
suggested by the author of the software (Van Ooijen 2004),
during analyses using the K-W test, molecular markers were
considered to be significantly associated with the studied
trait if P<0.01.

Within the studied F, population containing over 400
individuals, high phenotypic variation was observed. The
number of kernels produced within bagged spikes ranged
from 0 to 103. Twelve plants were fully male sterile. Par-
tially male sterile plants were also not numerous, leading to
a limited number of MS genotypes available for marker
analyses. About 20 % of the population consisted of fully
fertile individuals, but the most numerous group contained
plants classified as partially male fertile (over half of the
entire studied population). The results of visual assessment
and analyses of seed setting in isolated spikes were consis-
tent in the majority of cases, but some contradictories were
also noticed (such individuals were not considered for map-
ping analyses). Generally, the correlation coefficient between
results obtained by two applied methods of sterility/fertility
estimation was 0.55. The distribution of male sterility/fertility
(independent of the method of assessment—visual vs. seed
setting on bagged ears) deviated significantly from the normal
distribution, but these deviations were relatively small in the
case of seed setting data (data not shown). For this reason,
the results of seed setting under bags were chosen for the
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performance of an interval mapping analysis of loci responsi-
ble for the restoration of male fertility.

DATIT resulted in 822 polymorphic markers. The segrega-
tion of 57 DArT markers deviated significantly from the
expected 3:1 ratio, but due to the selection of individuals for
mapping from groups of opposite phenotypes, these markers
were not excluded from the linkage analyses. Grouping anal-
ysis allowed for the construction of 24 linkage maps (Fig. 1).
The number of markers within particular linkage groups var-
ied widely: chromosome 1A was represented by only four
linked markers but 99 loci of DArT markers were located on
the 6R chromosome. No group assigned to the 4A chromo-
some was obtained. Due to the homeology of chromosomes
within the triticale genome, some linkage maps could not be
clearly associated with a given chromosome. The coverage of
rye chromosomes by DArT markers was significantly more
efficient than chromosomes belonging to the wheat A and B
genomes. In total, the constructed genetic map of the triticale
genome contains 759 DArT markers and cumulatively spans a
distance of 974.4 cM (Fig. 1).

Interval mapping analysis revealed six genomic regions
associated with the determination of male fertility of triticale

1A 2A 3A

with T. timopheevii cytoplasm (Table 1, Fig. 1). The most
effective genes were identified on chromosomes 6A, 6B and
6R. Their estimated additive effects ranged from approxi-
mately 20 to 30 grains per spike (differences in kernel
number produced within a bagged spike) and restorer alleles
originating from paternal component (line Stan I) of the
studied hybrid. All these QTL detected using the interval
mapping method were confirmed when the non-parametric
K-W test was applied (Table 1). The most efficient as
regards to the restoration of fertility seems to be a gene
located on the 6R chromosome-the only gene that was
statistically significant when the permutation test was
utilised. The next two loci detected by means of the interval
mapping method were located on chromosome 1B and the
linkage group ambiguously assigned to chromosomes 3A or
3B. Both genes revealed an additive effect at approximately
10 kernels per self-pollinated ear, but alleles increasing male
fertility seemed to be introduced by the maternal line CMS-
Salvo 15/1. Localisations of these genes were not confirmed
by the K-W test. The less effective QTL was detected by the
interval mapping method (but not by the K-W test) on the
3A linkage group. Calculated variance explained by all of
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Fig. 1 Linkage groups of Diversity Arrays Technology (DArT) markers and localisation of genomic regions determining male fertility restoration
in the F, generation of the cross [CMS-Salvo 15/1 xStan I] of winter triticale with the Triticum timopheevii cytoplasm
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Fig. 1 (continued)

the identified QTL exceeded 20 %, but these values are

probably overestimated for two reasons:

the lack of co-

dominant markers on the linkage maps and the selection

of opposite phenotypes for map construct

ion and interval

mapping analyses. Some additional markers not indicated
by the interval mapping method were considered as being
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significantly associated with male fertility by the K-W test.
These markers were located on chromosomes 5B, IR and

4R (Fig. 1).

The restoration of male fertility in triticale with T.
timopheevii cytoplasm remains under the control of several
Rf genes (Goral et al. 2010), but information about their

Table 1 Characteristics of quantitative trait loci (QTL) controlling the restoration of fertility in the [CMS-Salvo 15/1 xStan I] F, intercross (results

based on the seed setting data)

Chromosome  Interval mapping

Kruskal-Wallis test

Maximum value
of LOD (position
in cM)b

Interval (cM)*

Additive effect
of maternal
allele

Variance
explained
(%)

C
l(max

Marker revealing Mean value of Mean value
the max. value the genotype of genotype
of the K statistic =~ CMS-Salvo Stan 1

15/1

3A
3A/3B
6A
1B
6B
6R

7.91-11.86
1.00-4.89
14.8-59.2
0.00-5.30
11.7-44.7
11.4-64.8

13.08 (7.91 cM)
3.97 (3.89 cM)
6.03 (44.2 cM)
6.72 (1.5 cM)
4.64 (27.0 cM)

21.08 (29.2 cM)

1.59
13.84
—23.51
10.77
—20.09
—=30.00

1.10M

0.50NS
18.86%*

5.08NS
11.85%
33.18%*

933
713
28.8
79.8
25.6
93.6

443
374
50.3
453
52.8
61.5

XwPt0398
XwPt8855
XwPt7445
XwPt3172
XwPt1241
XtPt3774

33.5
42.5
16.5
28.6
22.5
15.5

#Mapping interval where LOD>3.0

°Entry in bold indicates significance in the permutation test

€ K nax maximum value of the K statistic within the interval; NS not significant; *Significant at P<0.001; **Significant at P<0.0001
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characterisation and localisation is still very limited. The
present study attempted to broaden knowledge concerning
this problem. It should be noted, however, that the above
results were obtained on the basis of the phenotyping of
individual plants in only one environment. The significance
of genotype by environment interactions for the detection of
QTL controlling different traits is usually investigated by the
assessment of “immortal” mapping populations (recombinant
inbred lines, DH lines) or by the verification of results from F,
in the F5 generation. Unfortunately, research on male sterility
restoration is frequently limited to the one generation
(Miedaner et al. 2000; Stojatowski et al. 2004) because the
reproduction of male sterile genotypes by self-pollination is
impossible. Application of the partial F; generation obtained
from only fertile plants can be recommended for the identifi-
cation of heterozygous F, plants, which is reasonable for
investigations on one effective restorer gene (Borner et al.
1998; Hackauf et al. 2012). The assessment of male fertility
in different localisations but in the same year of study is
sometimes performed by vegetative cloning of individual
plants (Miedaner et al. 2000; Hackauf et al. 2012). The sensi-
tivity of pollen production to variable environmental condi-
tions (Goral et al. 2006) leads to the recommendation that the
male sterility/fertility of triticale plants carrying a sterilising
cytoplasm should be assessed in different environments. On
the other hand, it was stated also that donors of the most
effective non-restoring alleles are environmentally insensitive
genotypes (Goral et al. 2006). Geiger et al. (1995) reported
that the influence of environment on male sterility/fertility in
rye is the most significant for partially fertile individuals. This
rule probably also applies to triticale. Therefore, with the aim
to increase the proportion of variation affected only by plant
genotype, we decided to ignore all intermediates and to ana-
lyse, via molecular markers, only extreme (male sterile and
male fertile) phenotypes selected within the studied mapping
population. Additionally, Carey and Williamson (1991) as
well as Xu et al. (2005) indicated that the selection of in-
dividuals representing opposite phenotypes from the whole
F, population should significantly increase the powerful
detection of QTL controlling the studied trait.

Obviously, the results of the present study should be
considered as preliminary; however, their close coincidence
with previous reports investigating the localisation of restorer
genes in 7. timopheevii cytoplasm is intriguing. To the present
day, the only research focusing on the localisation of rye
genome genes acting as restorers in 7. timopheevii cytoplasm
indicated the importance of 6RL and 4RL chromosomes
(Curtis and Lukaszewski 1993). In wheat with the same type
of sterilising cytoplasm, chromosomes 1BS, 2A, 4B and 6A
were reported as containing Rf loci (Ma and Sorrells 1995;
Kojima et al. 1997; Ahmed et al. 2001). The results of our
study on the cross [CMS-Salvo 15/1 x Stan I] confirm that the
6R chromosome is the most significant as regards to male

sterility restoration in triticale with the 7. timopheevii cyto-
plasm. Within the studied population, the remaining chromo-
somes of the sixth homeologic group (6A and 6B) were also
found to be important for male fertility. The lowest effect on
pollen fertility was identified for loci located on the 1B and 3A
(optionally 3B) chromosomes. The short arm of chromosome
1B might carry a restorer gene Rf3, but this effective allele
introduced into wheat from Triticum spelta (Kojima et al.
1997; Ahmed et al. 2001) was not detected among the hybrid
F, generation investigated in the present study.

The presented research is of preliminary character and its
data need to be verified in further studies on a broader plant
material (e.g. vegetative clones of F, plants or DH lines
carrying normal cytoplasm analysed by test-crosses with
CMS sources) examined under different environmental habi-
tats. Nevertheless, the initial results obtained appear to con-
firm a complex genetic control of male fertility restoration in
triticale with 7. timopheevii cytoplasm previously reported by
Goral et al. (2010). It is noticeable also that genes located on
all chromosomes of the sixth homeologic group are important
for the abundance of pollen production and the 6R chromo-
some is especially significant for this phenomenon.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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