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Abstract For the natural two-parameter filtration (Fλ : λ ∈ P) on the boundary of a
triangle building, we define a maximal function and a square function and show their
boundedness on L p(�0) for p ∈ (1,∞). At the end,we consider L p(�0) boundedness
of martingale transforms. If the building is of GL(3, Qp), then �0 can be identified
with p-adic Heisenberg group.
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1 Introduction

Let (�,F , π) be a σ -finite measure space. A sequence of σ -algebras (Fn : n ∈ Z)

is a filtration if Fn ⊂ Fn+1. Given f a locally integrable function on � by E[ f |Fn],
we denote its conditional expectation value with respect to Fn . Let M∗ and S denote,
respectively, the maximal function and the square function defined by
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50-370 Wrocław, Poland

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193987752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-017-9856-6&domain=pdf


Littlewood–Paley Theory for Triangle Buildings 1123

M∗ f = sup
n∈Z

| fn|,

and

S f =
( ∑
n∈Z

|dn f |2
)1/2

, (1.1)

where dn f = fn− fn−1. TheHardy andLittlewoodmaximal estimate (see [8]) implies
that

π
({
M∗ f > λ

}) ≤ λ−1
∫

M∗ f >λ

| f | dπ,

from where it is easy to deduce that for p ∈ (1,∞]
∥∥M∗ f

∥∥
L p ≤ p

p − 1
‖ f ‖L p .

For the square function, if p ∈ (1,∞), then there is Cp > 1 such that

C−1
p ‖ f ‖L p ≤ ‖S f ‖L p ≤ Cp‖ f ‖L p . (1.2)

The inequality (1.2) goes back to Paley [12], and has been reproved in many ways,
for example, [2–4,7,10]. Its main application is in proving the L p-boundedness of
martingale transforms (see [2]), that is, for operators of the form

T f =
∑
n∈Z

andn f

where (an : n ∈ Z) is a sequence of uniformly bounded functions such that an+1 is
Fn-measurable.

In 1975, Cairoli andWalsh (see [5]) have started to generalize the theory of martin-
gales to two-parameter cases. Let us recall that a sequence of σ -fields (Fn,m : n,m ∈
Z) is a two-parameter filtration if

Fn+1,m ⊂ Fn,m, and Fn,m+1 ⊂ Fn,m . (1.3)

Then ( fn,m : n,m ∈ Z) is a two-parameter martingale if

E[ fn+1,m |Fn,m] = fn,m, and E[ fn,m+1|Fn,m] = fn,m . (1.4)

Observe that conditions (1.3) and (1.4) impose a structure only for comparable indices.
In that generality, it is hard, if not impossible, to build the Littlewood–Paley theory.
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1124 T. Steger, B. Trojan

This lead to the introduction of other (smaller) classes of martingales (see [19,20]).
In particular, in [5], Cairoli and Walsh introduced the following condition

E[ f |Fn,∞|F∞,m] = E[ f |F∞,m |Fn,∞] = fn,m (F4)

where

Fn,∞ = σ
( ⋃
m∈Z

Fn,m

)
, and F∞,m = σ

( ⋃
n∈Z

Fn,m

)
.

Under (F4), the result obtained by Jensen,Marcinkiewicz, and Zygmund in [9] implies
that the maximal function

M∗ f = sup
n,m∈Z

| fn,m | (1.5)

is bounded on L p(�) for p ∈ (1,∞]. In this context, the square function is defined
by

S f =
( ∑
n,m∈Z

|dn,m f |2
)1/2

(1.6)

where dn,m denote the double difference operator, i.e.

dn,m f = fn,m − fn−1,m − fn,m−1 + fn−1,m−1.

In [11], it was observed by Metraux that the boundedness of S on L p(�) for p ∈
(1,∞) is implied by the one parameter Littlewood–Paley theory. Also the concept of
a martingale transform has a natural generalization, that is,

T f =
∑

n,m∈Z

an,mdn,m f

where (an,m : n,m ∈ Z) is a sequence of uniformly bounded functions such that
an+1,m+1 is Fn,m-measurable.

In this article, we are interested in a case when the condition (F4) is not satisfied.
The simplest example may be obtained by considering the Heisenberg group together
with the non-isotropic two parameter dilations

δs,t (x, y, z) = (sx, t y, st z).

Since in this setup the dyadic cubes do not posses the same properties as the Euclidean
cubes, it is more convenient to work on the p-adic version of the Heisenberg group.
We observe that this group can be identified with �0, a subset of a boundary of the
building of GL(3, Qp) consisting of the points opposite to a given ω0. The set �0
has a natural two-parameter filtration (Fn,m : n,m ∈ Z) (see Sect. 2 for details). The
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Littlewood–Paley Theory for Triangle Buildings 1125

maximal function and the square function are defined by (1.5) and (1.6), respectively.
The results we obtain are summarized in the following three theorems.

Theorem A For each p ∈ (1,∞], there is Cp > 0 such that for all f ∈ L p
(
�0

)

∥∥M∗ f
∥∥
L p ≤ Cp‖ f ‖L p .

Theorem B For each p ∈ (1,∞), there is Cp > 1 such that for all f ∈ L p
(
�0

)

C−1
p ‖ f ‖L p ≤ ‖S f ‖L p ≤ Cp‖ f ‖L p .

Theorem C If (an,m : n,m ∈ Z) is a sequence of uniformly bounded functions such
that an+1,m+1 is Fn,m-measurable, then the martingale transform

T f =
∑

n,m∈Z

an,mdn,m f

is bounded on L p
(
�0

)
, for all p ∈ (1,∞).

Let us briefly describe methods we use. First, we observe that instead of (F4) the
stochastic basis satisfies the remarkable identity (2.2). Based on it, we show that the
following pointwise estimate holds

M∗(| f |) ≤ C
(
L∗R∗L∗R∗(| f |) + R∗L∗R∗L∗(| f |)) (1.7)

proving the maximal theorem. Thanks to the two-parameter Khintchine’s inequality,
to bound the square function S, it is enough to show Theorem C. To do so, we define
a new square function S which has a nature similar to the square function used in
the presence of (F4). Then, we adapt the technique developed by Duoandikoetxea and
Rubio de Francia in [6] (see Theorem 3). This implies L p-boundedness of S. Since S
does not preserve the L2 norm, the lower bound requires an extra argument. Namely,
we view the square function S as an operator with values in L p(�2) and take its dual.
As a consequence of Theorem 3 and the identity (4.7), the latter is bounded on L p.

Finally, let us comment on the behavior of the maximal function M∗ close to L1.
Based on the pointwise estimate (1.7), in view of [8], we conclude that M∗ is of weak-
type for functions in the Orlicz space L(log L)3. To better understand the maximal
function M∗, we investigate exact behavior close to L1. This together with weighted
estimates is the subject of the forthcoming paper. It is also interesting how to extend
Theorems A, B and C to higher rank and other types of affine buildings.

1.1 Notation

For two quantities A > 0 and B > 0, we say that A � B (A � B) if there exists an
absolute constant C > 0 such that A ≤ CB (A ≥ CB).

If λ ∈ P we set |λ| = max {|λ1|, |λ2|}.
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1126 T. Steger, B. Trojan

Fig. 1 A2 root system

α0

α2α1

−α1−α2

−α0

λ2λ1

λ1 − λ2 λ2 − λ1

2 Triangle Buildings

2.1 Coxeter Complex

We recall basic facts about the A2 root system and the Ã2 Coxeter group. A general
reference is [1]. Let a be the hyperplane in R3 defined as

a = {(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0}.

We denote by {e1, e2, e3} the canonical orthonormal basis of R3 with respect to the
standard scalar product 〈·, ·〉. We set α1 = e2 − e1, α2 = e3 − e2, α0 = e3 − e1 and
I = {0, 1, 2}. The A2 root system is defined by


 = {±α0,±α1,±α2}.

We choose the base {α1, α2} of 
. The corresponding positive roots are 
+ =
{α0, α1, α2}. Denote by {λ1, λ2} the basis dual to {α1, α2}; its elements are called the
fundamental co-weights. Their integer combinations, form the co-weight lattice P . As
in Fig. 1, we always draw λ1 pointing up and to the left and λ2 up and to the right.
Likewise λ1 − λ2 is drawn pointing directly left, while λ2 − λ1 points directly right.
Because 〈λ1, α0〉 = 〈λ2, α0〉 = 1, we see that for any λ ∈ P the expression 〈λ, α0〉
represents the vertical level of λ. For λ = iλ1 + jλ2, that level is i + j .

Let H be the family of affine hyperplanes, called walls,

Hj;k = {x ∈ a : 〈x, α j 〉 = k}
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Littlewood–Paley Theory for Triangle Buildings 1127

where j ∈ I , k ∈ Z. To each wall Hj;k , we associate r j;k the orthogonal reflection in
a, i.e.

r j;k(x) = x − (〈x, α j 〉 − k
)
α j .

Set r1 = r1;0, r2 = r2;0 and r0 = r0;1. The finite Weyl group W0 is the subgroup of
GL(a) generated by r1 and r2. The affine Weyl group W is the subgroup of Aff(a)
generated by r0, r1 and r2.

Let C be the family of open connected components of a \ ⋃
H∈H H . The elements

of C are called chambers. By C0, we denote the fundamental chamber, i.e.

C0 = {x ∈ a : 〈x, α1〉 > 0, 〈x, α2〉 > 0, 〈x, α0〉 < 1}.

The groupW acts simply transitively on C. Moreover, C0 is a fundamental domain for
the action of W on a (see e.g. [1, VI, §1-3]). The vertices of C0 are {0, λ1, λ2}. The
set of all vertices of all C ∈ C is denoted by V (�). Under the action of W , V (�) is
made up of three orbits, W (0), W (λ1), and W (λ2). Vertices in the same orbit are said
to have the same type. Any chamber C ∈ C has one vertex in each orbit or in other
words one vertex of each of the three types.

The family C may be regarded as a simplicial complex� by taking as the simplexes
all non-empty subsets of vertices of C , for all C ∈ C. Two chambers C and C ′ are i-
adjacent for i ∈ I ifC = C ′ or if there isw ∈ W such thatC = wC0 andC ′ = wriC0.
Since r2i = 1 this defines an equivalence relation.

The fundamental sector is defined by

S0 = {x ∈ a : 〈x, α1〉 > 0, 〈x, α2〉 > 0}.

Given λ ∈ P and w ∈ W0 the set λ + wS0 is called a sector in � with base vertex λ.
The angle spanned by a sector at its base vertex is π/3.

2.2 The Definition of Triangle Buildings

For the theory of affine buildings, we refer the reader to [13]. See also the first author’s
expository paper [14], for an elementary introduction to the p-adics, and to precisely
the sort of the buildings which this paper deals with.

A simplicial complex X is an Ã2 building, or as we like to call it, a triangle
building, if each of its vertices is assigned one of the three types, and if it contains a
family of subcomplexes called apartments such that

1. Each apartment is type-isomorphic to �,
2. Any two simplexes of X lie in a common apartment,
3. For any two apartments, A and A ′, having a chamber in common, there is a

type-preserving isomorphism ψ : A → A ′ fixing A ∩ A ′ pointwise.

We assume also that the system of apartments is complete, meaning that any subcom-
plex of X type-isomorphic to � is an apartment. A simplex C is a chamber in X
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1128 T. Steger, B. Trojan

if it is a chamber for some apartment. Two chambers of X are i-adjacent if they are
i-adjacent in some apartment. For i ∈ I and for a chamber C ofX , let qi (C) be equal
to

qi (C) = |{C ′ ∈ X : C ′ ∼i C}| − 1.

It may be proved that qi (C) is independent of C and of i . Denote the common value
by q, and assume local finiteness: q < ∞. Any edge of X , i.e., any 1-simplex, is
contained in precisely q + 1 chambers.

It follows from the axioms that the ball of radius one about any vertex x of X is
made up of x itself, which is of one type, q2 + q + 1 vertices of a second type, and a
further q2 + q + 1 vertices of the third type. Moreover, adjacency between vertices of
the second and third types makes them into, respectively, the points and the lines of a
finite projective plane.

A subcomplex S is called a sector of X if it is a sector in some apartment. Two
sectors are called equivalent if they contain a common subsector. Let � denote the set
of equivalence classes of sectors. If x is a vertex of X and ω ∈ �, there is a unique
sector denoted [x, ω] which has base vertex x and represents ω.

Given any two points ω and ω′ ∈ �, one can find two sectors representing them
which lie in a common apartment. If that apartment is unique, we say that ω and ω′ are
opposite, and denote the unique apartment by [ω,ω′]. In fact, ω and ω′ are opposite
precisely when the two sectors in the common apartment point in opposite directions
in the Euclidean sense.

2.3 Filtrations

We fix once and for all an origin vertex O ∈ X and a point ω0 ∈ �. Choose O so that
it has the same type as the origin of�. LetS0 = [O, ω0] be the sector representingω0
with base vertex O . By�0, we denote the subset of� consisting ofω’s opposite toω0.
For purposes of motivation only, we recall that ifX is the building of GL(3, Qp), then
�0 can be identified with the p-adic Heisenberg group (see Appendix 1 for details).

Let A0 be any apartment containing S0. By ψ , we denote the type-preserving
isomorphism between A0 and � such that ψ(S0) = −S0. We set ρ = ψ ◦ ρ0 where
ρ0 is the retraction from X to A0. With these definitions, ρ : X → � is a type-
preserving simplicial map, and for anyω ∈ �0 the apartment [ω,ω0]maps bijectively
to � with ω0 mapping to the bottom (of Fig. 1) and ω mapping to the top.

For any vertex x of X , define the subset Ex ⊂ �0 to consist of all ω’s such that
x belongs to [ω,ω0]; an equivalent condition is that [x, ω0] ⊆ [ω,ω0]. Fix λ ∈ P .
By Fλ, we denote the σ -field generated by sets Ex for x ∈ X with ρ(x) = λ. There
are countably many such x , and the corresponding sets Ex are mutually disjoint, and
hence, Fλ is a countably generated atomic σ -field.

Let � denote the partial order on P where λ � μ if and only if 〈λ − μ, α1〉 ≤ 0
and 〈λ − μ, α2〉 ≤ 0. If we draw and orient � as in Fig. 1, then λ � μ exactly when
μ lies in the sector pointing upward from λ.

Proposition 2.1 If λ � μ, then Fλ ⊂ Fμ.
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Littlewood–Paley Theory for Triangle Buildings 1129

Proof Choose any vertex x so that ρ(x) = μ. Because λ � μ, there is a unique
vertex y in the sector [x, ω0] so that ρ(y) = λ. For any ω ∈ Ex , the apartment [ω,ω0]
contains x , and hence, it contains [x, ω0], which hence contains y. This establishes
that Ex ⊆ Ey . In other words, each atom ofFμ is a subset of some atom ofFλ. Hence,
each atom of Fλ is a disjoint union of atoms of Fμ. ��

In fact, Proposition 2.1 says that (Fλ : λ ∈ P) = (
Fiλ1+ jλ2 : i, j ∈ Z

)
is a two

parameter filtration. Let

F = σ
( ⋃

λ∈P

Fλ

)
.

Let π denote the unique σ -additive measure on (�0,F) such that for Ex ∈ Fλ

π(Ex ) = q−2〈λ,α0〉.

All σ -fields in this paper should be extended so as to include π -null sets.
A function f (ω) on �0 is Fλ-measurable if it depends only on that part of the

apartment [ω,ω0]which retracts under ρ to the sector pointing downward from λ. For
i, j ∈ Z set

Fi,∞ = σ
( ⋃

j ′∈Z

Fiλ1+ j ′λ2

)
, F∞, j = σ

( ⋃
i ′∈Z

Fi ′λ1+ jλ2

)
.

A function f (ω) on �0 is Fi,∞-measurable (respectively F∞, j -measurable) if it
depends only on that part of the apartmentwhich retracts to a certain “lower” half-plane
with boundary parallel to λ2 (respectively λ1).

If F ′ is σ -subfield of F , we denote by E[ f |F ′] the Radon–Nikodym derivative
with respect to F ′. If F ′′ is another σ -subfield of F , we write

E[ f |F ′|F ′′] = E
[
E[ f |F ′]∣∣F ′′].

The σ -field generated by F ′ ∪ F ′′ is denoted by F ′ ∨ F ′′. We write fλ = Eλ f =
E[ f |Fλ] for λ ∈ P . If λ � μ, then it follows from Proposition 2.1 that EμEλ =
EλEμ = Eλ.

We note that the Cairoli–Walsh condition (F4) introduced in [5] is not satisfied, i.e.

Eλ+λ1Eλ+λ2 �= Eλ.

Instead of (F4), we have

Lemma 2.2 For a locally integrable function f on �0

E[ fλ+λ1 |Fλ+λ2 |Fλ+λ1 ] = q−1 fλ+λ1 − q−1E[ fλ+λ1 |Fλ+λ1−λ2 ∨ Fλ] + fλ, (2.1)
(
Eλ+λ2Eλ+λ1

)2 = q−1Eλ+λ2Eλ+λ1 + (1 − q−1)Eλ, (2.2)

and likewise if we exchange λ1 and λ2.
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1130 T. Steger, B. Trojan

Fig. 2 Residue of x

Proof For the proof of (2.1) it is enough to consider f = 1Ep1
where p1 is a vertex

inX such that ρ(p1) = λ + λ1. LetS be the sector [p1, ω0] and let x be the unique
vertex of S with ρ(x) = λ. The ball in X of radius 1 around x has the structure
of a finite projective plane. In Fig. 2, the spot marked x is for vertices of X which
retract via ρ to λ. Recall that Ex is an atom of the σ -field Fλ. The spot marked p1 is
for vertices retracting to λ + λ1; the spot marked l is for vertices retracting to λ + λ2;
the spot marked l1 is for vertices retracting to λ + λ1 − λ2; etc. In the ball of radius 1
around x , only x itself retracts to the spot marked x . The line-type vertex known as l0 is
the only vertex in the ball retracting to its spot; q line-type vertices retract to the same
spot as l1; the remaining q2 line-type vertices retract to the spot marked l. Likewise,
p0 is the unique point-type vertex of the ball retracting to its spot; q point-type vertices
retract to the spot marked p; q2 retract to the same spot as p1. It follows that

E[1Ep1
|Fλ] = q−21Ex = q−2

∑
p′�l0

1Ep′ = q−2
∑
l�p0

1El

and

E[1Ep1
|Fλ+λ1−λ2 ∨ Fλ] = q−11Ex∩El1

= q−1
∑

p′∼l1
p′

�l0

1Ep′

where p′ runs through the point-type vertices of the ball, l runs through the line-type
vertices of the ball, and ∼ stands for the incidence relation. We have

E[1Ep1
|Fλ+λ2 ] = q−1

∑
l∼p1
l�p0

1El . (2.3)
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Littlewood–Paley Theory for Triangle Buildings 1131

Therefore, we obtain

E[1Ep1
|Fλ+λ2 |Fλ+λ1] = q−2

∑
l∼p1
l�p0

∑

p′∼l
p′

�l0

1Ep′ = q−11Ep1
+ q−2

∑

p′
�l0

p′
�l1

1Ep′

= q−11Ep1
+ q−2

∑
p′�l0

1Ep′ − q−2
∑

p′∼l1
p′

�l0

1Ep′ ,
(2.4)

which finishes the proof of (2.1). Applying one more average to the next to the last
expression of (2.4), we get

E[1Ep1
|Fλ+λ2 |Fλ+λ1 |Fλ+λ2 ] = q−2

∑
l∼p1
l�p0

1El + q−3
∑

p′
�l0

p′
�l1

∑

l∼p′
l�p0

1El .

For any line l � p0, there are q points p′ such that p′ ∼ l and p′ � l0 and among them
there is exactly one incident to l1. Hence, in the last sum, each line l � p0 appears
q − 1 times. Thus, we can write

q−3
∑

p′
�l0

p′
�l1

∑

l∼p′
l�p0

= q−3(q − 1)
∑
l�p0

1El = (1 − q−1)E[1Ep1
|Fλ]

proving (2.2). ��
The following lemma describes the composition of projections on the same level.

Lemma 2.3 If k, j ∈ Z are such that k ≥ j ≥ 0 or k ≤ j ≤ 0 then

Eλ+k(λ2−λ1)Eλ = Eλ+k(λ2−λ1)Eλ+ j (λ2−λ1)Eλ. (2.5)

Proof We carry out the proof for k ≥ j ≥ 0. For any ω ∈ �0, there is a con-
nected chain of vertices (xi : 0 ≤ i ≤ k) ⊆ [ω,ω0] with ρ(xi ) = λ + k(λ2 − λ1).
Suppose, conversely, that (xi : 0 ≤ i ≤ k) is a connected chain of vertices and that
ρ(xi ) = λ + k(λ2 − λ1). Construct a subcomplex B ⊂ X by putting together
([xi , ω0] : 0 ≤ i ≤ k), the edges between the xi ’s and the triangles pointing downward
from those edges toω0. Referring to Fig. 3, the extra triangle pointing downward from
the first edge has vertices x0, x1, and y0. Note that [x0, ω0] ∩ [x1, ω0] = [y0, ω0].
Proceeding one step at a time, one may verify that the restriction of ρ to B is an
injection and that B and ρ(B) are isomorphic complexes.

By basic properties of affine buildings, one knows it is possible to extend B to an
apartment. Any such apartment will retract bijectively to �, and will be of the form
form [ω,ω0] where ω is the equivalence class represented by the upward pointing
sectors of the apartment. Moreover, using the definition of π one may calculate that

π({ω ∈ �0 : B ⊆ [ω,ω0]}) = q−2〈λ,α0〉−k .
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1132 T. Steger, B. Trojan

Fig. 3 The complexB

The important point is that the measure of the set depends only on the level of λ and
the length of the chain.

Basic properties of affine buildings imply that any apartment containing x0 and xk
contains the entire chain. Hence,

π(Ex0 ∩ Exk ) = π({ω ∈ �0 : B ⊆ [ω,ω0]}) = q−2〈λ,α0〉−k .

Fix x0. Proceeding one step at a time, one sees there are qk connected chains
(xi : 0 ≤ i ≤ k) with ρ(xi ) = λ + k(λ2 − λ1). Consequently

Eλ+k(λ2−λ1)1x0 = q−k
∑

(xi :0≤i≤k)

1xk .

Likewise

Eλ+k(λ2−λ1)Eλ+ j (λ2−λ1)1x0 = q− jEλ+k(λ2−λ1)

∑
(xi :0≤i≤ j)

1x j

= q− j q−(k− j)
∑

(xi :0≤i≤ j)

∑
(xi : j≤i≤k)

1xk ,

which is the same thing. ��
Consider EλEμ. If λ � μ then the product is equal to Eλ; similarly if μ � λ. If λ

and μ are incomparable, the following lemma allows us to reduce to the case where λ

and μ are on the same level.

Lemma 2.4 Suppose λ ∈ P and

λ′ = λ − iλ1, μ = λ′ + k(λ2 − λ1), μ̃ = μ + (λ2 − λ1)

for i, k ∈ N. Then for any locally integrable function f on �0

E[ f |Fλ|Fμ] = E[ f |Fλ′ |Fμ], (2.6)

E[ f |Fμ|Fλ] = E[ f |Fμ|Fλ′ ], (2.7)

E[ f |Fλ|Fμ ∨ Fμ̃] = E[ f |Fλ′ |Fμ] (2.8)

E[ f |Fμ ∨ Fμ̃|Fλ] = E[ f |Fμ|Fλ′ ] (2.9)

and likewise if we exchange λ1 and λ2.
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Littlewood–Paley Theory for Triangle Buildings 1133

λ ν′ μ′

λ′ μν μ̃

Fig. 4 Notation used in Lemma 2.4

Proof We first prove (2.6) for i = 1 and k = 1. Because E[ f |Fλ′ ] = E[ f |Fλ|Fλ′ ],
it is sufficient to consider f = 1Ep1

where ρ(p1) = λ. Use Fig. 2 to fix the notation,
and note that if p1 retracts to λ, then x retracts to λ′ and p to μ. One calculates:

E[1Ep1
|Fλ|Fμ] = E[1Ep1

|Fμ] = q−3
∑
p∼l0
p �=p0

1Ep = q−2E[1Ex |Fμ]

= E[1Ep1
|Fλ′ |Fμ].

Next consider the case i = 1, k > 1. Setμ′ = μ+λ1, ν = μ+λ1−λ2 and ν′ = ν+λ1
(see Fig. 4). Since Fμ is a subfield of Fμ′ , we have

E[ f |Fλ|Fμ] = E[ f |Fλ|Fμ′ |Fμ].

Thus, applying Lemma 2.3, we obtain

E[ f |Fλ|Fμ] = E[ f |Fλ|Fμ′ |Fμ] = E[ f |Fλ|Fν′ |Fμ′ |Fμ]
= E[ f |Fλ|Fν′ |Fμ] = E[ f |Fλ|Fν |Fμ]

where in the last step we have used the case k = 1. Now apply induction on k and
Lemma 2.3 again to get

E[ f |Fλ|Fν |Fμ] = E[ f |Fλ′ |Fν |Fμ] = E[ f |Fλ′ |Fμ].

To extend to the case i > 1, use induction on i and observe that

E[ f |Fλ|Fμ] = E[ f |Fλ|Fμ′ |Fμ] = E[ f |Fλ′+λ1 |Fμ′ |Fμ]
= E[ f |Fλ′+λ1 |Fμ] = E[ f |Fλ′ |Fμ].

The proof of (2.8) is analogous, starting with the case i = 1, k = 0. Identity that (2.6)
can be read as EμEλ = EμEλ′ . The expectation operators are orthogonal projections
with respect to the usual inner product, and taking adjoints gives EλEμ = Eλ′Eμ

which is (2.7). To be more precise, one takes the inner product of either side of (2.7)
with some nice test function, applies self-adjointness, and reduces to (2.6). Likewise,
(2.9) follows from (2.8). ��
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1134 T. Steger, B. Trojan

Lemma 2.5 Suppose λ = iλ1 + jλ2, μ = λ + k(λ1 − λ2). Then for any locally
integrable function f on �0

E[ f |Fμ|Fλ] =
{

E[ f |Fμ|Fi,∞] if k ≥ 0,

E[ f |Fμ|F∞, j ] if k ≤ 0.

Proof Suppose k ≥ 0. By Lemma 2.4 for any j ′ ≥ 0, we have

EμEλ+ j ′λ2 = EμEλ.

So if g is Fλ+ j ′λ2 -measurable and compactly supported, then

〈g, Ei,∞Eμ f 〉 = 〈EμEi,∞g, f 〉 = 〈Eμg, f 〉
= 〈EμEλ+ j ′λ2g, f 〉
= 〈EμEλg, f 〉 = 〈g, EλEμ f 〉.

The test functions g which we use are sufficient to distinguish between one
Fi,∞-measurable function and another. Since Ei,∞Eμ f and EλEμ f are both Fi,∞-
measurable, the proof is done.

3 Littlewood-Paley Theory

3.1 Maximal Functions

The natural maximal function M∗ for a locally integrable function f on �0 is defined
by

M∗ f = max
λ∈P

| fλ|.

In addition, we define two auxiliary single-parameter maximal functions

L∗ f = max
i∈Z

E[ | f | |Fi,∞], R∗ f = max
j∈Z

E[ | f | |F∞, j ].

Lemma 3.1 Let λ ∈ P and k ∈ N. For any non-negative locally integrable function f
on �0

(
Eλ+kλ2Eλ+kλ1

)2
f ≥ (1 − q−1)Eλ f.

Proof We may assume λ = 0. Let us define (see Fig. 5)

μ = kλ1, μ′ = λ1 + (k − 1)λ2, μ′′ = kλ2,

ν = (k − 1)λ1, ν′ = λ1 + (k − 2)λ2, ν′′ = (k − 1)λ2.
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μ

ν

μ′′

ν′′

μ′

ν′

Fig. 5 Notation used in Lemma 3.1

We show

Eμ′′EμEμ′′Eμ − q−1Eμ′′EμEμ′Eμ = Eν′′EνEν′′Eν − q−1Eν′′EνEν′Eν. (3.1)

Let g = E[ f |Fμ]. By two applications of Lemma 2.3, we can write

E[g|Fμ′′ |Fμ] = E[g|Fμ′ |Fμ′′ |Fμ′ |Fμ]

and by Lemma 2.2

E[g|Fμ′ |Fμ′′ |Fμ′ ] = q−1E[g|Fμ′ ] + E[g|Fν′′ ]
−q−1E[g|Fμ′ |Fν′ ∨ Fν′′ ].

Hence,

E[g|Fμ′′ |Fμ|Fμ′′ ] − q−1E[g|Fμ′ |Fμ|Fμ′′ ]
= E[g|Fν′′ |Fμ|Fμ′′ ] − q−1E[g|Fμ′ |Fν′ ∨ Fν′′ |Fμ|Fμ′′ ].

By repeated application of Lemma 2.4, we have

E[g|Fν′′ |Fμ|Fμ′′ ] = E[ f |Fμ|Fν′′ |Fμ|Fμ′′ ] = E[ f |Fν |Fν′′ |Fν |Fν′′ ]

and

E[g|Fμ′ |Fν′ ∨ Fν′′ |Fμ|Fμ′′ ] = E[ f |Fμ|Fμ′ |Fν′ ∨ Fν′′ |Fμ|Fμ′′ ]
= E[ f |Fν |Fν′ |Fν |Fν′′ ]

which finishes the proof of (3.1). By iteration of (3.1), we obtain

Eμ′′EμEμ′′Eμ − q−1Eμ′′EμEμ′Eμ

= Eλ2Eλ1Eλ2Eλ1 − q−1Eλ2Eλ1Eλ1Eλ1
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1136 T. Steger, B. Trojan

which together with Lemma 2.2 implies

Eμ′′EμEμ′′Eμ = q−1Eμ′′EμEμ′Eμ + (1 − q−1)E0.

��
Theorem 1 For each p ∈ (1,∞] there is Cp > 0 such that

∥∥L∗ f
∥∥
L p ≤ Cp‖ f ‖L p ,

∥∥R∗ f
∥∥
L p ≤ Cp‖ f ‖L p , (3.2)∥∥M∗ f

∥∥
L p ≤ Cp‖ f ‖L p . (3.3)

Proof Inequalities (3.2) are two instances of Doob’s well-known maximal inequality
for single parameter martingales (see e.g. [15]). To show (3.3), consider a non-negative
f ∈ L p(�0,Fμ). Fix λ ∈ P . Since f ∈ L p(�0,Fμ′) for anyμ′ � μwemay assume
μ � λ. Let

ν = λ + 〈μ − λ, α0〉λ1, ν′′ = λ + 〈μ − λ, α0〉λ2.

By Lemma 3.1,

(1 − q−1)Eλ f ≤ Eν′′EνEν′′Eν f.

If λ = iλ1 + jλ2, then repeated application of Lemma 2.5 gives

Eν′′EνEν′′Eν f = Eν′′EνEν′′EνEμ f = E[ f |F∞, j |Fi,∞|F∞, j |Fi,∞]
≤ L∗R∗L∗R∗ f.

By taking the supremum over λ ∈ P , we get

(1 − q−1)M∗ f ≤ L∗R∗L∗R∗ f.

Hence, by (3.2), we obtain (3.3) for f ∈ L p(�0,Fμ). Finally, a standard Fatou’s
lemma argument establishes the theorem for arbitrary f ∈ L p(�0).

3.2 Square Function

Let f be a locally integrable function on �0. Given i, j ∈ Z, we define projections

Li f = E[ f |Fi,∞] − E[ f |Fi−1,∞], R j f = E[ f |F∞, j ] − E[ f |F∞, j−1].

Note that Li (respectively R j ) is the martingale difference operator for the filtration(
Fi,∞ : i ∈ Z

)
(respectively

(
F∞, j : j ∈ Z

)
). For λ = iλ1 + jλ2, we set

Dλ f = Li R j f, D�
λ f = R j Li f.
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The following development is inspired by that of Stein and Street in [17]. We start by
defining the corresponding square function.

S f =
( ∑

λ∈P

|Dλ f |2
)1/2

.

We will also need its dual counterpart

S� f =
( ∑

λ∈P

|D�
λ f |2

)1/2
.

Theorem 2 For every p ∈ (1,∞) there is Cp > 1 such that

C−1
p ‖ f ‖L p ≤ ‖S f ‖L p ≤ Cp‖ f ‖L p , C−1

p ‖ f ‖L p ≤ ∥∥S� f
∥∥
L p ≤ Cp‖ f ‖L p .

Moreover, on L2(�0) square functions S and S� preserve the norm.

Proof Since

SL( f ) =
( ∑

i∈Z

|Li f |2
)1/2

and SR( f ) =
( ∑

j∈Z

|R j f |2
)1/2

preserve the norm on L2(�0), we have

∫ ∑
i, j∈Z

|Li R j f |2 dπ =
∑
j∈Z

∫ ∑
i∈Z

|Li R j f |2 dπ

=
∑
j∈Z

∫
|R j f |2dπ =

∫
| f |2 dπ.

(3.4)

Hence, S preserves the norm.
For p �= 2, we use the two-parameter Khintchine inequality (see [12]) and bounds

on single parameter martingale transforms (see [2,15,18]). Let (εi : i ∈ Z) and (ε′
j :

j ∈ Z) be sequences of real numbers, with absolute values bounded above by 1. For
N ∈ N, we consider the operator

TN =
∑

|i |,| j |≤N

εiε
′
j Diλ1+ jλ2

which may be written as a composition LNRN where

LN =
∑

|i |≤N

εi Li , RN =
∑

| j |≤N

ε′
j R j .
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1138 T. Steger, B. Trojan

Since by Burkholder’s inequality (see [2,15]) the operators RN and LN are bounded
on L p(�0) with bounds uniform in N , we have

‖TN f ‖L p � ‖ f ‖L p .

Setting rk to be the Rademacher function, by Khintchine’s inequality, we get

∫ ( ∑
|i |,| j |≤N

|Diλ1+ jλ2 f |2
)p/2

dπ

�
∫ ∫ 1

0

∫ 1

0

∣∣∣
∑

|i |,| j |≤N

ri (s)r j (t)Diλ1+ jλ2 f
∣∣∣
p
ds dt dπ,

which is bounded by ‖ f ‖p
L p . Finally, let N approach infinity and use the monotone

convergence theorem to get

‖S f ‖L p � ‖ f ‖L p .

For the opposite inequality, we take f ∈ L p(�0)∩L2(�0) and g ∈ L p′
(�0)∩L2(�0)

where 1/p′ +1/p = 1. By polarization of (3.4) and the Cauchy–Schwarz and Hölder
inequalities, we obtain

〈 f, g〉 =
∫ ∑

λ∈P

Dλ f Dλg dπ ≤ 〈S f,Sg〉 ≤ ‖S f ‖L p‖Sg‖L p′ � ‖S f ‖L p‖g‖L p′ .

��
Given a set {vλ : λ ∈ P} of vectors in a Banach space, we say that

∑
λ∈P vλ

converges unconditionally if, whenever we choose a bijection φ : N → P ,

∞∑
n=1

vφ(n) exists, and is independent of φ.

Equivalently, we may ask that for any increasing, exhaustive sequence (FN : N ∈ N)

of finite subsets of P , the limit

lim
N→∞

∑
λ∈FN

vλ exists.

The following proposition provides a Calderón reproducing formula.

Proposition 3.2 For each p ∈ (1,∞) and any f ∈ L p(�0),

f =
∑
λ∈P

DλD
�
λ f

where the sum converges in L p(�0) unconditionally.
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Proof Fix an increasing and exhaustive sequence (FN : N ∈ N) of finite subsets of
P . Let

IN ( f ) =
∑

λ∈FN
DλD

�
λ f.

For f ∈ L p(�0) and g ∈ L p′
(�0), where 1/p + 1/p′ = 1, we have

|〈IN ( f ) − IM ( f ), g〉| =
∣∣∣

∑
λ∈FN \FM

〈D�
λ f, D

�
λg〉

∣∣∣

≤
∥∥∥
( ∑

λ∈FN \FM
(D�

λ f )
2
)1/2∥∥∥

L p

∥∥S�(g)
∥∥
L p′ .

(3.5)

In particular,

|〈IN ( f ), g〉| ≤ ∥∥S�( f )
∥∥
L p

∥∥S�(g)
∥∥
L p′ ,

whence ‖IN ( f )‖L p � ‖ f ‖L p uniformly in N . Consequently, it is enough to prove
convergence for f ∈ L p(�0) ∩ L2(�0). From (3.5) and the bounded convergence
theorem, it follows that for any positive ε, ‖IN ( f ) − IM ( f )‖L p ≤ ε whenever M and
N are large enough. This shows that the limit exists. Finally, for g ∈ L p′

(�0)∩L2(�0),
the polarized version of (3.4) gives

lim
N→∞ 〈IN ( f ), g〉 = lim

N→∞
∑

λ∈FN
〈D�

λ f, D
�
λg〉 = 〈 f, g〉.

��
Theorem 3 Let (Tλ : λ ∈ P) be a family of operators such that for some δ > 0 and
p0 ∈ (1, 2)

‖Tλ‖L1→L1 � 1, (3.6)∥∥TμT
�
λ

∥∥
L2→L2 � q−δ|μ−λ| and

∥∥T �
μTλ

∥∥
L2→L2 � q−δ|μ−λ|, (3.7)

∥∥DλTμDλ′
∥∥
L2→L2 � q−δ|λ−μ|q−δ|λ′−μ|, (3.8)∥∥sup

λ∈P
|Tλ fλ|

∥∥
L p0 �

∥∥ sup
λ∈P

| fλ|
∥∥
L p0 . (3.9)

Then for any p ∈ (p0, 2] the sum ∑
λ∈P Tλ converges unconditionally in the strong

operator topology for operators on L p(�0).

Proof First, recall that the Cotlar–Stein Lemma (see e.g. [16]) states that (3.7) implies
the unconditional convergence of

∑
λ∈P Tλ in the strong operator topology on L2(�0).

Let (FN : N ∈ N) be an arbitrary increasing and exhaustive sequence of finite subsets
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1140 T. Steger, B. Trojan

of P . For N > 0, we set

VN =
∑

μ∈FN
Tμ, IN =

∑
λ∈FN

DλD
�
λ.

By (3.6), (3.7) and interpolation, each Tμ is bounded on L p for p ∈ [1, 2] and the
same holds for the finite sum VN . We consider f ∈ L p(�0) for p ∈ (p0, 2). By
Proposition 3.2 and Theorem 2, we∥∥VM IN ( f )

∥∥
L p

�
∥∥S(

VM IN ( f )
)∥∥

L p =
∥∥∥
( ∑

μ∈FM

∑

λ′∈FN
DλTμDλ′ D�

λ′ f : λ ∈ P
)∥∥∥

L p(�2)

=
∥∥∥
( ∑

γ,γ ′∈P

1FN (λ+γ +γ ′)1FM (λ+γ )DλTλ+γ Dλ+γ+γ ′ D�
λ+γ+γ ′ f : λ ∈ P

)∥∥∥
L p(�2)

≤
∑

γ,γ ′∈P

∥∥ (
1FN (λ+γ +γ ′)1FM (λ+γ )DλTλ+γ Dλ+γ+γ ′ D�

λ+γ+γ ′ f : λ∈ P
) ∥∥

L p(�2)
.

Finally, by change of variables, we get

∥∥VM IN ( f )
∥∥
L p �

∑
γ,γ ′∈P

∥∥ (
Dλ+γ+γ ′Tλ+γ DλD

�
λ f : λ ∈ FN

) ∥∥
L p(�2)

.

Assuming there is δp > 0 such that

∥∥(
Dλ+γ+γ ′Tλ+γ Dλ fλ : λ ∈ P

)∥∥
L p(�2)

� q−δp(|γ |+|γ ′|)‖( fλ : λ ∈ P)‖L p(�2)

(3.10)

we can estimate

∥∥VM IN ( f )
∥∥
L p �

∑
γ,γ ′∈P

q−δp(|γ |+|γ ′|)∥∥(
D�

λ f : λ ∈ FN
)∥∥

L p(�2)

�
∥∥∥
( ∑

λ∈FN
(D�

λ f )
2
)1/2∥∥∥

L p
.

(3.11)

Theorem 2, Proposition 3.2 and (3.11) imply that the VM are uniformly bounded
on L p.

For the proof of (3.10), we consider an operator T defined for f ∈ L p
(
π, �2(P)

)
by

T �f = (
Dλ+γ+γ ′Tλ+γ Dλ fλ : λ ∈ P

)
.

Since ‖Dλ‖L1→L1 � 1 and
∥∥Tμ

∥∥
L1→L1 � 1, we have

∥∥T �f ∥∥
L1(�1)

�
∥∥ �f ∥∥

L1(�1)
.
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Also, by (3.8), we can estimate

∥∥T �f ∥∥2
L2(�2)

=
∑
λ∈P

∥∥Dλ+γ+γ ′Tλ+γ Dλ fλ
∥∥2
L2 � q−δ(|γ |+|γ ′|) ∑

λ∈P

‖ fλ‖2L2 .

Therefore, using interpolation between L1
(
π, �1(P)

)
and L2

(
π, �2(P)

)
we obtain

that there is δ′ > 0 such that

∥∥T �f ∥∥
L p0 (�p0 )

� q−δ′(|γ |+|γ ′|)∥∥ �f ∥∥
L p0 (�p0 )

.

Because |Dλg| � L∗R∗(|g|), and because Theorem1 says that L∗ and R∗ are bounded
on L p0 , we know that (Dλ : λ ∈ P) is bounded on L p0(π, �∞(P)). Of course the same
holds for

(
Dλ+γ+γ ′ : λ ∈ P

)
. Hence, by (3.9), we get

∥∥T �f ∥∥
L p0 (�∞)

�
∥∥ �f ∥∥

L p0 (�∞)
.

Next, interpolating between L p0 (π, �p0(P)) and L p0 (π, �∞(P)) gives a δ′′ > 0 such
that

∥∥T �f ∥∥
L p0 (�2)

� q−δ′′(|γ |+|γ ′|)∥∥ �f ∥∥
L p0 (�2)

.

Finally, interpolating between L p0
(
π, �2(P)

)
and L2

(
π, �2(P)

)
, we obtain (3.10).

To complete the proof, we are going to show that (VN f : N ∈ N) is a Cauchy
sequence in L p(�0). Let us consider g ∈ L p(�0) ∩ L2(�0). Setting

a = 2(p − p0)

4 − p − p0
, and p̃ = p + p0

2

and using the log-convexity of the Lq -norms, we get

∥∥VMg − VN g
∥∥p
L p ≤ ∥∥VMg − VN g

∥∥a
L2

∥∥VMg − VN g
∥∥p−a
L p̃ .

Since (VN g : N ∈ N) converges in L2(�0) and is uniformly bounded on L p̃(�0) it is
a Cauchy sequence in L p(�0). For an arbitrary f ∈ L p(�0) use the density of g’s as
above. We have

‖VM f − VN f ‖L p � ‖ f − g‖L p + ‖VN g − VMg‖L p .

Thus, (VN f : N ∈ N) also converges, and this finishes the proof of the theorem. ��
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4 Double Differences

The martingale transforms are expressed in terms of double differences defined for a
martingale f = ( fλ : λ ∈ P) as

dλ f = fλ − fλ−λ1 − fλ−λ2 + fλ−λ1−λ2 .

4.1 Martingale Transforms

The following proposition is our key tool.

Proposition 4.1 Let f ∈ L2(�0) and λ ∈ P. If fλ− jλ1 = 0 for j ∈ N then for each
k ≥ j

∥∥E[ fλ|Fλ−k(λ1−λ2)]
∥∥
L2 ≤ 2q−(k− j+1)/2‖ fλ‖L2 .

Analogously, for λ1 and λ2 exchanged.

Proof Suppose j = 1. We are going to show that if fλ−λ1 = 0 then for all k ≥ 1

∥∥E[ fλ|Fλ−k(λ1−λ2)]
∥∥
L2 ≤ q−k/2‖ fλ‖L2 . (4.1)

Indeed, if k = 1 then by (2.1) of Lemma 2.2

∥∥E[ fλ|Fλ−λ1+λ2 ]
∥∥2
L2 = 〈E[ fλ|Fλ−λ1+λ2 |Fλ], fλ〉

= q−1‖ fλ‖2L2 − q−1
∥∥E[ fλ|Fλ−λ1 ∨ Fλ−λ2 ]

∥∥2
L2 .

If k > 1, we use Lemma 2.3 to write

E[ fλ|Fλ−k(λ1−λ2)] = E[ fλ|Fλ−(λ1−λ2)|Fλ−k(λ1−λ2)].

Since, by Lemma 2.4,

E[ fλ|Fλ−(λ1−λ2)|Fλ−λ1−(λ1−λ2)] = E[ fλ|Fλ−λ1 |Fλ−λ1−(λ1−λ2)] = 0

we can use induction to obtain

∥∥E[ fλ|Fλ−(λ1−λ2)|Fλ−k(λ1−λ2)]
∥∥
L2 ≤ q−(k−1)/2

∥∥E[ fλ|Fλ−(λ1−λ2)]
∥∥
L2

≤ q−k/2‖ fλ‖L2 .

Let us consider j > 1. For each i = 0, 1, . . . , j − 1, we set

gi = fλ−iλ1 − fλ−(i+1)λ1 .
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By Lemma 2.4 and (4.1), we have

∥∥E[gi |Fλ−k(λ1−λ2)]
∥∥
L2 = ∥∥E[gi |Fλ−k(λ1−λ2)−iλ2 ]

∥∥
L2 ≤ q−(k−i)/2‖gi‖L2

≤ q−(k−i)/2‖ fλ‖L2 .

Hence,

∥∥E[ fλ|Fλ−k(λ1−λ2)]
∥∥
L2 ≤

j−1∑
i=0

∥∥E[gi |Fn−k(λ1−λ2)]
∥∥
L2

≤
j−1∑
i=0

q−(k−i)/2‖ fλ‖L2

which finishes the proof since

j−1∑
i=0

qi/2 ≤ 2q( j−1)/2.

��
We have the following

Proposition 4.2 For any λ, λ′, μ ∈ P and m ≥ 1

∥∥Dλd
m
μ Dλ′

∥∥
L2→L2 � q−|μ−λ|/4q−|μ−λ′|/4,

∥∥dmλ dmμ
∥∥
L2→L2 � q−|λ−μ|/2.

Proof We observe that for f ∈ L2(�0), dμ f ∈ L2(π,Fμ) and

E[dμ f |Fν] = 0 (4.2)

whenever 〈ν, α0〉 ≤ 〈μ, α0〉 − 2. For the proof it is enough to analyze the case ν =
μ − 2λ2. By Lemma 2.4, we can write

E[ fμ−λ1 |Fμ−2λ2 ] = E[ fμ−λ1 |Fμ−λ1−λ2 |Fμ−2λ2 ] = E[ fμ−λ1−λ2 |Fμ−2λ2 ].

Suppose λ = iλ1 + jλ2. Let us consider R jdμ. If j ≥ 〈μ, α2〉 + 1 then R jdμ f = 0.
For j ≤ 〈μ, α2〉 − 2, in view of (4.2) we can use Proposition 4.1 to estimate

∥∥R jdμ f
∥∥
L2 � q−〈μ−λ,α2〉/2∥∥dμ f

∥∥
L2 . (4.3)

Next, if 〈λ, α0〉 ≥ 〈μ, α0〉 + 2 then Dλdμ f = 0, because dμ f is Fμ-measurable.
For 〈λ, α0〉 ≤ 〈μ, α0〉 − 4 and 〈λ, α2〉 ≤ 〈μ, α2〉, by Lemma 2.5, we can write
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Dλdμ f = Li g where

g = E[R jdμ f |Fν]

and ν = (〈μ, α0〉 − j)λ1 + jλ2. By Lemma 2.5, we have

R jdμ f = E[dμ f |Fν] − E[dμ f |Fν+λ1−λ2 ].

We notice that by Lemma 2.4 and (4.2)

E[dμ f |Fν |Fν−2λ1 ] = E[dμ f |Fμ−2λ2 |Fν−2λ1] = 0.

Similarly, one can show

E[dμ f |Fν+λ1−λ2 |Fν−2λ1 ] = 0.

Therefore, E[g|Fν−2λ1] = 0. Now, by Proposition 4.1, we obtain

‖Li g‖L2 � q−〈ν−λ,α0〉/2∥∥R jdμ f
∥∥
L2 . (4.4)

Combining (4.4) with (4.3), we get

∥∥Dλdμ f
∥∥
L2 � q−〈μ−λ,α0〉/2q−〈μ−λ,α2〉/2∥∥dμ f

∥∥
L2 (4.5)

since 〈ν, α0〉 = 〈μ, α0〉. By analogous reasoning one can show the corresponding
norm estimates for D�

λ′dμ. Hence, taking adjoint

∥∥dμDλ′ f
∥∥
L2 � q−〈μ−λ′,α0〉/2q−〈μ−λ′,α2〉/2‖ f ‖L2 . (4.6)

Finally, (4.5) and (4.6) allow us to conclude the proof of the first inequality.
For the second, we may assume 0 ≤ 〈μ − λ, α0〉 ≤ 1. Suppose 〈μ − λ, α0〉 = 0

and 〈μ − λ, α2〉 ≥ 2. Since dμ f ∈ L2(π,Fμ), by (4.2) and Proposition 4.1

∥∥E[dμ f |Fλ]
∥∥
L2 � q−〈μ−λ,α2〉/2∥∥dμ f

∥∥
L2 .

Similarly, we deal with the case 〈μ − λ, α0〉 = 1. We can assume 〈μ − λ, α2〉 ≥ 1.
By Lemma 2.4, we have

E[dμ f |Fλ] = E[dμ f |Fμ−λ2 |Fλ] = E[ fλ−λ1−λ2 − fλ−λ1 |Fλ].

Hence, by Proposition 4.1,

∥∥E[dμ f |Fλ]
∥∥
L2 � q−〈μ−λ,α2〉/2‖ f ‖L2 .

��
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Let (aλ : λ ∈ P) be an uniformly bounded predictable family of functions, i.e. each
function aλ is measurable with respect to Fλ−λ1−λ2 and

sup
ω∈�0

|aλ(ω)| ≤ M.

Predictability is the condition needed to ensure that dλ

(
aλ f

) = aλdλ f . ByTheorems 1
and 3, Proposition 4.2 and duality when p > 2, we get

Theorem 4 For each p ∈ (1,∞) and m ∈ N the series

∑
λ∈P

aλd
m
λ

converges unconditionally in the strong operator topology for the operators on
L p(�0), and defines the operator with norm bounded by a constant multiply of

sup
λ∈P

sup
ω∈�0

|aλ(ω)|.

4.2 Martingale Square Function

For a martingale f = ( fλ : λ ∈ P) there is the natural square function defined by

S f =
( ∑

λ∈P

(dλ f )
2
)1/2

.

Although S does not preserve L2 norm, we have

Theorem 5 For every p ∈ (1,∞) there is Cp > 0 such that

C−1
p ‖ f ‖L p ≤ ‖S f ‖L p ≤ Cp‖ f ‖L p .

Proof We start from proving the identity

d4λ − d3λ − q−1d2λ + q−1dλ = 0. (4.7)

Let us notice that

dλEλ = dλ, dλEλ−λ1−λ2 = 0,

dλEλ−λ2 = −Eλ−λ1Eλ−λ2 +Eλ−λ1−λ2 , dλEλ−λ1 = −Eλ−λ2Eλ−λ1+Eλ−λ1−λ2 .
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Therefore, consecutively we have

d2λ = dλ + Eλ−λ1Eλ−λ2 + Eλ−λ1Eλ−λ1 − 2Eλ−λ1−λ2 , (4.8)

d3λ = d2λ − Eλ−λ1Eλ−λ2Eλ−λ1 − Eλ−λ2Eλ−λ1Eλ−λ2 + 2Eλ−λ1−λ2 ,

d4λ = d3λ + (Eλ−λ1Eλ−λ2)
2 + (Eλ−λ2Eλ−λ1)

2 − 2Eλ−λ1−λ2 .

Hence, by Lemma 2.2,

d4λ = d3λ + q−1Eλ−λ1Eλ−λ2 + q−1Eλ−λ2Eλ−λ1 − 2q−1Eλ−λ1−λ2

which together with (4.8) implies (4.7).
Next, we consider an operator T defined for a function f ∈ L p(�0) by

T f = (dλ f : λ ∈ P) .

We also need an operator T̃ acting on g ∈ L p′
(�0) as

T̃ g =
(
−qd3λg + qd2λg + dλg : λ ∈ P

)
.

We observe that by two-parameter Khinchine’s inequality and Theorem 4 we have

∥∥T f
∥∥
L p(�2)

� ‖ f ‖L p , and
∥∥T̃ g

∥∥
L p′ (�2) � ‖g‖L p′ .

The dual operator T � : L p′(
π, �2(Z2)

) → L p′
(�0) is given by

T � �g =
∑
λ∈P

dλgλ.

Since T̃ g ∈ L p′(
π, �2(Z2)

)
, by (4.7) and Theorem 4,

T �T̃ g =
∑
λ∈P

dλg = g

Therefore, by Cauchy–Schwarz and Hölder inequalities

〈 f, g〉 = 〈 f, T �T̃ g〉 ≤ ∥∥T f
∥∥
L p(�2)

∥∥T̃ g
∥∥
L p′ (�2) �

∥∥T f
∥∥
L p(�2)

‖g‖L p′

and since ‖T f ‖L p(�2) = ‖S f ‖L p the proof is finished.

Finally, the method of the proof of Theorem 3, together with Theorems 4 and 5
shows the following
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Theorem 6 Let (Tλ : λ ∈ P) be a family of operators such that for some δ > 0 and
p0 ∈ (1, 2)

‖Tλ‖L1→L1 � 1,∥∥TμT
�
λ

∥∥
L2→L2 � q−δ|μ−λ| and

∥∥T �
μTλ

∥∥
L2→L2 � q−δ|μ−λ|,

∥∥dλTμdλ′
∥∥
L2→L2 � q−δ|λ−μ|q−δ|λ′−μ|,∥∥sup

λ∈P
|Tλ fλ|

∥∥
L p0 �

∥∥ sup
λ

| fλ|
∥∥
L p0 .

Then for any p ∈ (p0, 2] the sum ∑
λ∈P Tλ converges unconditionally in the strong

operator topology for the operators on L p(�0).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: About �0 and Heisenberg Group

In some cases �0 can be identified with a Heisenberg group over a nonarchimedean
local field. Let us recall, that F is a nonarchimedean local field if it is a topological
field1 that is locally compact, second countable, non-discrete and totally disconnected.
Since F together with the additive structure is a locally compact topological group it
has a Haar measure μ that is unique up to multiplicative constant. Observe that for
each x ∈ F , the measure μx (B) = μ(x B) is also a Haar measure. We set

|x | = μx (B)

μ(B)
,

where B is any measurable set with finite and positive measure. By O = {x ∈ F :
|x | ≤ 1}, we denote the ring of integers in F . We fix π ∈ p − p2, where

p = {
x ∈ F : |x | < 1

}
.

We are going to sketch the construction of a building associated to GL(3, F). For more
details, we refer to [14]. A lattice is a subset L ⊂ F3 of the form

L = Ov1 + Ov2 + Ov3,

where {v1, v2, v3} is a basis of F3. We say that two lattices L1 and L2 are equivalent
if and only if L1 = aL2 for some nonzero a ∈ F . ThenX , the building of GL(3, F),

1 A topological field is an algebraic field with a topologymaking addition, multiplication andmultiplicative
inverse a continuous mappings.
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is the set of equivalence classes of lattices in F3. For x, y ∈ X there are a basis
{v1, v2, v3} of F3 and integers j1 ≤ j2 ≤ j3 such that (see [14, Proposition 3.1])

x = Ov1 + Ov2 + Ov3, and y = π j1Ov1 + π j2Ov2 + π j3Ov3.

We say that x and y are joined by an edge if and only if 0 = j1 ≤ j2 ≤ j3 = 1. The
subset

A = {
π j1Ov1 + π j2Ov2 + π j3Ov3 : j1, j2, j3 ∈ Z

}

is called an apartment. A sector in A is a subset of the form

S = {
x + π j1Ov1 + π j2Ov2 + π j3Ov3 : jσ(1) ≤ jσ(2) ≤ jσ(3), j1, j2, j3 ∈ Z

}
,

where σ is a permutation of {1, 2, 3} and x ∈ A . Thus, a subsector of S is

{
x + πk1+ j1Ov1 + πk2+ j2Ov2 + πk3+ j3Ov3 : jσ(1) ≤ jσ(2) ≤ jσ(3), j1, j2, j3 ∈ Z},

for some 0 ≤ kσ(1) ≤ kσ(2) ≤ kσ(3). Finally, two sectors

S = {
x + π j1Ov1 + π j2Ov2 + π j3Ov3 : jσ(1) ≤ jσ(2) ≤ jσ(3), j1, j2, j3 ∈ Z

}
,

and

S ′ = {
x ′ + π j1Ov1 + π j2Ov2 + π j3Ov3 : jσ ′(1) ≤ jσ ′(2) ≤ jσ ′(3), j1, j2, j3 ∈ Z

}
,

are opposite if σ ′ ◦ σ−1 = (3 2 1).
A sector inX is a sector in one of its apartments. Two sectors inX are equivalent

if and only if its intersection contains a sector. By�, we denote the equivalence classes
of sectors inX . Let ω0 and ω′

0 be the equivalence class of

S0 = {
π j1Oe1 + π j2Oe2 + π j3Oe3 : j1 ≤ j2 ≤ j3, j1, j2, j3 ∈ Z

}
,

and

S ′
0 = {

π j1Oe1 + π j2Oe2 + π j3Oe3 : j1 ≥ j2 ≥ j3, j1, j2, j3 ∈ Z
}
,

respectively. Two sectors S and S ′ are opposite in X if there are subsectors of S
and S ′ opposite in a common apartment. By �0, we denote the equivalence classes
of sectors opposite toS0.

Suppose that ω′ ∈ �0. Let {v1, v2, v3} be a basis of F3, and k1 ≤ k2 ≤ k3 and
k′
1 ≥ k′

2 ≥ k′
3 be integers such that

{
π j1+k1Ov1 + π j2+k2Ov2 + π j3+k3Ov3 : j1 ≤ j2 ≤ j3, j1, j2, j3 ∈ Z

}
, (4.9)

123



Littlewood–Paley Theory for Triangle Buildings 1149

and

{
π j1+k′

1Ov1 + π j2+k′
2Ov2 + π j3+k′

3Ov3 : j1 ≥ j2 ≥ j3, j1, j2, j3 ∈ Z
}
, (4.10)

belong to ω0 and ω′, respectively. Since the sector (4.9) belongs to ω0, we have

v1 = b11e1, v2 = b21e1 + b22e2, v3 = b31e1 + b32e2 + b33e3,

for some bi j ∈ F such that b11, b22, b33 �= 0. Hence, the matrix

g =
⎛
⎝
b11 b21 b31
0 b22 b32
0 0 b33

⎞
⎠ ,

satisfies ge j = v j . In particular, gω′
0 = ω′. Therefore, the group of upper triangular

matrices acts transitively on �0. Observe also that the stabilizer of ω′
0 in GL(3, F) is

the group of lower triangular matrices. Thus, the group

⎧⎨
⎩

⎛
⎝
1 x z
0 1 y
0 0 1

⎞
⎠ : x, y, z ∈ F

⎫⎬
⎭

acts simply transitively on �0.
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