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Abstract Given an existing public transportation network, the classic planning
process in public transportation is as follows: In a first step, the lines are designed; in
a second step a timetable is calculated and finally the vehicle and crew schedules are
planned. The drawback of this sequence is that the main factors for the costs (i.e. the
number of vehicles and drivers needed) are only determined in a late stage of the
planning process.

We hence suggest to reorder the classic sequence of the planning steps: In our
new approach we first design the vehicle routes, then split them to lines and finally
calculate a (periodic) timetable. The advantage is that costs can be controlled during
the whole process while the objective in all three steps is customer-oriented.

In the paper we formulate an integrated model from which we develop this new
approach, discuss the complexity of the resulting problems, and present a heuristic
which we applied within a case study, optimizing the local bus system in Göttingen,
Germany.

1 Motivation and related literature

According to Desaulniers and Hickman (2007) the planning process in public trans-
portation includes several phases such as strategic planning (e.g. network design),
tactical planning (as line planning or timetabling), operational planning (e.g. vehi-
cle scheduling) and real time control. The usual sequence of these planning steps is
sketched in Fig. 1, see e.g. Ceder and Wilson (1986), Liebchen and Möhring (2007).
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Fig. 1 The classic planning phases in public transportation (left) compared to the sequence used in this
paper (right)

In this paper we deal with the following three steps: line planning, timetabling, and
vehicle scheduling.

Given a public transportation network PTN = (V ,E) which is an undirected graph
consisting of a set of stops or stations V and a set of links between them, we are
hence looking for lines, their frequencies, a (periodic) timetable and for the vehicle
schedules. Our goal is to provide a public transportation system which is as attractive
as possible for potential passengers. In our case study we measure attractiveness by
the time a passenger has to wait for a connection and by the time for traveling by
public transport (which we compare to the time for traveling by car).

In the following we will talk about stops and buses only. However, the idea of
our approach can also be transferred to commuter railway systems or long-distance
railway planning. Before formulating our problem we sketch the single planning
steps line planning, timetabling and vehicle scheduling in their classical order and
review what has been done in these fields so far. Note that we do not consider crew
and duty scheduling in this paper, neither in our approach nor in the literature re-
view.

Line planning A line l is a path in the public transportation network PTN. The
frequency fl of a line l says how often service is offered along line l within a
(given) time period T . A line concept is a set of lines together with their frequen-
cies.

In most research papers it is assumed that a line pool of potential lines is already
given. The goal is to choose a set of lines from the pool and to assign frequencies
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to the lines chosen. Even the feasibility problem (finding frequencies such that the
constraints at each edge are satisfied) is NP-hard (see Bussieck 1998; Claessens et al.
1998).

One distinguishes between cost-oriented models (see e.g. Claessens et al. 1998;
Zwaneveld 1997; Goossens 2004; Bussieck et al. 2004; Goossens et al. 2006) in
which the line concept has to cover a given demand with smallest possible costs,
and customer-oriented models where a budget is given that should be used in a way
that is “best” for the passengers. Examples for customer-oriented objective func-
tions are to maximize the number of direct travelers (Bussieck et al. 1996; Bussieck
1998) or to minimize the traveling time of the passengers (see Borndörfer et al. 2005;
Borndörfer and Pfetsch 2006; Schöbel and Scholl 2006; Scholl 2005). A model for
simultaneous optimization of transit lines and passenger line assignment in a general
network is presented in Guan et al. (2006). Designing lines which can compete with
the private mode has been studied in Laporte et al. (2007, 2005). Note that Claessens
et al. (1998) already considered an approximation of the costs of the vehicle sched-
ules.

There are rather few papers in which the line pool itself is constructed. In the very
first paper about line planning, Patz (1925) starts with a line for each OD pair and
iteratively eliminates lines by a greedy approach. A similar greedy heuristic is due
to Sonntag (1977). More recently, Pape et al. (1995) and Quak (2003) suggest con-
structive approaches, while Borndörfer and Pfetsch (2006), Borndörfer et al. (2007)
present an exact model in which routes are constructed within the optimization. Line
planning aspects are also touched in Liebchen and Möhring (2007) where within
a timetabling approach pre-defined line segments are combined to lines. The ap-
proach we propose in this paper can be classified as a constructive heuristic based
on a customer-oriented approach.

Timetabling Given the set of stops V and the set of vehicles F , a timetable consists
of two functions πarr : V ×F → N, πdep : V ×F → N assigning a departure time and
an arrival time to each vehicle at each stop. To avoid indices event activity networks
are used in timetabling (see e.g. Nachtigall 1998) in which the events consist of all
arrivals and departures of all vehicles at all stops. The events are linked by edges
corresponding to different types of activities, the most important are driving activities
of vehicles between stops, waiting activities of vehicles at stops, and transfer activities
to account for passengers changing buses or trains. To account for capacity issues,
headway activities are added.

We have to distinguish between periodic and aperiodic timetabling. If the order of
the events is fixed, the latter can be efficiently solved by shortest path techniques. If
events appear periodically, an ordering is not possible in this sense. This is one reason
why the periodic case is NP-hard (for a formal proof see Nachtigall 1998). The ba-
sis for tackling periodic timetabling is the periodic event scheduling problem (PESP)
originally introduced in Serafini and Ukovich (1989). There are many extensive stud-
ies about timetabling, we refer to Peeters (2003), Liebchen (2006) and references
therein. Current approaches deal with integration aspects (e.g. Liebchen and Möhring
2007 where the periodic event scheduling problem is extended to allow dealing with
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vehicle scheduling and line planning aspects) or robustness issues (Kroon et al. 2007;
Liebchen et al. 2007; Fischetti et al. 2007). In our approach we are looking for a
periodic timetable.

Vehicle scheduling If the lines and the timetable are given one can define trips, i.e.
minimal paths which have to be operated by the same vehicle (usually between start
and end stop of a line). For each trip its start stop with its departure time and its end
stop with its arrival time are given. Two trips trip1 and trip2 can be served by the
same bus if the arrival time at the end stop of trip1 plus the time needed to drive from
the end stop of trip1 to the start stop of trip2 is smaller than the departure time at the
start stop of trip2. The goal is to find a cost-minimal assignment between buses and
trips such that each trip is covered by exactly one bus and the schedules of all vehicles
are feasible. This results in the physical vehicle routes together with a timetable for
each of the vehicles. Note that a vehicle route describes the path of a single bus which
might very well serve several lines.

While the multi-depot case is NP-hard (see Bertosi et al. 1987 and Pepin et al. 2006
for a comparison of different heuristics), the single-depot case can be solved polyno-
mially. Approaches include decomposition models (Saha 1972), assignment models
(Orloff 1976), transportation models (Gavish and Shlifer 1978) or network flow mod-
els (Daduna and Paixao 1995). A recent survey paper dealing with bus scheduling is
Bunte and Kliewer (2009), railway issues are treated in Maróti (2006).

Recent research in vehicle scheduling includes route constraints (e.g. Kliewer et al.
2006), or maintenance issues. Robustness issues are considered within the framework
of ARRIVAL (Arrival 2006–2009).

Our contribution In contrast to the approaches in the literature and to the classic
planning process in public transportation, we follow a new approach in this paper.
Instead of determining the lines in a first step, we start by determining a route for
each vehicle. These routes are interpreted as lines in a second step. In the third step
we finally add a timetable for each vehicle.

Our approach is based on the observation that both objective functions, namely
cost aspects and passengers’ aspects can already be computed if the vehicles’ routes
and schedules are known. This means that we can consider both objectives throughout
the whole planning process.

Since we are looking for a periodic schedule we assume that one common period
T is given after which everything is repeated. We plan for only one period but take
the periodicity into account when evaluating our objective functions.

2 An integrated model based on vehicle routes

Let a public transportation network PTN = (V ,E) be given. For each edge e = {i, j}
in the PTN let d(e) be the time a bus needs for driving between stops i and j . A vehi-
cle route is the path of a vehicle (i.e. of a specific bus) in the PTN. It can be given as
a sequence of stops in V or as a sequence of edges e ∈ E. A route is called circular
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if its first and last stop are the same. The duration of a route is defined as the sum of
all edge lengths of the route, i.e.

dur(u) =
∑

e∈u

d(e).

The main idea of our new approach is to start the whole process by designing the
vehicle routes. In order to obtain a periodic timetable we restrict ourselves to circular
routes whose durations are close to a multiple of the time period T .

The set of all routes in the final public transportation system is denoted by U . For
each vehicle route u ∈ U let fu denote its frequency specifying how many trips are
offered along the route within the period T . (Note that the route frequency may differ
from the line frequency, e.g. if several routes serve the same line.) The schedule tu
assigns an arrival and a departure time to each stop of the route.

As we will show in the following, the values (U , f, t) are sufficient as variables,
i.e., the objective function and the constraints can be evaluated if U and fu, tu are
known for all u ∈ U . A solution of the problem will hence be denoted by (U , f, t).

We now describe the constraints we consider.

• The costs of a public transportation system mainly depend on the number of ve-
hicles in use. This number determines not only the investment costs but also the
number of duties to be covered and hence the costs for planning crew schedules
and rosters. Our budget constraint hence bounds the number of buses N that we are
allowed to use.

We only construct circular routes u with a duration dur(u) satisfying that
dur(u)fu is a bit less than an integer multiple zu ∈ Z of the time period T , i.e.
we require

dur(u) ≤ zuT − η

fu

(1)

for some given slack η > 0. Although this restriction might cut off good solutions,
it is of great importance since it ensures that we can easily keep track of the number
of vehicles needed: If dur(u)fu is close to zuT the operation of route u requires
exactly zu buses. (Note that this is a special case in which the vehicle scheduling
heuristic of Claessens et al. (1998) gives the optimal solution.) Consequently, we
require

number of buses =
∑

u∈U
zu ≤ N. (2)

• Within our solution approach we also take into account that there is enough space
available for buses at each of the stops. As parameters we have given a capacity
cap(v) indicating how many buses are allowed to be at the stop v at the same time.
This constraint depends not only on the vehicle routes, but also on their timetables.

• Note that there are usually more constraints in practice. These include breaks for
the drivers, slack times to make the timetable more robust and constraints for the
specific shape and structure of the lines. We do not mention them explicitly in
our model but they are considered when constructing the vehicle routes in the first
phase (Sect. 5.1) of our algorithm.
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As objective function we chose the attractiveness of the public transportation sys-
tem. Since we are not only interested in improvements for existing customers but
also in attracting new customers, we use an origin-destination matrix representing
the complete demand. The data available is usually not based on stops, but is given
due to demand regions (called cells). It does not make sense to split this demand
to each single stop (e.g. one at each side of the street), so we aggregated the set of
stops V to a set of locations B, where the latter usually is a set of stops with the
same name. (In most cases two stops on either side of a road form a location.) We
then generated an origin-destination matrix OD ∈ Z

|B|×|B| based on the locations.
For each pair i, j ∈ B of locations the value ODij hence represents the number of
persons who want to travel from i to j , i.e. the potential number of customers for this
OD-pair.

We define the attractiveness of a public transportation system as the average prob-
ability pij that a (potential) traveler between locations i and j decides to use public
transportation instead of the private mode. This probability depends on many factors.
Usually, a passenger will compare possible journeys in the bus system with the al-
ternative of using a car. In order to calculate the attractiveness we hence have to do
the same. Fortunately, this can be done if (U , f, t) is known since the set of possi-
ble journeys Pij a passenger can use between i and j is already determined by the
vehicle routes and their schedules. It can be calculated by shortest path algorithms
in an appropriate timetable graph defined by the PTN and the solution (U , f, t) to
be evaluated, see (Bauer et al. 2007) for a recent comparison of methods. Note that
footpaths connecting nearby stops are also taken into account to model the fact that
passengers walk from one stop to another.

Formally, our objective function hence is given as

max att(U , f, t) =
∑

(i,j)∈B×B
pij (U , f, t)ODij (3)

where ODij is the potential demand between locations i and j and pij (U , f, t) is the
probability that a person who wants to travel between stops i and j uses the public
transportation system (U , f, t). We assume that this probability depends on the set of
journeys Pij . In our case study, we considered the number of possible journeys and
their durations compared with the private mode in order to estimate the probability
pij (see Sect. 3). Note that the idea to compare the traveling times in public and
private mode has also been used by Laporte, Mesa and Ortega, see Laporte et al.
(2005).

Summarizing, we deal with the following problem.

(P) Given a PTN = (V ,E) with edge lengths d(e) for each e ∈ E, a set of locations
B and an origin-destination matrix OD, a function pij (U , f, t) evaluating the users’
behavior (based on Pij ), a time period T , and an integer N, find a solution (U , f, t)

with less than N buses maximizing att(U , f, t).
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3 Case study

As an illustration of the model presented in the previous section we describe our case
study which we used within a cooperation with Göttinger Verkehrsbetriebe (GÖVB),
the local bus company of Göttingen, Germany.

The following data was known: The public transportation network consists of 485
stops; the demand data was divided among 248 locations. The capacity of most of
the stops is equal to four, i.e. in most cases not more than four buses can be at the
same stop at the same time. It turned out that this is a crucial constraint: If left out we
always obtained timetables in which up to ten buses stopped simultaneously at the
same stop.

As edges we used all edges contained in already existing lines, but we also added
further edges representing streets which are currently not used by buses, see Fig. 2.
The driving times of the new edges were determined in cooperation with GÖVB. We
also added footpaths between stops.

In order to estimate the traveling time in the private mode (which we used to
compare with the traveling time using the bus system in the objective function), we
added additional edges which are not suitable for buses (e.g. if the streets are too
narrow). The edge lengths dpriv(e) in the private mode are usually shorter than in the
public mode, i.e. in most cases we have dpriv(e) ≤ d(e). Exceptions are streets in the
city center where we added additional time to account for the time-consuming task
of finding a parking slot. The same can be done for streets with dedicated bus lanes
or priority signals.

As demand data we received a partition of Göttingen into regions, called cells, and
data about the demand for each pair of cells. We assigned locations to cells, estimated
the importance of each location and expressed this by weights. Then we distributed
the demand data to pairs of locations according to their assignment and weights.

An analysis of the current system showed its advantages and drawbacks: The
driving times from the outskirts to the center are rather small. Moreover, twice an
hour, many transfers are possible at one of the central stops. On the other hand, the

Fig. 2 The network with all
possible edges in Göttingen
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capacity of this central stop is exceeded such that buses sometimes have to leave be-
fore the transferring passengers have arrived. We also noted that there are often long
breaks at the end stops of the lines (up to 20% of the duration of the route).

Evaluating the attractiveness of a solution Let (U , f, t) be a solution of prob-
lem (P). In the following we show how we specified and computed the objective
function att(U , f, t) within our case study. Talking to practitioners we decided to fo-
cus on the following two values in order to determine the probability that a person
decides to use public transportation for his or her journey from i to j :

pwij : the average waiting time before the journey from i to j is started,
pdij : the travel time of public transport between i and j compared to the travel time

of the private mode.

Next, we show how to estimate pdij and pwij , based on the set of all possible
journeys Pij from i to j . Our goal is to identify paths p ∈ Pij with small traveling
time. We hence collect

dep(p) = starting time at i

arr(p) = arrival time at j

dur(p) = arr(p) − dep(p)

= time needed to travel from i and j using path p.

We determine the minimal traveling time,

durmin
ij = min

p∈Pij

dur(p)

and fix a value λ to obtain

Gij = {
p ∈ Pij : dur(p) ≤ λ · durmin

ij and

there does not exist any path p′ ∈ Pij satisfying

dep(p′) ≥ dep(p), arr(p′) < arr(p)
}

(4)

as the set of “good” journeys between i and j . Based on Gij we estimate pdij and
pwij as follows:

pd: We compare the travel time in public transport with the travel time using the
private mode, i.e. we calculate

rij = publicij

privateij

where publicij =
∑

p∈Gij
dur(p)

|Gij | denotes the average travel time in public trans-
portation and privateij is the travel time in the private mode. The probability
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Fig. 3 Probability for accepting the average waiting time and the ratio for the travel time for a path from
i to j

that a customer accepts public transportation is modeled by the following piece-
wise linear function (see left part of Fig. 3):

pdij = pd(rij ) =

⎧
⎪⎨

⎪⎩

1: rij ≤ α1,
α2−rij
α2−α1

: α1 < rij ≤ α2,

0: rij > α2

for two parameters α1 and α2.
pw: We determine the average waiting time waitij until the next trip in Gij starts.

To this end, we sort the journeys in Gij according to dep(c) to obtain a list
dep(c1) < dep(c2) < · · · < dep(cK) with k ≤ |Gij |. (Note that there are no paths
with the same departure time in Gij .) This yields K − 1 intervals

Ik = [dep(ck),dep(ck+1)], j = k, . . . ,K − 1.

We assume that the demand is distributed evenly within a period, i.e. at each
minute we have the same probability that a person wants to start his or her jour-
ney. If a person arrives within interval Ik , his or her average waiting time is
|Ik−1|

2 minutes. Hence we estimate

wij =
K∑

k=1

|Ik|(|Ik| − 1)

2
(5)

as the average waiting time for the next journey from i to j . Again, the probabil-
ity that a customer accepts the average waiting time is modeled by a piecewise
linear function (see right picture of Fig. 3)

pwij = pw(wij ) =

⎧
⎪⎨

⎪⎩

1: wij ≤ β1,
β2−wij

β2−β1
: β1 < wij ≤ β2,

0: wij > β2

depending on the parameters β1 and β2.

Assuming that the probability pwij to accept the average waiting time is independent
of the probability pdij to accept the travel time ratio, we finally get

pij = pwij · pdij

and are hence able to compute att(U , f, t) according to (3).
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Note that the two functions depend on the customers’ behavior which is repre-
sented by the parameters α1, α2, β1, β2 and λ.

In our case study these parameters are set to

• α1 = 1.1, α2 = 2.5 meaning that everybody accepts an increase of 10% of the travel
time, but nobody would accept an increase by the factor 2.5,

• β1 = 7.5, β2 = 36, i.e. an average waiting time of 7.5 minutes (referring to a con-
nection offered four times an hour) is accepted by all potential passengers, while
an average waiting time of more than 36 minutes is not accepted at all. For public
transportation at night we increased these values to 10 and 45.

• Due to (4), λ also has an influence on the probability pij . In our case study we
chose λ = 1.3.

Note that the specific values for the parameters have been chosen after discussion
with practitioners. They make sense for the local properties of Göttingen, but need
not hold in other environments. For example, in large cities, we suggest to choose
smaller values for β1 and β2.

City center requirement There is one more special requirement that we had to take
into account in our case study: It was required that all routes pass through the city
center. This condition is reasonable since the demand between two non-central loca-
tions is rather small (according to the data of Göttingen we had and as expected due
to gravity models). Note that this requirement significantly reduces the set of possible
vehicle routes and hence the set of feasible solutions (but not the complexity of the
problem as we will show in the next section). In the following let us denote the stops
of the city center by Cen.

4 Complexity

Problem (P) of planning lines, a timetable and the vehicle schedules simultaneously
is NP-hard. This result is not very surprising since even the single planning steps are
already known to be NP-hard. However, also the case of our case study in which all
vehicle routes pass through one specific stop is NP-hard and this even holds if all
frequencies have to be one, if the passengers accept public transportation whenever a
journey is offered, and if the timetable is not relevant. It still holds if we do not dis-
tinguish between location and stops. We denote this problem as (P-special). Formally
it is defined as follows.

(P-special) Given a PTN = (V ,E) with edge lengths d(e) for each e ∈ E, a set of
locations B = V , a central stop sc and an origin-destination matrix OD, a function
pij (U , f, t) evaluating the users’ behavior (based on Pij ), a time period T , and two
integers N and U , does there exist a solution (U , f, t) satisfying

• sc ∈ u for all u ∈ U ,
• fu = 1 for all u ∈ U ,
• ∑

e∈u d(e) ≤ zuT for some zu ∈ Z for all u ∈ U and
∑

u∈U zu ≤ N (i.e. it can be
run with N buses) and such that

• att(U , f, t) = ∑
(i,j)∈B×B pij (U , f, t)ODij ≥ U?
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Fig. 4 Reduction of
(P-special) to (Knapsack)

Theorem 4.1 (P-special) is NP-hard.

Proof We use a reduction from the knapsack problem which is known to be NP-hard
(see Garey and Johnson 1979). Given two natural numbers W,B and a set of items B
with weights w(b) ∈ N and benefits v(b) ∈ N for all b ∈ B, does there exist a subset
K ⊆ B of items with a total weight of no more than W and a total benefit of at least B?

Given an instance of (Knapsack), an instance of (P-special) is to be constructed.
Define one central stop sc and a stop sb for each item in b ∈ B. Connect all stops sb
star-wise to the central stop sc with a pair of inverse edges, see Fig. 4. The lengths
d(e) of these two edges e ∈ {(sb, sc), (sc, sb)} are set to

d(e) := w(b) · T
2

for each item b ∈ B. We furthermore define the demand between the central stop sc
and the other stops sb as

ODsc,sb := v(b) for each b ∈ B

and zero for all other pairs.
For the customers’ behavior we use the simplest possible objective function,

namely

pij (U , f, t) =
{

1 if Pij �= ∅,

0 if Pij = ∅.

This means that all existing paths are accepted by the passengers, independently of
their timetables or other characteristics.

Finally, we define N := W and U := B .
We now show that (P-special) has a feasible solution if and only if (Knapsack) has

a feasible solution.
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(P-special) 
⇒ (Knapsack): Let a feasible solution for (P-special) be given with a set
U of routes. Every route contains the central stop sc and at least one other stop.
Without loss of generality we can assume that the route contains exactly one other
stop (otherwise we split it to feasible routes for each other stop sb it contains, since
the length to reach sc and back is already at least T and all durations are integer
multiples of T ). We define ub := (sc, sb, sc) as the route passing through stop sb .
We now show that

K := {b ∈ B : sb ∈ u for some u ∈ U } = {b ∈ B : ub ∈ U }.

is a feasible solution of (Knapsack):

• The route ub takes 2 · w(b)·T
2 = w(b)T time. Hence, in order to operate this

route with a frequency of one, w(b) buses are necessary (see p. 215). Since the
solution U is feasible for (P-special) we conclude that

∑

b∈K
w(b) ≤ W.

• On the other hand, we know that the OD-pair (sc, sb) will use public trans-
portation whenever sb ∈ u for some u ∈ U , i.e. whenever b ∈ K. Hence

∑

b∈K
v(b) ≥ B.

(Knapsack) 
⇒ (P-special): Given a solution K ⊆ B for (Knapsack), we construct a
route ub := (sc, sb, sc) with frequency fb = 1 for each b ∈ K and set U := {ub :
b ∈ K}. Then U satisfies the four conditions listed in the theorem:

• sc ∈ u for all u ∈ U .
• fu = 1 for all u ∈ U .
• dur(ub) = ∑

e∈ub
d(e) = 2T w(b)

2 hence

number of vehicles =
∑

u∈U
zu =

∑

b∈K
w(b) ≤ N.

• U ≤ ∑
i=1

∑
j=1 pij ODij = ∑

b∈K v(b).

Hence U is feasible for (P-special) and the proof is finished. �

From the previous theorem we directly obtain that (P) is NP-hard even if the fre-
quencies of all vehicle routes have to be one and if the timetable is not relevant, i.e.
if fu = 1 for all u ∈ U and att(U , f, t) does not depend on t . It can also be shown
that (P) is NP-hard if the vehicle routes and their frequencies are given and only the
new timetable has to be found, i.e. if U and f have been fixed. We refer to Michaelis
(2007) for a proof.



Integrating line planning, timetabling, and vehicle scheduling 223

5 Solution heuristic

Our approach to solve (P) is the following:

Phase 1: Design the routes U and their frequencies fu.
Phase 2: Split the routes to lines.
Phase 3: Find a timetable t for the routes.

From Theorem 4.1 and the remark at the end of the previous section we know that
Phase 1 and Phase 3 are both NP-hard even in the case of our case study in which all
vehicle routes are required to pass through a set of specific nodes. Phase 2, however,
is nothing but a graphical representation of the system, since the shape of the lines
themselves has no influence on the attractiveness or on the costs of the transport
system (since not the lines, but only the vehicle routes are needed to calculate the
costs or the possible journeys for the passengers). Phase 2 can hence also be done
after the timetabling step.

In the following we present heuristic algorithms for all three phases. Note that
some of the ideas we used were motivated by the special requirements of Göttingen
(this will be mentioned in the text), but all of them can easily be adapted to other
cities.

5.1 Phase 1: Finding the vehicle routes with their frequencies

Each route is a circle in the public transportation network PTN. In Phase 1 we con-
struct such circles and then combine them to a complete set of vehicle routes.

The basic idea of constructing one single vehicle route is simple: We first specify
a duration, then we start with some (arbitrary) stop and add other stops until the route
has the duration we specified. Formally, we perform the following steps:

Construct a single vehicle route

Input: η > 0, integer zu, frequency fu, T = period
Step a. Start with an (arbitrary) stop s := su and the route u = (s).
Step b. Randomly take a new stop, neighbored to one of the stops of route u. Add it

to route u if dur(u ∪ {s}) ≤ T zu−η
fu

. Repeat. If the condition is not satisfied,
goto Step c.

Step c. Add the slack time T zu

fu
− dur(u) to the edge lengths of u to obtain a duration

of exactly T zu

fu
.

Step d. Output u, dur(e) for all e ∈ u.

In Step b we obtain a route with maximal duration but satisfying (1), i.e. dur(u) <
zuT −η

fu
. It is desirable that η is small, but not zero such that some additional slack

time is available for each route. Such time can be used to provide slack times at stops
in order to enable passengers to change to other buses, or more general, to make the
timetable robust against delays. It may also be needed for breaks for the drivers at
the end stops. For each route this additional time η is distributed to the edge lengths
in Step c. We propose to add it to stopping times at stops where transfers are likely
or to the stops farthest away from the center at turnaround activities. Note that much
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more sophisticated approaches for distributing slack in periodic timetables exist, see
Kroon et al. (2007), Liebchen and Stiller (2009).

Theoretically, we can perform the above construction completely at random. In
order to obtain reasonable routes it however makes sense to further guide the proce-
dure. To this end we suggest the following additional rules for Step b. Let U be the
set of routes already found.

• Stops that have not been covered by any other route of U should be more likely
to be chosen to ensure that we finally obtain a set of routes covering all stops. We
hence weight stops in order to increase the probability that a stop is chosen if it
still does not appear in other routes. In our case study, we derived good results by
weighting the unused stops by a factor of three.

• Circles within the routes should be avoided: This can be done by taking a new stop
with a higher probability if it is not already in the route. (This rule is certainly not
applied for the starting node su.)

• It may be desirable that routes contain most of their edges forward and backward,
i.e., that they have a similar shape in inbound and outbound directions. To enforce
this we suggest to consider only such routes in which the number of locations that
consist of more than one stop but only have one stop in the route is small.

• In our case study we require that all vehicle routes contain a stop v ∈ Cen of the
city center. We hence choose such a stop as start stop su which significantly reduces
the search space.

• In Göttingen we also implemented the following rule: Let us call a maximal part
of a route starting and ending at a stop v ∈ Cen a branch. The public transportation
company in Göttingen did not want to have routes with four or more branches. We
took this into account by deleting all routes that visited the city center more than
four times.

• Many other rules to model specific requirements are possible.

The algorithm of Phase 1 is as follows. In each step we choose (randomly) an
integer zu and a frequency fu as parameters. Then we construct a set of h routes
fitting to these two parameters. We evaluate these routes and choose the best. Then
new parameters zu, fu are chosen and the step is repeated until all vehicles are used.
Note that the correct evaluation of the attractiveness requires a timetable which is not
at hand during the first phase. Hence we estimate the objective function by a rough
approximation: We set the departure times at the stop su (from which we started)
to zero. As we will detail in Phase 3, the complete schedule of a route is fixed by
only one of its departure times since we already distributed the slack times in Step c.
We consequently obtain the following procedure for designing one candidate set of
routes.

Phase 1: Design of a set of routes for N buses

Input: Parameters h ∈ Z, (small) η > 0, T = period, N = number of buses al-
lowed.

Step 1.1: U = ∅, n = N.
Step 1.2: Choose a frequency fu and a (small) integer zu.
Step 1.3: For i = 1, . . . , h do Construct a single vehicle route
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Step 1.4: Determine ui := maxj=1,...,h att(U ∪ {uj }, f,0} and add U := U ∪ {ui}.
Step 1.5: n := n − zu

Step 1.6: If n > 0 goto Step 1.2.

5.2 Phase 2: Designing the lines

If the vehicle routes have been fixed we can represent them as lines. A line is a path
through the PTN which is operated by only one bus. Hence each part of a route can
be considered as a line. As lines are usually organized as tours it is preferable to take
sub-circles of the routes.

As mentioned before, the representation by lines has no effect on where and when
the buses drive and hence no effect on the objective function. Consequently, we can
define the lines such that we get a “nice layout”.

As mentioned before, in Göttingen, all routes have to pass through the city center.
Moreover, no route is allowed to contain more than three branches. We hence chose
branches or combinations of pairs of branches as lines, see Fig. 5 for an illustration.
These branches naturally are sub-circles of the routes.

Algorithmically, we can proceed as follows.

Phase 2: Splitting routes to lines

Input: U
Step 2.1: For each route u ∈ U : Decompose U into circles. Choose the circles or

unions of circles as lines.

Fig. 5 Three routes that are
decomposed to five lines
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5.3 Phase 3: Finding the timetable

As input for Phase 3 we have given a set of routes U with their frequencies fu,u ∈ U .
Our goal is to construct a feasible timetable. According to our constraints, a timetable
is feasible if the capacity of no stop is exceeded. Given the period T we choose
a timetable within the discrete set of points {0,1, . . . , T } (usually minutes). The
timetable is then repeated periodically. The periodicity is taken into account when
evaluating our objective function att.

We already fixed the slack times of the edges in Step c when constructing the
routes, hence fixing one departure time at one stop determines the complete sched-
ule of the route. We use the stop su from which we started to construct route u.
A timetable is hence given as a vector t ∈ {0, . . . , T }|U |. A timetable is feasible if at
no point in time more than cap(v) buses are at stop v for all v ∈ V . We denote the set
of feasible timetables with T . We call a feasible timetable t optimal if

att(U , f, t) = max
t ′∈T

att(U , f, t ′).

Note that the resulting model is similar to Domschke (1989), Daduna and Voss (2001)
where it is solved as quadratic semi-assignment problem. However, in our case the
number of passengers using a transfer is not fixed beforehand but determined by rout-
ing the passengers in each step. We hence propose the following iterative matching
approach.

Consider a route u with frequency fu and departure time tu at stop su. Then an-
other departure of the same route will take place at tu + z T

fu
for all integer values

of z. Hence we only need to evaluate departure times tu ∈ {0,1, . . . , T
fu

}. But even
with this reduction it is not possible to try all possible combinations of departure
times. Since finding an optimal timetable in Phase 3 is NP-hard we propose to use a
heuristic. Our first idea to fix the departure times of each route iteratively had the fol-
lowing drawback: We obtained routes, all departing at the same time from the same
central stop. When the capacity of this stop was used, the next routes were placed
very disadvantageous leading to a non-favorable overall solution.

We hence developed the following approach. We divide the routes into pairs and
synchronize each pair in a first step. In a second step we combine the pairs to quadru-
ples and again synchronize them. We proceed in this manner until all routes are fixed.
During this process we choose the pairs in each step by matching techniques to ensure
that the most promising (feasible) combinations are grouped.

Formally, we define the following graph Gmatch = (U ,Ematch) in which the nodes
represent the routes U and we add an edge between two routes u1, u2 if they contain at
least one stop where a transfer is possible. To this end we have to check if u1 ∩u2 �= ∅
and if the capacity of the stops u1 ∩ u2 is large enough to allow that both buses stop
there. As weight for edge {u1, u2} we set

cu1,u2 := max
t1,t2∈T

att({u1, u2}, {fu1, fu2}, (t1, t2)),

i.e., we choose the best possible synchronization of the two routes (independent of all
other routes). Since one of the two times t1, t2 can arbitrarily be fixed we only have
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to evaluate

cu1,u2 := max
t∈T

att({u1, u2}, {fu1, fu2}, (0, t)). (6)

We then choose a matching with maximum weight in the graph Gmatch and syn-
chronize the matched pairs of routes. Each of the pairs (or of single routes if the
matching was not a perfect matching) is then clustered to one new node for the match-
ing graph of the next step. Edges between the clustered nodes are introduced when
a transfer between the two groups of routes is possible. We again chose the weight
as the best possible attractiveness which we can obtain when synchronizing the two
groups. (Note that also here only such schedules are taken into account that respect
the capacities of the stops.) We again determine an optimal matching in the clustered
graph and repeat the process until only one group is left.

To state the algorithm we need to deal with groups of routes g ⊂ U . Synchronizing
such a group of routes means to find a timetable

tg := (tu : u ∈ g)

for all routes u ∈ g. Note that such a timetable can be shifted in time without changing
its objective value, i.e.

att(g, f, tg) = att(g, f, tg + t)

where f = (fu : u ∈ g) and tg + t = (tu + t : u ∈ g). We can hence assume with-
out loss of generality that there is one representative route ug in each group g with
tug = 0.

Given two groups of routes g1 and g2 with two timetables tg1 and tg2 . If we want
to synchronize these groups (without changing their internal timetables) we have to
find

max
t∈T

att(g1 ∪ g2, (fu,u ∈ g1 ∪ g2), (tg1 , t + tg2))

The optimal value for t is denoted as t∗g1,g2
and called the synchronization shift.

Our algorithm starts with a first partition into groups, each group consisting of
only one route. In each step, the groups are matched pairwise. (Some groups may be
left unmatched if the matching is not perfect.) The procedure can be summarized as
follows.

Phase 3: Finding the timetable

Input: U , fu for all u ∈ U .
Step 3.1: Define the first matching graph Gmatch = (Vmatch,Ematch) with

• Vmatch = {{u} : u ∈ U }
• ug = u if g = {u} as representative route of group g

• tg = (0) as timetable of group g

Step 3.2: Update matching graph:

• Ematch := {{g1, g2} : there exists u1 ∈ g1, u2 ∈ g2 such that
u1 ∩ u2 �= ∅}
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• cg1,g2 := maxt∈T att(g1 ∪ g2, (fu,u ∈ g1 ∪ g2), (tg1 , t + tg2)) and let
t∗g1,g2

be the corresponding synchronization shift.

Step 3.3: If Ematch = ∅ stop. Output: (tg : g ∈ Vmatch).
Step 3.4: Find a matching Em ⊆ Ematch maximizing the sum of weights.
Step 3.5: Update groups: For each e = {g1, g2} ∈ Em define g := g1 ∪ g2 and

• Vmatch = Vmatch ∪ {g} \ {g1, g2}
• ug = ug1 as representative route of group g

• tg = (tg1 , t
∗
g1,g2

+ tg2) as timetable of group g using the synchronization
shift calculated before.

• Goto Step 3.2

6 Numerical results

We implemented our procedures and tested them within a case study in Göttingen
using a PC Intel Centrino (1.4 GHz). We had two different data sets: The night bus
system (from 7:30 pm to midnight) and the system at daytime (from 5:30 am to
7:30 pm). Both used the same PTN and the same number of cells and locations. The
period T equals 60 minutes in both cases.

When constructing the vehicle routes we chose zu ∈ {1,2,3} and fu ∈ {1,2}.
Hence (1) typically leads to routes with a duration of 60, 90, 120, or 180 minutes;
η has been fixed to 10% of T

fu
. In each iteration of Phase 1 we generated h = 1000

candidate routes in Step 1.3 using different heuristics and different search strategies.
In Step 1.4 the best of these routes was chosen. We repeated the process until the
given number N of buses was attained, where N = 23 for the system at night and
N = 46 for the system at daytime.

In the timetabling step, the first iteration of our matching approach resulted in
pairs of routes, almost all of them being synchronized at one of the central stations.
In the next steps, groups were still synchronized at central stations as long as the
capacity of these stations was not exceeded. Otherwise, the locally best alternatives
of synchronizing at other stations or other times were identified.

Note that we followed two different goals within the system at night and the system
at daytime. At night we had given N = 23 buses and tried to construct an attractive
night bus system for Göttingen. At daytime we did not aim to maximize the attrac-
tiveness but the goal was to optimize the costs. This can be done by decreasing the
number of available buses step by step until the attractiveness of the new system gets
too small. In Göttingen we obtained a reduction of 10% of the buses still having an
attractiveness of 1% more than before. The two solutions which are best according to
the practitioners of GÖVB are listed in Table 1. They consist of 10 lines for the night
system and of 15 lines for the system at daytime.

The nighttime solution improved the attractiveness of the current solution by
18.7%. We now analyze this new plan in more detail:

The new timetable does not have the long breaks at the ends of the lines. The
saved additional buses are used to increase the frequencies of the routes. Moreover
the new solution is more robust due to the distribution of the slack times and it takes
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Table 1 The best solutions of our algorithm

System at night System at daytime

Current system. 23 buses, 11 routes 46 buses, 13 routes

“Best” system 23 buses, 8 routes 42 buses, 12 routes

Computation time ≈ 10 h ≈ 20 h

Improvement costs by 0%, att by 18% costs by 10%, att by 1%

Fig. 6 Northeastern part of Göttingen. Left: potential edges, middle: current lines, right: our solution

Table 2 Frequencies in the
current system and in our
solution (Nighttime)

Lines with frequency 1 Lines with frequency 2

Current system 7 5

New system 3 7

the capacities of the stops into account. To illustrate the differences we zoomed into
the northeastern part of Göttingen where some typical differences between the cur-
rent system and our solution can be seen. The left picture in Fig. 6 shows potential
edges E. In the middle, the current night bus system is shown and in the right part our
new solution. One can see that major parts of the lines remained as they were. One
line was removed, but the suburb it connects was added to another line. The reason is
that the intermediate stops (which are now not covered) have nearly no demand such
that the bus could be used in another part of the city more efficiently. Moreover, the
two lines crossing each other have been changed and now follow better their shortest
paths.

On a more global view it turns out that none of the new lines stayed exactly as
they were in the old solution, but the major difference comes from a new combina-
tion of the different branches in the city center. If we neglect this and look at the sin-
gle branches between the city center and the outskirts, we find nine branches which
are almost identical to the old plan, three branches with minor changes and seven
branches with major changes. Also the number of lines with a frequency of two in-
creased while the number of lines with a frequency of one decreased (Table 2).
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7 Conclusion

In this paper we presented a new approach to tackle three well-known problems in
public transportation, namely line planning, timetabling and vehicle scheduling. We
did not use the classical sequence of the planning phases but started by constructing
the vehicle routes. The advantage is that costs can be controlled during the whole
process while a customer-oriented objective can be followed. A drawback might be
that our reordering does not allow straightforwardly to integrate vehicle and crew
scheduling as can be done in the traditional approach. This is an issue of further
research.

Two phases of our approach, namely, constructing the routes and fixing the
timetable are NP-hard. We hence suggest heuristic solutions. Our decomposition
yields new problems that are currently under investigation from a theoretical point
of view. We are sure that improvements and further results about optimality gaps and
quality of heuristics can be made in both phases.

From an experimental point of view we are currently developing a library LinTim
(Schachtebeck and Schöbel 2009) which is able to perform the different planning
steps in public transportation on the same example scenarios consecutively. Its goal
is to evaluate lines, timetables, and vehicle schedules in an integrated way. In our
future work we plan to use LinTim to compare our new approach with the traditional
sequence of algorithms. Moreover, we are analyzing integration of the different plan-
ning steps in star-shaped networks with a simple passengers’ structure.

Finally, from a practical point of view, our approach proved to be successful. Some
components of our solution are already implemented in Göttingen and seem to per-
form well; a complete new system is under research.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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