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Abstract For the natural two-parameter filtration (¥, : A € P) on the boundary of a
triangle building, we define a maximal function and a square function and show their
boundedness on L? (2¢) for p € (1, 00). Atthe end, we consider L? (£29) boundedness
of martingale transforms. If the building is of GL(3, Q,), then ¢ can be identified
with p-adic Heisenberg group.
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1 Introduction

Let (2, F, m) be a o-finite measure space. A sequence of o-algebras (F, : n € Z)
is a filtration if F,, C F,+1. Given f a locally integrable function on Q by E[ f|F,],
we denote its conditional expectation value with respect to F,. Let M* and S denote,
respectively, the maximal function and the square function defined by
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M* f = sup| ful.

nez

and

Sf = (Z |dnf|2)1/2, (1.1)

nez

whered, f = f,— fu—1. The Hardy and Littlewood maximal estimate (see [8]) implies
that

n({M*f>A})§X_1f | f] dr,

M*f>A

from where it is easy to deduce that for p € (1, oo]
p
[m° 1o < S5 15 e

For the square function, if p € (1, 00), then there is C,, > 1 such that

C, 1 e < USFlle < Cpll fllo- 1.2)

The inequality (1.2) goes back to Paley [12], and has been reproved in many ways,
for example, [2—4,7,10]. Its main application is in proving the L”-boundedness of
martingale transforms (see [2]), that is, for operators of the form

Tf= Zandnf

nez
where (a, : n € Z) is a sequence of uniformly bounded functions such that a4 is
JF,-measurable.
In 1975, Cairoli and Walsh (see [5]) have started to generalize the theory of martin-

gales to two-parameter cases. Let us recall that a sequence of o-fields (F; ,, : n,m €
Z) is a two-parameter filtration if

}—n+1,m C }—n,ma and }—n,m—ﬁ—l - }—n,m- (1.3)
Then (fy,,n : n, m € Z) is a two-parameter martingale if
E[fn+1,m|]:n,m] = fn,m: and IE[fn,m+1|~7:n,m] = fn,m~ (14)

Observe that conditions (1.3) and (1.4) impose a structure only for comparable indices.
In that generality, it is hard, if not impossible, to build the Littlewood—Paley theory.
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1124 T. Steger, B. Trojan

This lead to the introduction of other (smaller) classes of martingales (see [19,20]).
In particular, in [5], Cairoli and Walsh introduced the following condition

IE[f|~7:.n,oo|-¢.oo,m] = ]E[f|-7:oo,m|~7:;1,oo] = fn,m (F4)

where

Fae=0(JFun)  ad  Fep=0({JFun)

meZ nez

Under (Fy), the result obtained by Jensen, Marcinkiewicz, and Zygmund in [9] implies
that the maximal function

M*f = sup |fuml (1.5

n,mez

is bounded on L?(2) for p € (1, oo]. In this context, the square function is defined
by

5= dumr?) " (16)

n,mez

where d,, ,, denote the double difference operator, i.e.

dn,mf = fn,m - fnfl,m - fn,mfl + fnfl,mflo

In [11], it was observed by Metraux that the boundedness of S on L”(2) for p €
(1, 00) is implied by the one parameter Littlewood—Paley theory. Also the concept of
a martingale transform has a natural generalization, that is,

Tf: Z an,mdn,mf

n,mez

where (a,,, : n,m € 7Z) is a sequence of uniformly bounded functions such that
An+1,m+1 18 Fy m-measurable.

In this article, we are interested in a case when the condition (Fy) is not satisfied.
The simplest example may be obtained by considering the Heisenberg group together
with the non-isotropic two parameter dilations

ds,1(x,y,2) = (sx,ty, s12).

Since in this setup the dyadic cubes do not posses the same properties as the Euclidean
cubes, it is more convenient to work on the p-adic version of the Heisenberg group.
We observe that this group can be identified with €, a subset of a boundary of the
building of GL(3, Q) consisting of the points opposite to a given wy. The set Qg
has a natural two-parameter filtration (F, , : n, m € Z) (see Sect. 2 for details). The
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Littlewood—Paley Theory for Triangle Buildings 1125

maximal function and the square function are defined by (1.5) and (1.6), respectively.
The results we obtain are summarized in the following three theorems.

Theorem A For each p € (1, o0], there is C, > 0 such that for all f € LP(QO)
| £ Lo < Coll FllLo-

Theorem B For each p € (1, 00), there is C, > 1 such that for all f € LP(QO)

C N e < USFlle < Cpll flo-

Theorem C If (ay , : n,m € Z) is a sequence of uniformly bounded functions such
that an41,m+1 is Fn,m-measurable, then the martingale transform

sz Z an,mdn,mf

n,me”z

is bounded on LP(QO),for all p € (1, 00).

Let us briefly describe methods we use. First, we observe that instead of (Fy4) the
stochastic basis satisfies the remarkable identity (2.2). Based on it, we show that the
following pointwise estimate holds

M*(If) < C(L*R*L*R*(|f]) + R*L*R*L*(| f])) (1.7)

proving the maximal theorem. Thanks to the two-parameter Khintchine’s inequality,
to bound the square function S, it is enough to show Theorem C. To do so, we define
a new square function S which has a nature similar to the square function used in
the presence of (F4). Then, we adapt the technique developed by Duoandikoetxea and
Rubio de Francia in [6] (see Theorem 3). This implies L”-boundedness of S. Since S
does not preserve the L norm, the lower bound requires an extra argument. Namely,
we view the square function S as an operator with values in L” (¢?) and take its dual.
As a consequence of Theorem 3 and the identity (4.7), the latter is bounded on L.

Finally, let us comment on the behavior of the maximal function M* close to Ll
Based on the pointwise estimate (1.7), in view of [8], we conclude that M* is of weak-
type for functions in the Orlicz space L(log L)3. To better understand the maximal
function M*, we investigate exact behavior close to L!. This together with weighted
estimates is the subject of the forthcoming paper. It is also interesting how to extend
Theorems A, B and C to higher rank and other types of affine buildings.

1.1 Notation
For two quantities A > 0 and B > 0, we say that A < B (A 2 B) if there exists an

absolute constant C > O suchthat A < CB (A > CB).
If » € P we set |A| = max {|11], |A2]}.
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1126 T. Steger, B. Trojan

Fig. 1 Aj root system A

&%)

_ao

2 Triangle Buildings
2.1 Coxeter Complex

We recall basic facts about the A, root system and the A Coxeter group. A general
reference is [1]. Let a be the hyperplane in R? defined as

a={(x1,x2,x3) € R®: x| +x2 +x3 = 0}.

We denote by {e1, e, e3} the canonical orthonormal basis of R> with respect to the
standard scalar product (-, -). We set 1 = ep — e1, ¥ = e3 — €2, g = e3 — e1 and
I = {0, 1,2}. The A; root system is defined by

O = {Fag, *ay, Far}.

We choose the base {a, oz} of ®. The corresponding positive roots are T =
{ao, a1, a2 }. Denote by {A1, A>} the basis dual to {1, an}; its elements are called the
Jundamental co-weights. Their integer combinations, form the co-weight lattice P. As
in Fig. 1, we always draw XA pointing up and to the left and X, up and to the right.
Likewise A1 — XA, is drawn pointing directly left, while A — A1 points directly right.
Because (A1, o) = (A2, ap) = 1, we see that for any A € P the expression (X, )
represents the vertical level of A. For A = iX| 4 jAp, that level isi + j.
Let H be the family of affine hyperplanes, called walls,

Hjy={xe€a:(x,a;) =k}
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Littlewood—Paley Theory for Triangle Buildings 1127

where j € I, k € Z. To each wall Hj., we associate r,; the orthogonal reflection in
a,i.e.

rik(x) =x — ((x, aj) — k)ozj.

Set ry = r1.0, r2 = r2.0 and ro = ro.1. The finite Weyl group Wy is the subgroup of
GL(a) generated by ry and rp. The affine Weyl group W is the subgroup of Aff(a)
generated by rg, r1 and ;.

Let C be the family of open connected components of a \ (<7, H. The elements
of C are called chambers. By Cy, we denote the fundamental chamber, i.e.

Co={xea:{x,ar) >0, (x,a2) >0, {x,a9) < 1}.

The group W acts simply transitively on C. Moreover, Cy is a fundamental domain for
the action of W on a (see e.g. [1, VI, §1-3]). The vertices of Cy are {0, A1, A2}. The
set of all vertices of all C € C is denoted by V (X). Under the action of W, V(X) is
made up of three orbits, W(0), W(X1), and W (A;). Vertices in the same orbit are said
to have the same fype. Any chamber C € C has one vertex in each orbit or in other
words one vertex of each of the three types.

The family C may be regarded as a simplicial complex X by taking as the simplexes
all non-empty subsets of vertices of C, for all C € C. Two chambers C and C’ are i-
adjacent fori € 1if C = C’ orifthereis w € W suchthat C = wCpyand C’ = wr; Cy.
Since rl.2 = 1 this defines an equivalence relation.

The fundamental sector is defined by

So={xea:(x,a;) >0, (x,ar) > 0}.

Given A € P and w € Wy the set A + wSy is called a sector in X with base vertex A.
The angle spanned by a sector at its base vertex is 7 /3.

2.2 The Definition of Triangle Buildings

For the theory of affine buildings, we refer the reader to [13]. See also the first author’s
expository paper [14], for an elementary introduction to the p-adics, and to precisely
the sort of the buildings which this paper deals with.

A simplicial complex 2" is an /12 building, or as we like to call it, a triangle
building, if each of its vertices is assigned one of the three types, and if it contains a
family of subcomplexes called apartments such that

1. Each apartment is type-isomorphic to X,

2. Any two simplexes of 2" lie in a common apartment,

3. For any two apartments, </ and <7’, having a chamber in common, there is a
type-preserving isomorphism ¥ : &/ — &/’ fixing &/ N &/’ pointwise.

We assume also that the system of apartments is complete, meaning that any subcom-
plex of 2 type-isomorphic to X is an apartment. A simplex C is a chamber in Z
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1128 T. Steger, B. Trojan

if it is a chamber for some apartment. Two chambers of 2" are i-adjacent if they are
i-adjacent in some apartment. For i € I and for a chamber C of 2, let ¢; (C) be equal
to

qi(C)={C"e 2 :C"~ C}| - 1.

It may be proved that ¢; (C) is independent of C and of i. Denote the common value
by ¢, and assume local finiteness: g < oco. Any edge of 2, i.e., any 1-simplex, is
contained in precisely ¢ + 1 chambers.

It follows from the axioms that the ball of radius one about any vertex x of 2 is
made up of x itself, which is of one type, g% + g + 1 vertices of a second type, and a
further g* + g + 1 vertices of the third type. Moreover, adjacency between vertices of
the second and third types makes them into, respectively, the points and the lines of a
finite projective plane.

A subcomplex . is called a sector of 2" if it is a sector in some apartment. Two
sectors are called equivalent if they contain a common subsector. Let 2 denote the set
of equivalence classes of sectors. If x is a vertex of 2" and w € , there is a unique
sector denoted [x, w] which has base vertex x and represents .

Given any two points @ and o’ € €2, one can find two sectors representing them
which lie in a common apartment. If that apartment is unique, we say that w and ' are
opposite, and denote the unique apartment by [w, @']. In fact, ® and @’ are opposite
precisely when the two sectors in the common apartment point in opposite directions
in the Euclidean sense.

2.3 Filtrations

We fix once and for all an origin vertex O € 2" and a point wp € 2. Choose O so that
it has the same type as the origin of X. Let .y = [O, wg] be the sector representing wg
with base vertex O. By 2, we denote the subset of €2 consisting of @’s opposite to wy.
For purposes of motivation only, we recall that if 2" is the building of GL(3, Q),), then
20 can be identified with the p-adic Heisenberg group (see Appendix 1 for details).

Let 9% be any apartment containing .%. By ¥, we denote the type-preserving
isomorphism between 27 and X such that ¥ (#y) = —Sp. We set p = ¥ o pgp where
po is the retraction from 2~ to . With these definitions, p : £~ — X is a type-
preserving simplicial map, and for any w € ¢ the apartment [w, wo] maps bijectively
to ¥ with wp mapping to the bottom (of Fig. 1) and @ mapping to the top.

For any vertex x of 2, define the subset Ex C 2 to consist of all w’s such that
x belongs to [w, wp]; an equivalent condition is that [x, wg] € [w, wp]. Fix A € P.
By F,, we denote the o -field generated by sets E for x € 2" with p(x) = A. There
are countably many such x, and the corresponding sets E, are mutually disjoint, and
hence, F) is a countably generated atomic o-field.

Let < denote the partial order on P where A < p if and only if (A — u, 1) <0
and (A — u, ap) < 0. If we draw and orient ¥ as in Fig. 1, then 1 < u exactly when
w lies in the sector pointing upward from A.

Proposition 2.1 If 1 < w, then F; C F.
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Littlewood—Paley Theory for Triangle Buildings 1129

Proof Choose any vertex x so that p(x) = wu. Because A < pu, there is a unique
vertex y in the sector [x, wp] so that p(y) = A. Forany w € E,, the apartment [, wp]
contains x, and hence, it contains [x, wg], which hence contains y. This establishes
that £, C E,. In other words, each atom of F, is a subset of some atom of ;. Hence,
each atom of 7 is a disjoint union of atoms of F,. a

In fact, Proposition 2.1 says that (F) : L € P) = (]:ihﬂ')»z 1, j € Z) is a two
parameter filtration. Let

f:a(Uﬂ).

reEP

Let 7 denote the unique o-additive measure on (€29, F) such that for E, € F),
7(Ey) = g2,

All o-fields in this paper should be extended so as to include m-null sets.

A function f(w) on q is Fj-measurable if it depends only on that part of the
apartment [, wp] which retracts under p to the sector pointing downward from A. For
i,] € Zset

Fioo = U( U ~7:i)»1+j’k2)’ Foo,j = U( U ]:i’)nwj)»z)'

J €L i'eZ

A function f(w) on g is F; ~-measurable (respectively Foo j-measurable) if it
depends only on that part of the apartment which retracts to a certain “lower” half-plane
with boundary parallel to A, (respectively Ap).

If 7' is o-subfield of F, we denote by E[ f|F’] the Radon-Nikodym derivative
with respect to F'. If F” is another o -subfield of F, we write

ELf|1F|F") = E[ELf1F|F"]

The o-field generated by F' U F” is denoted by F' v F”. We write f5, = E; f
E[f|Fy] for A € P.If A < u, then it follows from Proposition 2.1 that E,E;, =
E,E, =E,.

We note that the Cairoli—Walsh condition (Fy) introduced in [5] is not satisfied, i.e.

Eyqa Epqia, #Ea.

Instead of (F4), we have

Lemma 2.2 For a locally integrable function f on 2

El frsas [ Fatra | Fain ] = a7 frvrs — @ El g | Fotnr—aa V Fal + fu, (2.1)
2 _ _
(ErsrErvny)” = ¢ B, Eaga, + (1 — ¢ HE,, 2.2)

and likewise if we exchange A1 and \;.
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1130 T. Steger, B. Trojan

Fig. 2 Residue of x [
b1

Po

wo

Proof For the proof of (2.1) it is enough to consider f =1 Ep, where pj is a vertex
in 2 such that p(p;) = A + A1. Let . be the sector [p, wp] and let x be the unique
vertex of . with p(x) = A. The ball in 2" of radius 1 around x has the structure
of a finite projective plane. In Fig. 2, the spot marked x is for vertices of .2~ which
retract via p to A. Recall that E, is an atom of the o-field F; . The spot marked p; is
for vertices retracting to A + A1; the spot marked [ is for vertices retracting to A + Ap;
the spot marked /; is for vertices retracting to A + A1 — A2; etc. In the ball of radius 1
around x, only x itself retracts to the spot marked x. The line-type vertex known as [y is
the only vertex in the ball retracting to its spot; ¢ line-type vertices retract to the same
spot as /1 ; the remaining ¢ line-type vertices retract to the spot marked /. Likewise,
po is the unique point-type vertex of the ball retracting to its spot; g point-type vertices
retract to the spot marked p; g? retract to the same spot as pj. It follows that

Ellg, |Fl=q g, =q > ) lg,=q > ) 1g

p’'ely 1= po

and

El1g, |Freri—r vV Fal = 61_111;3.rw1;",1 =q! Z 1g,

p'~h
p'lo

where p’ runs through the point-type vertices of the ball, [ runs through the line-type
vertices of the ball, and ~ stands for the incidence relation. We have

Ellg, |Fnl=q"" ) 1g. (23)

I~pi
> po
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Littlewood—Paley Theory for Triangle Buildings 1131

Therefore, we obtain

E[lEm |F)‘+)‘2|]:)“+)‘1] :q_2 Z Z lEp/ = q_llEPl +q_2 Z lEh’

11~p| p'~ p'=lo
>*Po p' el p' =l
. 5 5 2.4)
=q lEpl +q Z lEp/ —q Z 1Ep”
p'ly '~
ploly

which finishes the proof of (2.1). Applying one more average to the next to the last
expression of (2.4), we get

Ellg, |Fosin | Farn | Faraal =a 72 Y g +q7 ) D 1k,

I~pi p'ocly I~p'
I po p'ly 1 po

For any linel = py, there are g points p’ such that p’ ~ [ and p’ ~ Iy and among them
there is exactly one incident to /1. Hence, in the last sum, each line / ~ pg appears
g — 1 times. Thus, we can write

a7 Y Y =a7 @1 Y g = (1—q DEllg, 7]

p'olo I~p' I po
p' =l 1 po

proving (2.2). O
The following lemma describes the composition of projections on the same level.

Lemma 2.3 [fk, j € Z are suchthatk > j > 0ork < j <0 then

Ej1k0o-2DExr = Exgxo—rnEntjn—apnEa. (2.5)

Proof We carry out the proof for k > j > 0. For any w € o, there is a con-
nected chain of vertices (x; : 0 <i <k) C [w, wg] with p(x;) = A + k(Ay — X1).
Suppose, conversely, that (x; : 0 <i < k) is a connected chain of vertices and that
p(x;) = A+ k(ho — XA1). Construct a subcomplex # C 2 by putting together
([xi, wo] : 0 < i < k), the edges between the x;’s and the triangles pointing downward
from those edges to wg. Referring to Fig. 3, the extra triangle pointing downward from
the first edge has vertices xg, x1, and yp. Note that [xg, wo] N [x1, wo] = [0, wol.
Proceeding one step at a time, one may verify that the restriction of p to Z is an
injection and that % and p (%) are isomorphic complexes.

By basic properties of affine buildings, one knows it is possible to extend % to an
apartment. Any such apartment will retract bijectively to X, and will be of the form
form [w, wg] where w is the equivalence class represented by the upward pointing
sectors of the apartment. Moreover, using the definition of 7 one may calculate that

n({w e Qo : B C [0, wl)) = g 2wk,
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1132 T. Steger, B. Trojan

wo
Fig. 3 The complex 4

The important point is that the measure of the set depends only on the level of A and
the length of the chain.

Basic properties of affine buildings imply that any apartment containing xo and xj
contains the entire chain. Hence,

T(Exy N Ey) =7({w € Q: B C [0, wpl}) = g 207k,

Fix xo. Proceeding one step at a time, one sees there are ¢* connected chains
(x; : 0 <i <k)with p(x;) = A+ k(X2 — 11). Consequently

E)\.+k()\.2—)n])1.x0 = qik Z lxk-
(x;:0<i<k)

Likewise

Eitko-a)Eatjoo-an e = ¢/ Batko—11) Z 1y,

(xi:0=i<j)

el SR D

(xi:0=i<)) (xizj<i=<k)
which is the same thing. O

Consider EyE,. If A < u then the product is equal to E,; similarly if 4 < A. If A
and p are incomparable, the following lemma allows us to reduce to the case where A
and p are on the same level.

Lemma 2.4 Suppose . € P and
A =A—iki, pw=2x"+k(h— i), mo=p+ (k2 — A1)

for i,k € N. Then for any locally integrable function f on

ELf 1P Fud = ELfIFw | Ful, (2.6)
ELf1FulFol = ELfIF | Fl, 2.7)
ELf1FuFu v Fil = ELf1F |1 Ful (2.8)
ELfIFu v FalFal = ELfIF | Fl 2.9

and likewise if we exchange A1 and \;.
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A v

/\X /\/\u Z

Fig. 4 Notation used in Lemma 2.4

Proof We first prove (2.6) for i = 1 and k = 1. Because E[ f|F,/] = E[f|Fa|Fn],
it is sufficient to consider f =1 E,, Where p(p1) = 1. Use Fig. 2 to fix the notation,
and note that if p; retracts to A, then x retracts to A’ and p to u. One calculates:

Ellg, |FalFu =Ellg, |Ful=q" Y 1g, = q *Ellg,|F,]

p~lo
P#Po

= El[lg, |F|Ful.

Next considerthecasei = 1,k > 1.Set/ = u+A,v=pu+Ai;—Arandv = v+i;
(see Fig. 4). Since F, is a subfield of F,/, we have

E[f1FuF ] = ELfIFA F w1 Ful-
Thus, applying Lemma 2.3, we obtain

ELAIFFul = ELAIFFw | Ful = ELFIFF o | Fw 1 Ful
= ELf|FuFv 1 Ful = ELFIFIFol Ful

where in the last step we have used the case k = 1. Now apply induction on k and
Lemma 2.3 again to get

ELf1FulFolFul = ELf1Fu | FolFul = ELF 1 Fo | Ful
To extend to the case i > 1, use induction on { and observe that

ELf1FuNFu]l = ELFIFANF | Ful = ELAIF g [ Fuw 1 Ful
= E[f1Fnga | Ful = ELf | Fu|Fpul.

The proof of (2.8) is analogous, starting with the case i = 1, k = 0. Identity that (2.6)
can be read as E, [, = E,E, . The expectation operators are orthogonal projections
with respect to the usual inner product, and taking adjoints gives E,E, = E,/E,
which is (2.7). To be more precise, one takes the inner product of either side of (2.7)
with some nice test function, applies self-adjointness, and reduces to (2.6). Likewise,
(2.9) follows from (2.8). O
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1134 T. Steger, B. Trojan

Lemma 2.5 Suppose . = ik + jro, & = A+ k(A1 — A). Then for any locally
integrable function f on Q2

E[fIFulFio0]l ifk >0,
E[f|—7:u|-7:oo,j] ifk <0.

ELf1FulFil = {
Proof Suppose k > 0. By Lemma 2.4 for any j’ > 0, we have
BBy, = E .

So if g is F; 4 j:»,-measurable and compactly supported, then

(g, Ei,ooEp,f) = <]E[.LEi,OOg5 fr= <Eug’ f)
= (EuEr+vjn,8. f)
= <EME)Lg7 f> = (gv E)LEH.f)
The test functions g which we use are sufficient to distinguish between one

Fi oo-measurable function and another. Since E; oo, f and E,E,, f are both F; -
measurable, the proof is done.

3 Littlewood-Paley Theory
3.1 Maximal Functions

The natural maximal function M* for a locally integrable function f on g is defined
by

M* f = max| fy.
f=max|f]
In addition, we define two auxiliary single-parameter maximal functions

L*f = maxE[ | f]| Fi ], R*f = maxE[ | f] | Fos, ;1.
ieZ JEZ

Lemma 3.1 Let A € P andk € N. For any non-negative locally integrable function f
on o

2 _
(ErtiraBrrin) f = (1 =g DE,f.
Proof We may assume A = 0. Let us define (see Fig. 5)

n=kki, w =i+ (k= 1As, w' =k,
v=(k— 1A, V= 4 (k —2)ha, V' = (k — 1Ay,
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Littlewood—Paley Theory for Triangle Buildings 1135

1 1 I

Fig. 5 Notation used in Lemma 3.1

We show
E BB E, — ¢ 'EyEE E, =EyEEyE, — ¢ 'E,EE/E,. (3.1)
Let g = E[ f|F,.]. By two applications of Lemma 2.3, we can write
Elg|F | Ful = Elg1F w1 Fur | Fl Ful
and by Lemma 2.2

Elg|Fu | Fur|Ful = ¢ 'ElglFu] + ElglFur]
—q "Elg|F | Fo v Furl.

Hence,

Elg|Fpur | FulFrrl — g Elg|Fu | Fpul Furl
= Elg|For | FulFurl — ¢ "ElglFulFor Vv Forl Ful Furl.

By repeated application of Lemma 2.4, we have
Elg|Fur|FulFurl = ELFIFulFor| Frl Frurl = ELFIFo | For | Fol Forl
and

E[g|-7:u’|~7:v’ va”lfu|fu”] = E[f|]:u|-7:p,’|-7:v’ va”|-7:u|—7:u”]
= ELf1Fv|Fv | Fol For]

which finishes the proof of (3.1). By iteration of (3.1), we obtain

E, E,E,E, — ¢ 'E E,E,E,
= E)\2E)\.1E)L2E)Ll - q_lE)LZ]E)\lEAI]E)\l

@ Springer



1136 T. Steger, B. Trojan

which together with Lemma 2.2 implies

E,/EE, B, =¢ 'EyE,ELE, + (1 —q "E.

O

Theorem 1 For each p € (1, 00] there is C, > 0 such that
1L f] 0 < Coll o R f] L0 < Coll fllia (3.2)
| f L, < Cpl £l (3.3)

Proof Inequalities (3.2) are two instances of Doob’s well-known maximal inequality
for single parameter martingales (see e.g. [15]). To show (3.3), consider a non-negative
f € LP(Qo, F,).Fix 1 € P.Since f € L?(Q, F,) forany ' > p we may assume
u > A Let
v=>+ (=i a0k, V' =A+ (-1, a0k
By Lemma 3.1,
(1—q HEyf <EyEE/E,f.

If . =iX; + jAy, then repeated application of Lemma 2.5 gives

Ev”Ev]Ev”Evf = Ev’/Eva”EvEuf = E[flfOOjLEOO'fOOj'EOO]
< L*R*L*R*f.

By taking the supremum over A € P, we get
(1—g YM*f < L*R*L*R*f.

Hence, by (3.2), we obtain (3.3) for f € L”(Qq, F,,). Finally, a standard Fatou’s
lemma argument establishes the theorem for arbitrary f € L? ().

3.2 Square Function
Let f be a locally integrable function on 2. Given i, j € Z, we define projections
Lif = EB[f1Fi 0ol = ELf|1Ficto0)s  Rjf = ELf|Foo j1 = ELf1Foc,j1].

Note that L; (respectively R;) is the martingale difference operator for the filtration
(fl-,oo 1€ Z) (respectively (foo,j ije Z)). For A =iA1 + jAp, we set

Dyf =LiR;f, Dif=RjLif.
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The following development is inspired by that of Stein and Street in [17]. We start by
defining the corresponding square function.

sr=(X )"

reP

We will also need its dual counterpart

st = (o) "

reP

Theorem 2 For every p € (1, 00) thereis Cp, > 1 such that

Co f e IS Fllee < Cpllflipe. C e < |S* ] < Cpll Fll o

Moreover, on L*(Q2) square functions S and S* preserve the norm.

Proof Since

st = (Y1) ana s = (Y18 P) "

i€Z JEZ

preserve the norm on LZ(QO), we have

f Z IL:R; f|* dr :Z/Z|Liij|2dn

i,JEZL JEZL i€z (3.4)
=Z/|ij|2dn =/|f|2dn.
JEZL

Hence, S preserves the norm.

For p # 2, we use the two-parameter Khintchine inequality (see [12]) and bounds
on single parameter martingale transforms (see [2,15,18]). Let (¢; : i € Z) and (6} :
Jj € Z) be sequences of real numbers, with absolute values bounded above by 1. For
N € N, we consider the operator

/
Ty = E €i€;Dipytjn,
lil1jl=N

which may be written as a composition £y Ry where

Z:N = Z EiLi, RN = Z 6}Rj.

lil=N [JI=N
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Since by Burkholder’s inequality (see [2,15]) the operators Ry and Ly are bounded
on L?(8p) with bounds uniform in N, we have

ITn flle S If I Le-

Setting r; to be the Rademacher function, by Khintchine’s inequality, we get

/( > |Dikl+jsz|2)p/2d7'[

lil,1j1=N

1 1
P
S// / ‘ E Vi(S)Vj(l‘)DiAlJrj)sz ds dr d,
0o Jo

li,1j1=N

which is bounded by || f II‘Z »- Finally, let N approach infinity and use the monotone
convergence theorem to get

ISflie S ISfliee.

For the opposite inequality, we take f € L” () NL%(Qo)and g € LY (Q0)NL* ()
where 1/p’+1/p = 1. By polarization of (3.4) and the Cauchy—Schwarz and Holder
inequalities, we obtain

(f.g) = / Y DifDigdn < (S£.8g) < ISfllrnllSglly SIS Fllzollgly -
rEP

O

Given a set {v; : A € P} of vectors in a Banach space, we say that Z/\eP v,
converges unconditionally if, whenever we choose a bijection ¢ : N — P,

oo
Z Vo)  exists, and is independent of ¢.
n=1

Equivalently, we may ask that for any increasing, exhaustive sequence (Fy : N € N)
of finite subsets of P, the limit

lim E v, exists.

The following proposition provides a Calderén reproducing formula.

Proposition 3.2 For each p € (1, 00) and any f € LP(Rp),

f=Y Dits

rEP

where the sum converges in L” (o) unconditionally.
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Proof Fix an increasing and exhaustive sequence (F : N € N) of finite subsets of
P.Let

In(f)=)_ DiD}f.

reFN

For f € LP(p) and g € L”/(Qo), where 1/p + 1/p’ = 1, we have

(v = u(hr gl =] > (Dif. Dig)

)\EFN\FM

| = @) s @l

)\GFN\FM

(3.5)

In particular,

WINGD, ) < [S* D] 1S @],

whence [[In(H)llr < | fIlLp uniformly in N. Consequently, it is enough to prove
convergence for f € LP(Qp) N L%(Q0). From (3.5) and the bounded convergence
theorem, it follows that for any positive €, || Iy (f) — Iy ()l p < € whenever M and
N are large enough. This shows that the limit exists. Finally, for g LY (0)NL%(Q),
the polarized version of (3.4) gives

Jim (In(f), 8) = nggogj (D} 1. Dig) = (f.8)-

O

Theorem 3 Let (T), : . € P) be a family of operators such that for some § > 0 and
po € (1,2)

1Tl ST, (3.6)
” TMT;”L2—>L2 S q_alﬂ_kl and ” T;:Tk ”L2—>L2 S q_am_kl, 3.7)
| DATu Dy |2 2 S g7 Mg, (3.8)
||§;‘5 ITafol | ro Sl sup |l Lo (3.9)

Then for any p € (po, 2] the sum )_, . p Ty, converges unconditionally in the strong
operator topology for operators on LP ().

Proof First, recall that the Cotlar—Stein Lemma (see e.g. [ 16]) states that (3.7) implies
the unconditional convergence of ) °, . » 75, in the strong operator topology on L?(Qo).
Let (Fn : N € N) be an arbitrary increasing and exhaustive sequence of finite subsets
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of P.For N > 0, we set

V=Y Ty, Iy= ) DDj.

nekFy reFy

By (3.6), (3.7) and interpolation, each T}, is bounded on L? for p € [1, 2] and the
same holds for the finite sum Vy. We consider f € LP () for p € (po,2). By
Proposition 3.2 and Theorem 2, we

WVarIn (O 1o
SISO =|( X X DaTubuDyf 0 e P)|

neFy VeFy

_ ”( > Uy Oty ¥ Wy G V) Da Ty Dy Dy f 5 1 € P)‘
y,y'eP

= > | <1FN(}‘+y+y/)1FM()‘+V)D)»T)L+VD)»+V+V/DK+y+y/f : )‘GP) ILoe2y-
y,y'eP

LP(02)

LP(£2)

Finally, by change of variables, we get

” VMIN(f)HLp S Z “ (Dl+y+y’T/\+yD/\DKf thE FN) HLP(/ZZ)'
y,y'eP

Assuming there is 6, > 0 such that

|(Dity4y Try Dif : 2 € P)|| 12y S g YD (f o h e P)lIpser

(3.10)
we can estimate
IViIn (D0 S Z g oD |(Dif:re FN)”LP(KZ)
y,y'eP
12 (3.11)
s|(X @),
reFy

Theorem 2, Proposition 3.2 and (3.11) imply that the V), are uniformly bounded
onL”.

For the proof of (3.10), we consider an operator 7 defined for f € L” (JT, ZZ(P))
by

Tf= (Dity+y TrgyDifo.: k€ P).

Since | Dyl S 1and H T, HL. 1, we have

<
—L! ~
HTJ? ”Ll(el) 5 ”f ”L'(Z')'
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Also, by (3.8), we can estimate

|77 ”i%ez) =Y |DPsty sy Tty DS 172 < gD N P
AEP rEP

Therefore, using interpolation between L! (n, él(P)) and L2 (n, EZ(P)) we obtain
that there is 8’ > 0 such that

177 Derocerny < a7 TP 1F | oo eroy-

Because | D; g| < L*R*(]gl), and because Theorem 1 says that L* and R* are bounded
on LP9, we know that (D, : A € P)isbounded on L0 (7, £°°(P)). Of course the same
holds for (D;.4, 1y : & € P). Hence, by (3.9), we get

177 D iocey S 1F I ioogessy

Next, interpolating between LP0 (7, £P0(P)) and LP° (7, £°(P)) givesa§” > 0 such
that

||Tf ”LPO(zZ) < q—su(\yHly/\)”f ||Lp0(£2).

Finally, interpolating between L0 (7, ¢2(P)) and L? (7, £2(P)), we obtain (3.10).
To complete the proof, we are going to show that (Vi f : N € N) is a Cauchy
sequence in L”(£2p). Let us consider g € LP(29) N L2(Q). Setting

P+ po
2

2(p — po)
a=

= , and p=
4—p—po

and using the log-convexity of the L?-norms, we get

Vg — Vngl}, < | Vmg — Vnell72|Vme — Vgl

Since (Vyg : N € N) converges in L?(S2) and is uniformly bounded on LP (o) itis
a Cauchy sequence in L?(€2¢). For an arbitrary f € LP(2p) use the density of g’s as
above. We have

Vi f = VN flee SIS —gler +11Vvg — Vgl

Thus, (Vy f : N € N) also converges, and this finishes the proof of the theorem. O
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4 Double Differences

The martingale transforms are expressed in terms of double differences defined for a
martingale f = (fy : A € P) as

df = fo. = ficry = frmio + frcay—ia-

4.1 Martingale Transforms

The following proposition is our key tool.

Proposition 4.1 Let f € L?(Q) and 1 € P. If foi—jn, = O for j € N then for each
k=j

|ELAIF ka1l 12 < 267 T2 £l 2.

Analogously, for L1 and Ly exchanged.

Proof Suppose j = 1. We are going to show thatif f5_;, = O then forall k > 1

IELAN ok -] 2 < @21 fll 2 4.1)

Indeed, if k = 1 then by (2.1) of Lemma 2.2

|ELAIFr—s 4] 12 = ELAIF i+ 1 Fl, f)
= ¢ "1/02 — ¢ ELAIFar, v i

If Kk > 1, we use Lemma 2.3 to write

E[ il Fr—ka—2r2)] = ELAIFr— o —a) [ Fr—k o —2) |-

Since, by Lemma 2.4,

ELf]Fp=u =) [ Fari=a =] = ELfl Foeay [ Frzij = =201 = 0

we can use induction to obtain

LA Fr= =2 | Fa—kir =) ] ”Lz < g &b IELAFr— g =2 ] ||L2
<q "2 full 2

Let us consider j > 1. Foreachi =0, 1,...,j — 1, we set
& = fa—irg — Sa—Gi+1)r-
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By Lemma 2.4 and (4.1), we have
IELgi | Fr—kry-21] 2 = |EL&i | Frmk(y—nn)—ina]| 2 < g g

<q ® DY £l

Hence,

j—1
||E[f;\|fx—k(xl—xz)]||Lz < Z HE[gilfn—k(Al—xz)]HLz
i=0
-1
= e AP
-0

which finishes the proof since

.
|
—_

g2 < 24UV,

Il
o

We have the following

Proposition 4.2 Forany A, )/, u € P andm > 1

DA D1 g g1,

”dind;’f < q—|x—m/2.

||L2~>L2 ~
Proof We observe that for f € L2(), duf € Lz(n, Fyu) and
Eld, f1F]1=0 4.2)

whenever (v, ag) < (u, ag) — 2. For the proof it is enough to analyze the case v =
W — 2Az. By Lemma 2.4, we can write

Elfu—n | Fru—2n] = ELfu—n | Fru—ni =i | Fru—2201 = E[ fro—ni =i [ Fu—21,1-

Suppose A = iAj + jAs. Letus consider Rjd,. If j > (u, az) + 1 then R;d, f = 0.
For j < (u, @z) — 2, in view of (4.2) we can use Proposition 4.1 to estimate

|Rjduf 2 S a2 dy f o (4.3)

Next, if (A, ag) > (u,ap) + 2 then D;d,, f = 0, because d,, f is F,-measurable.
For (A, ap) < (u,a0) — 4 and (A, @2) < (u,o2), by Lemma 2.5, we can write
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D;d, f = L;g where
g =E[R;dy fIF)]
and v = ((u, ®p) — j)A1 + jAz. By Lemma 2.5, we have
Rid, f = Eld, fIFv] — Eldu f1Fvn, -2, ]
We notice that by Lemma 2.4 and (4.2)
Eldy f1Fo|Fv-22,1 = Eldy f1Fp—22, 1 Fv—22,1 = 0.
Similarly, one can show
Eldy f1Fvu - Fv—22,1 = 0.
Therefore, E[g|F,—21,] = 0. Now, by Proposition 4.1, we obtain
ILiglz2 S g~ 2| Ridy f] - “4)
Combining (4.4) with (4.3), we get
| Drdyf ]2 S g~ Wm0 g R dy ] (4.5)

since (v, «g) = (u, ®p). By analogous reasoning one can show the corresponding
norm estimates for D},d,,. Hence, taking adjoint

”dMDNf”Lz < q—</t—?»’,ozo>/2q—(u—k’»az)/Z||f||L2‘ (4.6)
Finally, (4.5) and (4.6) allow us to conclude the proof of the first inequality.
For the second, we may assume 0 < (i — A, o9) < 1. Suppose (i — A, a9) = 0

and ( — A, ap) > 2. Since d,, f € L%(x, F.), by (4.2) and Proposition 4.1

|Eld, FIF] 2 S g~ 22| d ] o

Similarly, we deal with the case (1 — A, ap) = 1. We can assume (i — A, a2) > 1.
By Lemma 2.4, we have

Eld, f1F:.] = Eldy f1Fu—n 1 Fol = El faca = — froa|1Fal
Hence, by Proposition 4.1,

|Eld, f170] 2 S g~ #2272 £ o
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Let (a;, : A € P) be an uniformly bounded predictable family of functions, i.e. each

function a; is measurable with respect to Fj_j,—x, and

sup |ap(@)| = M.
weR

Predictability is the condition needed to ensure that dj, (a v f ) = a,d, f.By Theorems 1

and 3, Proposition 4.2 and duality when p > 2, we get

Theorem 4 For each p € (1, 00) and m € N the series

Z a)LdT

reP

converges unconditionally in the strong operator topology for the operators on
LP(R0), and defines the operator with norm bounded by a constant multiply of

sup sup [a; (w)].
ALEP we

4.2 Martingale Square Function

For a martingale f = (f3 : A € P) there is the natural square function defined by

sr=(Y@n?)”

reP

Although S does not preserve L? norm, we have

Theorem S For every p € (1, 00) there is Cj, > 0 such that

Cl e < ISFllLe < Cpll fllLo-

Proof We start from proving the identity

dy —d} —q7'd} +q7'd; = 0. 4.7
Let us notice that
d,\Ey = d,, i Ey_y,—, =0,
By, = —Ey 3 Exny +Es—n; 10, By 3y = —Ey Ex o +Ein 1.
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Therefore, consecutively we have

d? =dy + By Fosy +Eas Bassy — 255, —is, (4.3)
d} =d} —Ba s Ers,Easin, — Easi,Baon Eaca, +2Es 5,21,
dt = d3 + (Bs_3, i) + EasiyFass)? = 2E5 3, s,

Hence, by Lemma 2.2,
&t =d} +q¢7'E,_, E B, L Eay — 297 'E
o =d a4 B Eany + 07 EannBary —2¢7 Exny—a,

which together with (4.8) implies (4.7).
Next, we consider an operator 7 defined for a function f € L? (L) by

Tf=.f:reP).
We also need an operator T actingon g € LP (Q) as
f'g = (—qdfg—i—qdfg%—dxg WS P).
We observe that by two-parameter Khinchine’s inequality and Theorem 4 we have
”Tf”Lp(lZ) SWflpy, and ”%gHLP/(ZZ) S el

The dual operator 7* : L7’ (7, £2(Z?)) — L () is given by

T'g=) dg.
reP

Since ’fg eL? (n, 62(22)), by (4.7) and Theorem 4,

T'Tg=) dig=2¢
reP

Therefore, by Cauchy—Schwarz and Holder inequalities
(f.8)=(fT"Tg) < HTf”LP(eZ) ”TgHLP/(ez) N ”TfHLI’(eZ)”g”LP’
and since ||’Tf||L,,(ez) = ||Sf|l.» the proof is finished.

Finally, the method of the proof of Theorem 3, together with Theorems 4 and 5
shows the following
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Theorem 6 Let (T), : . € P) be a family of operators such that for some § > 0 and
po € (1,2)

Tl i S,

” TI‘LT):”LZHLZ < g M and ” T;Ty HL2—>L2 < g oA
||leudN 12512 Sq q
Isup 1T il oo S | sup 1 £l oo
reP A

—=8a—pl , —8IA —pl

Then for any p € (po, 2] the sum )_, . p Ty, converges unconditionally in the strong
operator topology for the operators on LP ().

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: About £y and Heisenberg Group

In some cases €2¢ can be identified with a Heisenberg group over a nonarchimedean
local field. Let us recall, that F is a nonarchimedean local field if it is a topological
field! that is locally compact, second countable, non-discrete and totally disconnected.
Since F together with the additive structure is a locally compact topological group it
has a Haar measure p that is unique up to multiplicative constant. Observe that for
each x € F, the measure ,(B) = n(xB) is also a Haar measure. We set

_ (B

x| .
w(B)

where B is any measurable set with finite and positive measure. By O = {x € F :
|x] < 1}, we denote the ring of integers in F. We fix m € p — pz, where

p:{xeF:|x|<l}.

We are going to sketch the construction of a building associated to GL(3, F'). For more
details, we refer to [14]. A lattice is a subset L C F3 of the form

L = Ov; 4+ Ovy + Ovs,

where {vy, vo, v3} is a basis of F' 3. We say that two lattices L1 and L, are equivalent
if and only if L| = aL, for some nonzero a € F. Then 2, the building of GL(3, F),

L\ topological field is an algebraic field with a topology making addition, multiplication and multiplicative
inverse a continuous mappings.
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is the set of equivalence classes of lattices in F 3. For x, y € Z there are a basis
{v1, v2, v3} of F3 and integers j1 < jo» < jz such that (see [14, Proposition 3.1])

x=0v;+0Ovy+0Ov3, and y= 7 Ov; + 7200 + 13 Ovs.

We say that x and y are joined by an edge if and only if 0 = j; < j» < j3 = 1. The
subset

of = {nj]Ovl —I—njz(’)vz +7rj3(9v3 21, J2, J3 € Z}

is called an apartment. A sector in ./ is a subset of the form

S={x +710v; + 7200, + 7BOVs : jot1) < Jo2) < Jo3), 1s 2y J3 € L},
where o is a permutation of {1, 2, 3} and x € <. Thus, a subsector of S is
{x + 7T Ov) + 72200, + 75V B0V3 ¢ oty < o) < Je)s J1s Jos J3 € L,
for some 0 < k(1) < ko(2) < ko (3. Finally, two sectors

S={x+710v + 7200, + 7303 : jo1) < Jo2) < Jo3) 1. 2. J3 € L},
and
S = {x'+ 71 Ov + 7200 + 7B 0V3 1 jor1y < Jor2) < Jor3)s J1s J2s J3 € L},
are opposite if o’ o 0~ = (321).

A sector in 2 is a sector in one of its apartments. Two sectors in 2 are equivalent

if and only if its intersection contains a sector. By €2, we denote the equivalence classes
of sectors in 2. Let wp and wj, be the equivalence class of

S = {n’j]Oel +71j2082+7'[j3063 =< j=<J3,j1,J2, J3 € Z},
and
Sy =701 + 72 0es + 7530es : j1 > jo = j3, j1. jo, j3 € L},

respectively. Two sectors . and .’ are opposite in 2" if there are subsectors of .
and ./ opposite in a common apartment. By €, we denote the equivalence classes
of sectors opposite to .7p.

Suppose that ' € . Let {v1, vz, v3} be a basis of F3, and ki < kp < k3 and
k| =k >k’ be integers such that

{nh““Ovl +7rj2+k2(9v2 +ﬂj3+k30v3 =< 2= J3 J1,J2, 3 € Z}, 4.9)
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and
{7 Ovy + 722 Ovy + 75Oy 1 i > o = 3. i, . 3 € L), (4.10)
belong to wy and o', respectively. Since the sector (4.9) belongs to wg, we have
vi = birer, vy =byer +bxner, v3=bzie; + bzer + bizes,

for some b;; € F such that by1, b2z, b33 # 0. Hence, the matrix

bi1 b1 b3
g=\|0 by bxn],
0 0 by

satisfies ge; = v;. In particular, gy, = '. Therefore, the group of upper triangular
matrices acts transitively on 2. Observe also that the stabilizer of wy, in GL(3, F) is
the group of lower triangular matrices. Thus, the group

1
0
0

O = =

z
y|:x,y,zeF
1

acts simply transitively on 2.
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