

data reports

Z = 4

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.20 \text{ mm}$

 $\mu = 0.27 \text{ mm}^{-1}$

T = 293 K

CrossMark

OPEN access

Crystal structure of (2E)-N-methyl-2-[(4oxo-4H-chromen-3-yl)methylidene]hydrazinecarbothioamide

G. Vimala,^a J. Govindaraj,^b J. Haribabu,^c R. Karvembu^d and A. SubbiahPandia*

^aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, ^bDepartment of Physics, Pachaiyappa's College for Men, Kancheepuram 631 501, India, ^cDepartment of Chemistry, National Institute of Technology, Trichy 620 015, India, and ^dDeparment of Chemistry, National Institute of Technology, Trichy 620 015, India. *Correspondence e-mail: aspandian59@gmail.com

Received 20 September 2014; accepted 1 October 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{12}H_{11}N_3O_2S$, the dihedral angle between the 4H-chromen-4-one ring system and the -CH=N-NH-CS-NH- unit is 6.22 (1)°. In the crystal, inversion dimers linked by pairs of $N-H \cdots O$ hydrogen bonds generate $R_2^2(14)$ loops. The dimers are reinforced by a pair of C-H···O interactions, which generate $R_2^2(10)$ loops.

Keywords: crystal structure; hydrazinecarbothioamide; 4H-chromen-4one; biological properties; hydrogen bonding.

CCDC reference: 1027156

1. Related literature

For the biological properties of related compounds, see: Khan et al. (2009); Tu et al. (2013); Kelly et al. (1996). For a related structure, see: Ishikawa & Watanabe (2014).

2. Experimental

2.1. Crystal data

 $C_{12}H_{11}N_3O_2S$

 $M_r = 261.30$

Monoclinic, $P2_1/n$	
a = 6.3702 (7) Å	
b = 20.647 (2) Å	
c = 9.2717 (10) Å	
$\beta = 98.365 (3)^{\circ}$	
V = 1206.5 (2) Å ³	

2.2. Data collection

17429 measured reflections
3560 independent reflections
2257 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.031$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	164 parameters
$wR(F^2) = 0.131$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
3560 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O2^{i}$	0.86	2.11	2.897 (2)	152
$C10-H10\cdots O2^{i}$	0.93	2.44	3.219 (2)	141

Symmetry code: (i) -x + 1, -y, -z.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7287).

References

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ishikawa, Y. & Watanabe, K. (2014). Acta Cryst. E70, 0472.
- Kelly, P. F., Slawin, A. M. Z. & Soriano-Rama, A. (1996). J. Chem. Soc. Dalton Trans. pp. 53-59.
- Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983-2988.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826-2831.

supporting information

Acta Cryst. (2014). E70, o1151 [doi:10.1107/S1600536814021667]

Crystal structure of (2*E*)-*N*-methyl-2-[(4-oxo-4*H*-chromen-3-yl)methylidene]hydrazinecarbothioamide

G. Vimala, J. Govindaraj, J. Haribabu, R. Karvembu and A. SubbiahPandi

S1. Comment

Thiosemicarbazones are of considerable interest because of their versatile chemistry and various biological activites such as antitumor, antibacterial, antiviral, antiamoebic and antimalarial (Kelly *et al.*, 1996). Schiff bases derived from 3-formylchromones have attracted much attention due to their biological functions such as enzyme inhibition (Khan *et al.*, 2009; Tu *et al.*, 2013).

The structure of the title compound (Figure 1) shows that the atoms of both 4*H*-chromen-4-one and the –CH=N—NH— CS—NH– segments are roughly planar and the largest deviations are -0.144 (2) and -0.114 (2) Å for O2 and C12 respectively. The dihedral angles between 4*H*-chromen-4-one and –CH=N—NH—CS—NH—C– unit and the benzene ring of 4*H*-chromen-4-one and –CH=N—NH—CS—NH—C– unit are 6.22 (1) and 7.12 (1)°, respectively.

In the crystal, inversion dimers linked by pairs of N—H···O hydrogen bonds generate $R_2^2(14)$ loops. The dimers are reinforced by a pair of C—H···O interactions, which generate $R_2^2(10)$ loops.

S2. Experimental

1.05 g (0.01 mol) of *N*-methylhydrazinecarbothioamide was dissolved in 20 ml of hot ethanol and to this 1.74 g of 4oxo-4*H*-Chromene-3-carbaldehydein 10 ml of ethanol was added and continuously stirred for a period of 10 min with continuous stirring. The reaction mixture was refluxed for 2 h and allowed to cool whereby shining white was filtered and washed thoroughly with ethanol and then dried in vaccum. The compound was recrystallized from hot ethanol to yield colourless blocks in 92% yield.

S3. Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for all other H atoms.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

The packing of the title compound with hydrogen bonds represented by dashed lines. Hydrogen atoms not involved in these bonds are omitted for clarity.

(2E)-N-Methyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]hydrazinecarbothioamide

Crystal data

 $C_{12}H_{11}N_{3}O_{2}S$ $M_{r} = 261.30$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 6.3702 (7) Å b = 20.647 (2) Å c = 9.2717 (10) Å $\beta = 98.365$ (3)° V = 1206.5 (2) Å³

Data collection

Bruker SMART APEXII CCD	17429 measured reflections
diffractometer	3560 independent reflections
Radiation source: fine-focus sealed tube	2257 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.031$
ω and φ scans	$\theta_{\rm max} = 30.2^\circ, \ \theta_{\rm min} = 2.0^\circ$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Bruker, 2008)	$k = -28 \longrightarrow 28$
$T_{\min} = 0.924, \ T_{\max} = 0.948$	$l = -12 \rightarrow 12$

Z = 4

F(000) = 544

 $\mu = 0.27 \text{ mm}^{-1}$

Block, colourless

 $0.30 \times 0.25 \times 0.20$ mm

T = 293 K

 $D_{\rm x} = 1.439 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.131$	neighbouring sites
S = 1.06	H-atom parameters constrained
3560 reflections	$w = 1/[\sigma^2(F_o^2) + (0.056P)^2 + 0.3687P]$
164 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	1.1216 (3)	-0.01086 (8)	-0.30947 (18)	0.0402 (4)	
C2	1.2628 (3)	-0.03414 (11)	-0.3973 (2)	0.0536 (5)	
H2	1.3795	-0.0097	-0.4138	0.064*	
C3	1.2268 (4)	-0.09395 (12)	-0.4591 (2)	0.0615 (6)	
H3	1.3198	-0.1102	-0.5187	0.074*	

C4	1.0550 (4)	-0.13046 (11)	-0.4344 (2)	0.0590 (6)
H4	1.0321	-0.1708	-0.4784	0.071*
C5	0.9167 (3)	-0.10774 (9)	-0.3453 (2)	0.0485 (5)
H5	0.8020	-0.1329	-0.3279	0.058*
C6	0.9493 (3)	-0.04658 (8)	-0.28081 (17)	0.0359 (4)
C7	0.8095 (3)	-0.02066 (8)	-0.18335 (17)	0.0353 (4)
C8	0.8552 (3)	0.04523 (7)	-0.13502 (17)	0.0336 (3)
C9	1.0264 (3)	0.07560 (8)	-0.1711 (2)	0.0429 (4)
H9	1.0518	0.1177	-0.1376	0.051*
C10	0.7153 (3)	0.07618 (8)	-0.04415 (18)	0.0373 (4)
H10	0.5918	0.0552	-0.0274	0.045*
C11	0.6662 (3)	0.21399 (7)	0.16614 (18)	0.0367 (4)
C12	0.9249 (4)	0.30201 (10)	0.2112 (3)	0.0619 (6)
H12A	0.8427	0.3380	0.1689	0.093*
H12B	1.0703	0.3075	0.1976	0.093*
H12C	0.9158	0.2998	0.3136	0.093*
N1	0.7607 (2)	0.13156 (6)	0.01244 (15)	0.0367 (3)
N2	0.6206 (2)	0.15691 (6)	0.09629 (16)	0.0400 (3)
H2A	0.5048	0.1368	0.1046	0.048*
N3	0.8432 (3)	0.24283 (7)	0.14142 (18)	0.0456 (4)
H3A	0.9141	0.2252	0.0797	0.055*
01	1.1633 (2)	0.04988 (6)	-0.25169 (15)	0.0482 (3)
O2	0.6644 (2)	-0.05230 (6)	-0.14399 (16)	0.0550 (4)
S1	0.49924 (9)	0.24309 (2)	0.27366 (6)	0.05253 (18)

Atomic displacement parameters $(Å^2)$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 (10)
C5 0.0583 (12) 0.0403 (9) 0.0451 (10) 0.0052 (8) 0.0011 (9) -0.005 C6 0.0422 (9) 0.0336 (8) 0.0307 (8) 0.0050 (7) 0.0018 (7) 0.0015 C7 0.0365 (9) 0.0348 (8) 0.0339 (8) -0.0016 (6) 0.0024 (7) -0.006 C8 0.0377 (9) 0.0302 (7) 0.0328 (8) -0.0005 (6) 0.0052 (7) 0.0005 C9 0.0517 (11) 0.0329 (8) 0.0463 (10) -0.0033 (7) 0.0147 (8) 0.0002 C10 0.0397 (9) 0.0353 (8) 0.0375 (9) -0.0028 (7) 0.0080 (7) -0.002	96 (9)
C6 0.0422 (9) 0.0336 (8) 0.0307 (8) 0.0050 (7) 0.0018 (7) 0.0015 C7 0.0365 (9) 0.0348 (8) 0.0339 (8) -0.0016 (6) 0.0024 (7) -0.000 C8 0.0377 (9) 0.0302 (7) 0.0328 (8) -0.0005 (6) 0.0052 (7) 0.0005 C9 0.0517 (11) 0.0329 (8) 0.0463 (10) -0.0033 (7) 0.0147 (8) 0.0002 C10 0.0397 (9) 0.0353 (8) 0.0375 (9) -0.0028 (7) 0.0080 (7) -0.002	57 (8)
C7 0.0365 (9) 0.0348 (8) 0.0339 (8) -0.0016 (6) 0.0024 (7) -0.000 C8 0.0377 (9) 0.0302 (7) 0.0328 (8) -0.0005 (6) 0.0052 (7) 0.0005 C9 0.0517 (11) 0.0329 (8) 0.0463 (10) -0.0033 (7) 0.0147 (8) 0.0002 C10 0.0397 (9) 0.0353 (8) 0.0375 (9) -0.0028 (7) 0.0080 (7) -0.002	5 (6)
C8 0.0377 (9) 0.0302 (7) 0.0328 (8) -0.0005 (6) 0.0052 (7) 0.0005 C9 0.0517 (11) 0.0329 (8) 0.0463 (10) -0.0033 (7) 0.0147 (8) 0.0002 C10 0.0397 (9) 0.0353 (8) 0.0375 (9) -0.0028 (7) 0.0080 (7) -0.002	08 (6)
C9 0.0517 (11) 0.0329 (8) 0.0463 (10) -0.0033 (7) 0.0147 (8) 0.0002 C10 0.0397 (9) 0.0353 (8) 0.0375 (9) -0.0028 (7) 0.0080 (7) -0.002	5 (6)
C10 0.0397 (9) 0.0353 (8) 0.0375 (9) -0.0028 (7) 0.0080 (7) -0.002	2 (7)
	28 (7)
C11 0.0430 (10) 0.0274 (7) 0.0401 (9) 0.0026 (6) 0.0072 (7) 0.0012	2 (6)
C12 0.0564 (13) 0.0406 (10) 0.0913 (17) -0.0104 (9) 0.0190 (12) -0.015	51 (10)
N1 0.0445 (8) 0.0310 (7) 0.0357 (7) 0.0011 (6) 0.0097 (6) -0.000	06 (5)
N2 0.0427 (8) 0.0328 (7) 0.0469 (8) -0.0036 (6) 0.0150 (7) -0.005	58 (6)
N3 0.0500 (9) 0.0330 (7) 0.0578 (10) -0.0036 (6) 0.0213 (8) -0.007	72 (6)
O1 0.0510 (8) 0.0410 (7) 0.0572 (8) -0.0043 (5) 0.0233 (6) 0.0007	⁷ (6)
O2 0.0539 (8) 0.0445 (7) 0.0712 (10) -0.0181 (6) 0.0241 (7) -0.015	58 (6)
S1 0.0572 (3) 0.0399 (3) 0.0659 (4) 0.0015 (2) 0.0269 (3) -0.009	93 (2)

Geometric parameters (Å, °)

C1—O1	1.374 (2)	C8—C10	1.460 (2)
C1—C6	1.380 (2)	C9—O1	1.338 (2)
C1—C2	1.384 (3)	С9—Н9	0.9300
C2—C3	1.367 (3)	C10—N1	1.274 (2)
С2—Н2	0.9300	C10—H10	0.9300
C3—C4	1.375 (3)	C11—N3	1.324 (2)
С3—Н3	0.9300	C11—N2	1.356 (2)
C4—C5	1.375 (3)	C11—S1	1.6715 (17)
C4—H4	0.9300	C12—N3	1.444 (2)
C5—C6	1.400 (2)	C12—H12A	0.9600
С5—Н5	0.9300	C12—H12B	0.9600
C6—C7	1.459 (2)	C12—H12C	0.9600
C7—O2	1.230 (2)	N1—N2	1.3695 (18)
С7—С8	1.449 (2)	N2—H2A	0.8600
С8—С9	1.342 (2)	N3—H3A	0.8600
O1—C1—C6	121.78 (15)	O1—C9—C8	124.97 (16)
O1—C1—C2	116.17 (17)	O1—C9—H9	117.5
C6—C1—C2	122.05 (17)	С8—С9—Н9	117.5
C3—C2—C1	118.5 (2)	N1-C10-C8	120.64 (15)
С3—С2—Н2	120.8	N1-C10-H10	119.7
C1—C2—H2	120.8	C8-C10-H10	119.7
C2—C3—C4	121.0 (2)	N3—C11—N2	115.89 (15)
С2—С3—Н3	119.5	N3—C11—S1	124.97 (13)
С4—С3—Н3	119.5	N2—C11—S1	119.14 (13)
C5—C4—C3	120.5 (2)	N3—C12—H12A	109.5
C5—C4—H4	119.7	N3—C12—H12B	109.5
C3—C4—H4	119.7	H12A—C12—H12B	109.5
C4—C5—C6	119.8 (2)	N3—C12—H12C	109.5
C4—C5—H5	120.1	H12A—C12—H12C	109.5
С6—С5—Н5	120.1	H12B—C12—H12C	109.5
C1—C6—C5	118.20 (16)	C10—N1—N2	116.71 (14)
C1—C6—C7	119.82 (15)	C11—N2—N1	119.45 (14)
C5—C6—C7	121.97 (16)	C11—N2—H2A	120.3
O2—C7—C8	122.21 (15)	N1—N2—H2A	120.3
O2—C7—C6	122.79 (15)	C11—N3—C12	124.28 (16)
C8—C7—C6	115.00 (14)	C11—N3—H3A	117.9
C9—C8—C7	119.72 (15)	C12—N3—H3A	117.9
C9—C8—C10	121.73 (15)	C9—O1—C1	118.35 (14)
C7—C8—C10	118.52 (14)		
O1—C1—C2—C3	-179.09 (17)	C6—C7—C8—C9	-5.2 (2)
C6—C1—C2—C3	1.2 (3)	O2—C7—C8—C10	-4.0 (2)
C1—C2—C3—C4	-0.3 (3)	C6—C7—C8—C10	176.46 (14)
C2—C3—C4—C5	-0.8 (3)	C7—C8—C9—O1	0.6 (3)
C3—C4—C5—C6	0.9 (3)	C10-C8-C9-O1	178.80 (16)

O1-C1-C6-C5	179.29 (15)	C9—C8—C10—N1	-5.1 (3)
C2-C1-C6-C5	-1.0 (3)	C7—C8—C10—N1	173.16 (15)
O1—C1—C6—C7	-1.8 (2)	C8—C10—N1—N2	-179.90 (14)
C2-C1-C6-C7	177.85 (16)	N3—C11—N2—N1	3.0 (2)
C4—C5—C6—C1	-0.1 (3)	S1—C11—N2—N1	-177.53 (12)
C4—C5—C6—C7	-178.91 (17)	C10-N1-N2-C11	176.29 (15)
C1—C6—C7—O2	-173.71 (17)	N2-C11-N3-C12	-176.58 (18)
C5—C6—C7—O2	5.1 (3)	S1-C11-N3-C12	4.0 (3)
C1—C6—C7—C8	5.8 (2)	C8—C9—O1—C1	3.8 (3)
C5—C6—C7—C8	-175.36 (16)	C6—C1—O1—C9	-3.1 (2)
O2—C7—C8—C9	174.28 (17)	C2-C1-O1-C9	177.22 (16)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A····O2 ⁱ	0.86	2.11	2.897 (2)	152
C10—H10…O2 ⁱ	0.93	2.44	3.219 (2)	141

Symmetry code: (i) -x+1, -y, -z.