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Abstract Genome-wide association studies of type 2 diabetes
have been extremely successful in discovering loci that con-
tribute genetic effects to susceptibility to the disease.
However, at the vast majority of these loci, the variants and
transcripts through which these effects on type 2 diabetes are
mediated are unknown, limiting progress in defining the path-
ophysiological basis of the disease. In this review, we will
describe available approaches for assaying genetic variation
across loci and discuss statistical methods to determine the
most likely causal variants in the region. We will consider the
utility of trans-ethnic meta-analysis for fine mapping by
leveraging the differences in the structure of linkage disequi-
librium between diverse populations. Finally, we will discuss
progress in fine-mapping type 2 diabetes susceptibility loci to
date and consider the prospects for future efforts to localise
causal variants for the disease.
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Introduction

Large-scale genome-wide association studies (GWAS) have
proved to be an extremely successful approach to identifying
loci contributing genetic effects to type 2 diabetes (T2D)
susceptibility across ethnicities [1–5, 6•, 7•, 8•, 9, 10••].
These loci are typically represented by a common lead SNP,
defined here to have minor allele frequency (MAF) of more
than 5 %. This representation does not take account of the
possibility of multiple association signals at the locus, each
deriving from variants acting independently of each other or
through haplotypes. The association signals usually extend
over hundreds of kilobases because of linkage disequilibrium
(LD) between common variants, and include multiple genes
through which the effect on T2D susceptibility may be medi-
ated. It has become common, therefore, to name these loci
according to the gene mapping closest to the lead SNP, unless
there is a more compelling candidate nearby. However, with
the exception of loci such as SLC30A8 and KCNJ11-ABCC8,
where the causal variants and effector transcripts have been
validated through functional studies [11, 12], these labels are
effectively arbitrary and offer no insight into the mechanisms
through which GWAS signals impact on T2D susceptibility.
Consequently, there has been limited progress in defining the
pathophysiological basis of the disease, and the promised
translation of GWAS findings into clinical practice remains,
as yet, unfulfilled.

To extend characterisation of T2D GWAS loci, the most
comprehensive fine-mapping experiment requires an exhaus-
tive catalogue of variation across the region and necessitates
powerful methodology to integrate statistical evidence of as-
sociation with regulatory and functional annotation to reflect
our prior beliefs about the likely mechanisms through which
variants will impact on disease risk. In this review, we will
describe available approaches for assaying genetic variation
across GWAS loci and discuss statistical methods to determine
the most likely causal variants across the region. We will
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consider the utility of fine mapping in multiple ethnic groups
by leveraging the differences in the structure of LD between
diverse populations. Finally, we will discuss progress in fine-
mapping T2D susceptibility loci to date and consider the
prospects for future efforts to localise causal variants for the
disease.

Assaying Genetic Variation for the Fine Mapping
of GWAS Loci

The success of GWAS for the discovery of loci contributing to
complex human traits can be partly attributed to the realisation
of the “common disease, common variant” hypothesis [13].
Under this model, the genetic component of T2D susceptibil-
ity is determined bymany common causal variants throughout
the genome, each with only modest effect on disease risk.
International collaborative efforts, such as the HapMap
Project Consortium [14, 15] and the 1000 Genomes Project
Consortium [16, 17•], have demonstrated that common vari-
ants in a population are arranged on relatively few haplotypes
within “blocks” of strong LD, which are located between
recombination hotspots. Consequently, genotypes at the mil-
lions of common variants throughout the genome are strongly
correlated with each other, and thus can be captured by a
subset of “tag” SNPs. The most efficient GWAS genotyping
products, therefore, have been designed to include these tag
SNPs, maximising coverage of common variation, but reduc-
ing costs without a corresponding loss in power for detecting
association with complex traits [18]. However, although this
design is beneficial for the discovery of GWAS loci, it poses
substantial challenges to the dissection of association signals
for the purposes of fine mapping because (i) the causal vari-
ant(s) will not necessarily have been directly typed and (ii)
multiple variants may demonstrate equivalent statistical evi-
dence of association because of the LD between them.

Targeted Re-sequencing

The most comprehensive approach to assaying genetic varia-
tion across T2D susceptibility loci is through targeted deep re-
sequencing of the regions in large numbers of cases and
controls [19]. In the absence of errors, this approach would
be expected to provide a complete catalogue of common and
low-frequency SNPs, rare variants and even private muta-
tions, in a sample of sequenced individuals across a locus.
There has much recent progress in the development of pow-
erful statistical pipelines for the identification of variation and
calling of genotypes from sequence data [20], maximising the
likelihood of directly assaying the causal variant(s) at a locus
and increasing the probability of observing lower-frequency
haplotypes that might improve fine-mapping resolution by
breaking down the LD between common SNPs. However,

despite substantial improvements in the efficiency of “next
generation” technologies, undertaking deep re-sequencing re-
mains a considerable financial undertaking in the large sample
sizes needed to localise the causal variants of modest effect
size we expect for T2D susceptibility.

Custom-Designed Genotyping

A less-expensive approach to assaying genetic variation
across a locus begins by targeted re-sequencing of a subset
of cases and controls. Genetic variation that is present in this
“reference panel” could then be genotyped in the remaining
individuals using a custom-designed array, incurring consid-
erably lower costs than re-sequencing the entire sample.
Further savings can be made by making use of reference
panels obtained from publicly available large-scale whole-
genome re-sequencing efforts, such as the 1000 Genomes
Project [16, 17•], and can be used for variant identification.
The first phase of this project incorporates genotypes at more
than 30 million variants, genome wide, in 1,094 individuals
frommultiple ethnic groups, and is expected to provide a near-
complete catalogue of genetic variation with MAF>0.5 %
across diverse populations [17•]. However, the disadvantage
of this two-stage strategy is that genetic variation, which is not
observed in the reference panel, will not be included on the
array and will thus reduce the likelihood of assaying the causal
variant(s), particularly if they are rare.

The Cardio-MetaboChip

The Cardio-MetaboChip is a custom Illumina iSelect genotyp-
ing array of 196,725 variants designed to facilitate cost-
effective discovery and fine mapping of cardiovascular and
metabolic traits, including T2D [21]. Variants in 257 fine-
mapping regions, including 34 established GWAS loci for
T2D, were selected from reference panels from the HapMap
Project [15] and a pilot release of the 1000 Genomes Project
[16]. In these regions, the Cardio-Metabochip offers substan-
tial improvements in coverage over traditional genotyping
products, including more than 40 % of common SNPs
(MAF≥5 %) present in European haplotypes from the first
phase of the 1000 Genomes Project [17•] and more than 25 %
of low-frequency variants (1 %≤MAF<5 %) [8•].

Exome Re-sequencing and Array Genotyping

Somemodels of complex disease architecture hypothesise that
a substantial proportion of causal variants for disease will alter
protein function as opposed to regulation. Under this model,
the most cost-effective strategy for fine mapping would focus
on assaying coding variation, which can most comprehensive-
ly be achieved through whole-exome re-sequencing of cases
and controls, and will provide a complete catalogue of protein
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altering variants across the genome. An alternative to this
expensive re-sequencing strategy is to make use of exome
array genotyping. The Illumina Human Exome BeadChip
includes coding variants identified in a reference panel of
more than 12,000 whole-exome and whole-genome se-
quences from multiple ancestry groups. The array also in-
cludes tags for previously reported lead SNPs in GWAS loci
for a range of complex traits, including T2D. Consequently,
the array can be used to investigate the hypothesis that com-
mon variant association signals in established T2D suscepti-
bility loci are, in fact, explained by lower-frequency coding
variants of larger effect in these regions, which would not have
been well captured by GWAS genotyping arrays. The disad-
vantage of this approach is that the array is limited to genetic
variation present in the reference panel, and thus is less likely
to include rare coding variants and will not allow investigation
of private protein altering mutations in cases and controls.

Imputation

Imputation techniques [22, 23•] make use of a “scaffold” of
SNPs from GWAS arrays to predict genotypes present on
higher-density reference panels, derived from targeted re-
sequencing in a subset of cases and controls or those made
available from large-scale international efforts, such as the
1000 Genomes Project [17•]. The haplotype structure of the
(phased) reference panel is used to infer the probability distri-
bution of possible genotypes at each variant that is not present
in the GWAS scaffold. Imputation can thus provide more
complete coverage of genetic variation across a locus, without
the need for re-sequencing or additional genotyping, but is
limited to variants that are present in the reference panel. The
most widely used imputation methods, IMPUTEv2 [24] and
minimac [23•], minimise computational burden by “pre-phas-
ing” the GWAS scaffold before inferring genotypes at variants
present in the reference panel. Both methods make use of the
same underlying model of LD between variants in the refer-
ence panel, and are effectively indistinguishable in terms of
accuracy and run-time. For both methods, the quality of
imputation depends on MAF, the density and allele frequency
spectrum of the genotyping array from which the scaffold is
derived, and the number of haplotypes and depth of sequenc-
ing in the reference panel, amongst other factors. The refer-
ence panel should also be well matched, in terms of ancestry,
to cases and controls to maximise imputation quality, partic-
ularly for low-frequency and rare variants, which are more
likely to be population specific [17•].

Methodology for Fine-Mapping T2D Susceptibility Loci

The traditional approach to test for association of T2D sus-
ceptibility with a genetic variant, irrespective of whether it is

assayed through re-sequencing, array genotyping or imputa-
tion, is to compare the frequencies of the three possible
genotypes between cases and controls [25]. In this setting,
the most flexible approach makes use of a logistic regression
model, typically assuming an additive effect of each allele on
the disease (i.e. a multiplicative effect on the odds ratio). The
major advantage of this framework is that it can take account
of potential non-genetic confounding risk factors as covari-
ates, which for T2D susceptibility might include age, sex, and
overall and/or central obesity, as measured by body mass
index and waist-hip ratio, for example. In the same way, we
can also include covariates that represent underlying popula-
tion structure that might be confounded with disease status,
which might include indicator variables of region of residence
or eigenvectors from principal components analysis [26].

The strength of evidence in favour of association of T2D
susceptibility with a genetic variant in this framework is most
often measured by means of a p value, which corresponds to
the probability of the observed (or more extreme) distribution
of genotypes across cases and controls under the null hypoth-
esis of no correlation with disease status. The smaller the p
value, the less consistent are the observed data with the null
hypothesis, and thus, the stronger the statistical evidence is in
favour of association of the variant with disease.
Consequently, p values have been used to rank variants across
a locus in terms of their likely causal impact on T2D suscep-
tibility. The disadvantage of this approach is that p values do
not take account of the power of the association test [27] and
thus are not sufficient to quantify how confident, statistically,
we are that variants are causal for the disease. This problem is
often overcome in GWAS analysis by excluding variants with
low power, in particular those with low MAF and/or poor
imputation quality. However, this is not advantageous for fine
mapping, since our goal is to evaluate evidence of association
for a comprehensive catalogue of variation across a locus.

An alternative measure of the strength of evidence in favour
of association of a variant with T2D susceptibility, which takes
account of the power of the test at the cost of additional
modelling assumptions, is given by the Bayes’ factor [27,
28], the ratio of likelihoods of the observed distribution of
genotypes in cases and controls under the alternative and null
hypotheses. Exact evaluation of Bayes’ factors can be compu-
tationally demanding, but simple approximations can easily be
calculated on the basis of association summary statistics and
thus can be applied in the context of meta-analysis [29].

Credible Sets of Causal Variants

Within the Bayesian modelling framework described above,
we can assess the resolution of fine mapping at a locus by
constructing a “credible set” of variants that are most likely to
be causal on the basis of statistical evidence of association
from Bayes’ factors [30••]. Credible set construction relies on
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two underlying assumptions: (i) the causal variant has been
tested for association and (ii) there is a single causal variant at
the locus. Variants are first ranked according to their Bayes’
factor in favour of association (from largest to smallest).
Variants are then added to the 99 % credible set, by moving
down the ranking, until the cumulative posterior probability of
association exceeds 0.99. Credible sets can be interpreted in a
similar way to confidence intervals in a frequentist paradigm
and provide a quantitative assessment of the resolution of fine
mapping across a locus in terms of the number of variants
included and the genomic interval they cover. Variants in the
credible set can then be prioritised for further investigation
and functional experimentation.

One potential limitation of this approach to fine mapping is
that the “information” that is available for each variant across
a locus may not be equivalent. For example, on the basis of
association summary statistics from a meta-analysis, data for
some variants may not have been reported for all contributing
studies, for example, if they fail genotyping or quality control.
As a result, lower quality variants are less likely to be repre-
sented in the credible set than those that are reported in all
contributing studies. Imputation can help in providing more
uniform coverage by generating summary statistics for all
variants in the reference panel, although quality may vary
according to MAF and the genotyping array used to construct
the GWAS scaffold. However, if we make the assumption that
the effect of a variant on T2D susceptibility is homogeneous
across studies, we can make use of the available information
and re-weight Bayes’ factors to a uniform sample size across
the locus.

Assessing the Evidence for Multiple Association Signals
at the Same Locus

The formal approach to assessing the evidence of multiple
association signals at the same locus is through conditional
analysis. Within the logistic regression framework described
above, we can include the genotype at the lead SNP as a
covariate in the model. Any residual association is derived
from variants other than the lead SNP, and thus represents
independent signals at the locus. This process is typically
performed iteratively, including as an additional covariate in
the model at each stage the variant with the strongest residual
association, until the signal at the locus is fully explained.

A major limitation of the iterative scheme is that it cannot
be easily applied in the context of meta-analysis. However,
approximate conditioning, as implemented in the GCTA soft-
ware [31•], can be applied to association summary statistics
obtained from meta-analysis, without cohort-level informa-
tion from the contributing studies. GCTA makes use of indi-
vidual level genotype data from one contributing study as a
reference to approximate the structure of LD across the locus,
from which the covariance between allelic effects at multiple

SNPs in the regression model can be estimated. Ideally, the
reference study will be large and be representative of popula-
tions contributing to the meta-analysis. The robustness of the
approximate conditional analysis should also be evaluated by
considering multiple reference studies to assess the impact of
differences in LD structure between populations on inference.

At present, there is no consensus on the appropriate thresh-
old of significance for multiple, independent association sig-
nals (in terms of p values or Bayes’ factors). The traditional
“genome-wide” significance threshold (p<5×10−8) is too
conservative because we are testing fewer variants and we
already have prior evidence of association for the lead SNP at
the locus from previous studies. The results of (approximate)
conditional analyses can be used, in the same way as de-
scribed above, to construct a credible set of variants for each
association signal at a locus.

Trans-Ethnic Fine Mapping

Assuming that a causal variant at a GWAS locus is shared
across ancestry groups, substantial improvements in the reso-
lution of fine-mapping can be achieved by combining GWAS
from different ancestry groups through trans-ethnicmeta-anal-
ysis, by leveraging differences in the structure of LD between
diverse populations [32, 33]. As a consequence, we would
expect that different sets of SNPs will be in strong LDwith the
causal variant in different ethnicities. Trans-ethnic meta-anal-
ysis, therefore, will reduce the credible set of variants at a
locus to those that are in strong LD with the causal variant in
all ancestry groups. African ancestry populations have less
extensive LD because of less recent population bottlenecks
and migration and thus are particularly powerful for fine
mapping.

Differences in the extent of LD between ancestry groups
will introduce heterogeneity in allelic effects on T2D suscep-
tibility across ethnicities at non-causal variants, which cannot
easily be accommodated in traditional “fixed-effects” meta-
analysis. The MANTRA methodology [34••] for meta-
analysis was developed to overcome this problem in the
context of trans-ethnic fine mapping by allowing for hetero-
geneity in allelic effects between populations according to a
model of “relatedness” between them. For example, two
European ancestry populations will be closely related and thus
would be expected to share similar LD structure across the
locus and homogeneous allelic effects. On the other hand,
much greater heterogeneity would be expected between
European and African ancestry populations because of the
significant differences in the distribution and extent of LD
between them. Simulations have demonstrated that, by ac-
counting for heterogeneity in allelic effects between ancestry
groups in this way, MANTRA offers considerable improve-
ments in fine-mapping resolution than fixed-effects meta-
analysis [34••, 35].
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MANTRA provides an assessment in favour of association
of each variant with T2D susceptibility by means of a Bayes’
factor, and can naturally be used for the construction of credible
sets, as described above. However, approximate conditional
analyses cannot easily be applied in a trans-ethnic context,
because LD structure varies across ancestry groups, and thus
cannot be represented by a single contributing reference study.

Incorporating Functional and Regulatory Annotation

Lead SNPs at T2D GWAS loci typically map to non-coding
sequence and do not have a direct functional impact on
disease susceptibility. One possible explanation for this ob-
servation is that lead SNPs are tags for coding variants that
are not well represented on traditional GWAS genotyping
arrays. It has become common, therefore, to interrogate
high-density reference panels, such as those from the 1000
Genomes Project Consortium [17•], for coding variants that
are in strong LD with the lead SNP, as an indicator of a
potential functional mechanism through which T2D suscep-
tibility is mediated. If studies have already been imputed up
to dense reference panels, credible set variants can also be
investigated for functional annotation. Support for these cod-
ing variants can be assessed through prediction of their likely
functional consequences using algorithms such as
POLYPHEN [36] and SIFT [37].

Insight into the likely transcript(s) at a locus through which
an effect on T2D susceptibility is mediated through regulation
of gene expression can be obtained from expression QTL
(eQTL) studies, the results of which are often made available
through a variety of public data resources [38, 39].
Consequently, it has become typical to search for evidence
of association of lead SNPs with expression of flanking tran-
scripts (usually cis-eQTLs, defined within 1 Mb up and
downstream of the transcription start site). There is substantial
heterogeneity in eQTLs for some transcripts across different
cell types [40, 41], so the ideal experiment will focus on
tissues most relevant to T2D susceptibility (for example,
pancreatic islets and liver), although this may not always be
possible. For each cis-eQTL, we can then assess the evidence
for the coincidence of GWAS and expression signals by: (i)
identifying the variant with the strongest association with
expression (referred to as the eSNP) and (ii) performing
conditional analysis to determine if the eSNP association can
be explained by the lead GWAS SNP. Alternatively, if studies
have already been imputed up to dense reference panels,
credible sets can be interrogated for eSNPs in the same way.

The Encyclopedia of DNA Elements (ENCODE) Project
Consortium [42–44] has facilitated comprehensive discovery
and description of genes, transcripts, and transcriptional reg-
ulatory regions, as well as DNA-binding proteins that interact
with regulatory regions in the genome. These include tran-
scription factors, different versions of histones and other

markers and DNA methylation patterns that define states of
the genome in various cell types. By overlapping credible sets
with these functional elements, we may gain insight into the
mechanisms through which T2D-associated variants impact
disease risk. Within the Bayesian credible set paradigm, these
insights may offer an opportunity to develop prior models for
likely causal variants on the basis of their functional or regu-
latory annotation from ENCODE, independent of the statisti-
cal evidence of association, which may further enhance fine-
mapping efforts in newly discovered T2D susceptibility loci.

Progress in Fine-Mapping T2D Susceptibility Loci

At the time of writing, more than 80 loci have been robustly
associated with T2D susceptibility at genome-wide signifi-
cance. These loci have primarily been discovered through
GWAS efforts in populations of European descent [1–4, 8•],
but lately in other ancestry groups, including East Asians [7•],
South Asians [6•], Hispanics [5], African Americans [9] and,
most recently, through trans-ethnic meta-analysis [10••]. For
the vast majority of these loci, the causal variants and the
transcripts through which their effects on T2D susceptibility
are mediated, remain obscure. Consequently, there has been
increasing interest in the fine mapping of T2D loci to fully
appreciate the genetic architecture and mechanisms underly-
ing disease susceptibility and to prioritise variants and tran-
scripts for functional validation.

Evidence for Multiple Association Signals at T2D
Susceptibility Loci

There is increasing evidence that multiple association signals,
derived from independent index variants or through haplotype
effects, are relatively widespread at T2D susceptibility loci.
Improved power to detect these effects has been achieved
through larger sample sizes and meta-analysis, dense genotyp-
ing (for example in Metabochip fine-mapping regions) and
imputation up to targeted genomic sequences and 1000
Genomes Project Consortium reference panels.

At the CDKN2A-B locus, the strongest association signal
for T2D susceptibility maps to a narrow inter-genic recombi-
nation interval spanning less than 10 kb [1, 4, 8•]. Fine
mapping of the locus was undertaken by imputation into
1,000 T2D cases and 1,048 controls from the Diabetes
Genetics Initiative up to a reference panel consisting of: (i)
pilot data from the 1000 Genomes Project Consortium and (ii)
targeted re-sequencing of 47 individuals from the same pop-
ulation background [45]. This analysis revealed a haplotype
mapping to the recombination interval that was defined by
two partially correlated sets of variants, best represented by
rs10757282 and rs10811661, which together better explain
the association signal than any single SNP across the locus.
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Three of the four possible haplotypes were observed, includ-
ing one high risk (frequency 30 %, odds ratio of 1.29) and one
low risk (frequency 16 %, odds ratio of 0.72). This haplotype
effect was replicated by the Wellcome Trust Case Control
Consortium [30••] by high-density custom-designed array
genotyping in 2,000 T2D cases and 4,000 population controls
of European ancestry, including variants identified through
targeted re-sequencing of 32 CEU individuals from the
HapMap Project Consortium [14].

At the KCNQ1 locus (Fig. 1), meta-analysis of densely
typed genetic variants fromMetabochip fine-mapping regions
in 34,840 T2D cases and 114,981 controls, primarily of
European ancestry, revealed two signals of association at
genome-wide significance that localised to different recombi-
nation intervals, represented by: rs163184 (p=1.2×10−11),
which maps to an intron of the gene, and rs231361 (p=1.2×
10−9), which resides in the KCNQ1-OT1 transcript that con-
trols regional imprinting [8•]. In the same study, nominal
evidence (p<10−5) of multiple association signals mapping
to different recombination intervals was also observed at two
additional loci: DGKB (rs17168486, p=5.9×10−11;
rs6960043, p=3.4×10−7) and MC4R (rs12970134, p=1.2×
10−8; rs11873305, p=3.8×10−7).

Trans-Ethnic Fine Mapping

Large-scale trans-ethnic meta-analysis of GWAS was under-
taken in 26,488 T2D cases and 83,964 controls from

populations of European, East Asian, South Asian and
Hispanic ancestry [10••], each imputed up to reference
panels from the HapMap Project Consortium (Phase II/
III) [14, 15]. The study validated previous observations
that allelic effects on T2D at lead GWAS SNPs are pre-
dominantly homogeneous across ancestry groups [46],
suggesting that susceptibility loci would be amenable to
trans-ethnic fine mapping.

MANTRA was utilised to define 99 % credible sets of
variants in ten established T2D susceptibility loci that dem-
onstrated the strongest signals of association in the trans-
ethnic meta-analysis. To assess the improved resolution of-
fered by trans-ethnic meta-analysis, credible sets were con-
structed on the basis of: (i) European ancestry GWAS only and
(ii) all GWAS, irrespective of ancestry. Improved fine-
mapping resolution, both in terms of the number of variants
included in the credible sets and the genomic intervals they
covered, was observed at all but one of the loci after trans-
ethnic meta-analysis. The greatest enhancement in fine-
mapping resolution was observed at the JAZF1 locus: the
genomic interval covered by the credible set was reduced
from nine SNPs (mapping to 76 kb) on the basis of
European ancestry GWAS to just four SNPs (mapping to
16 kb) after trans-ethnic meta-analysis. The five excluded
variants show strong LD with the lead SNP in European
descent populations, but not in other ancestry groups (for
example r2<0.05 in CHB+JPT individuals from the
HapMap Project Consortium [14]).

Fig. 1 Fine-mapping of the KCNQ1 locus. Each point represents a
Metabochip SNP passing quality control in a meta-analysis of 34,840
T2D cases and 114,981 controls, primarily of European descent. Each
SNP is plotted with their p value (on a −log10 scale, y-axis) as a function
of genomic position (NCBI Build 36, x-axis). The lead SNP (rs163184) is
represented by the purple circle. The colour coding of all other SNPs

indicates LD with the lead SNP (estimated by CEU r2 from the 1000
Genomes Project, June 2010 release): red r2≥0.8, gold 0.6≤r2<0.8,
green 0.4≤r2<0.6, cyan 0.2≤r2<0.4, blue r2<0.2, and grey r2 unknown.
Recombination rates are estimated from the International HapMap Pro-
ject and gene annotations are taken from the University of California
Santa Cruz genome browser
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Incorporating Functional and Regulatory Annotation

With the exception of loci such as SLC30A8 and KCNJ11-
ABCC8, the majority of lead SNPs at T2D susceptibility loci
map to non-coding sequence. On the basis of reference panels
from the 1000 Genomes Project Consortium [16, 17•], there
has been little convincing evidence to date of coding variants
that could explain the association signals of lead GWAS
SNPs. One exception is at the CILP2 locus, where TM6SF2
E167K is in strong LD (r2=0.95) with the lead SNP
(rs10401969), although it is predicted to be tolerated by
SIFT [37].

Investigation of potential effects of lead GWAS SNPs
acting on T2D susceptibility through regulation of expression
has proved to be more insightful. Examination of eQTL data
for expression of transcripts in multiple tissues have provided
compelling evidence of association of coincidence of lead
GWAS SNPs and eSNPs for IRS1, JAZF1, CAMK1D,
KLF14, CCNE2, GRB14, ANK1 and BCAR1, providing evi-
dence for mechanisms through which effects on T2D suscep-
tibility are mediated at the corresponding loci [4, 8•].

The 99 % credible sets derived at GWAS loci on the basis
of trans-ethnic meta-analysis [10••] were interrogated for
overlap with sites of predicted regulatory function from the
ENCODE Project Consortium [43]. Credible set variants were
significantly enriched for overlap with sites of DNaseI hyper-
sensitivity (p=0.038) and transcription factor binding (p=
0.0060). At the JAZF1 locus, one variant in the 99 % credible
set (rs1635852) maps to a region of open chromatin with
enhancer activity, which is bound by several transcription
factors. This SNP has previously shown to have allelic differ-
ences in enhancer activity in pancreatic islets [47], and has
been associated withCREB5 expression, highlighting this as a
potential effector transcript though which T2D susceptibility
is mediated.

Conclusion

The last 10 years have seen substantial advances in the dis-
covery of loci contributing effects to T2D susceptibility, for
which much of the success can be attributed to large-scale
international collaborative efforts such as the DIAGRAM
Consortium [4, 8•] and the AGEN-T2D Consortium [7•]. At
the majority of these loci, the causal variants and transcripts
have yet to be determined. However, initial fine-mapping
efforts are providing the first invaluable insights into the
genetic architecture and pathophysiological basis of the dis-
ease. Future fine-mapping efforts will be enhanced by im-
provements in the efficiency of re-sequencing technologies,
facilitating large-scale targeted or whole-genome studies in
large sample sizes. Higher-density reference panels including
more individuals from more diverse population groups will

improve the utility of imputation in fine-mapping studies,
providing more complete coverage of genetic variation across
ethnicities without the need for re-sequencing. Advances in
statistical method development, incorporating improved un-
derstanding of the genome from the ENCODE Project
Consortium [42, 43], will augment causal variant localisation
and provide further acumen as to the mechanisms through
which GWAS loci influence T2D susceptibility, with the
ultimate goal of translation of these findings into clinical
practice and the resulting public health benefits.

Compliance with Ethics Guidelines

Conflict of Interest Andrew P. Morris declares that he has no conflict
of interest.

Human and Animal Rights and Informed Consent This article does
not contain any studies with human or animal subjects performed by any
of the authors.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

Papers of particular interest, published recently, have been
highlighted as:
• Of importance
••Of major importance

1. Zeggini E et al. Meta-analysis of genome-wide association data and
large-scale replication identifies additional susceptibility loci for
type 2 diabetes. Nat Genet. 2008;40:638–45.

2. Kong A et al. Parental origin of sequence variants associated with
complex diseases. Nature. 2009;462:868–74.

3. Dupuis J et al. New genetic loci implicated in fasting glucose
homeostasis and their impact on type 2 diabetes risk. Nat Genet.
2010;42:105–16.

4. Voight BF et al. Twelve type 2 diabetes susceptibility loci identified
through large-scale association analysis. Nat Genet. 2010;42:105–16.

5. Parra EJ et al. Genome-wide association study of type 2 diabetes in
a sample from Mexico City and a meta-analysis of a Mexican-
American sample from Starr County, Texas. Diabetologia. 2011;54:
2038–46.

6.• Kooner JS et al. Genome-wide association study in individuals of
South Asian ancestry identifies six new type 2 diabetes susceptibility
loci. Nat Genet. 2011;43:984–9. This manuscript reports the largest
meta-analysis of T2D susceptibility in South Asian populations.

7.• Cho YS et al. Meta-analysis of genome-wide association studies
identifies eight new loci for type 2 diabetes in East Asians. Nat
Genet. 2011;44:67–72. This manuscript reports the largest meta-
analysis of T2D susceptibility in East Asian populations.

8.• Morris AP et al. Large-scale association analysis provides insights
into the genetic architecture and pathophysiology of type 2 diabetes.
Nat Genet. 2012;44:981–90. This manuscript reports the largest
meta-analysis of T2D susceptibility in European ancestry
populations.

Curr Diab Rep (2014) 14:549 Page 7 of 8, 549



9. Palmer ND et al. A genome-wide association search for type 2
diabetes genes in African Americans. PLoS ONE. 2012;7:e29202.

10.•• Mahajan A et al. Genome-wide trans-ancestry meta-analysis pro-
vides insight into the genetic architecture of type 2 diabetes suscep-
tibility. Nat Genet. 2014;46:234–44. This manuscript reports the
largest trans-ethnic meta-analysis for T2D susceptibility, and dem-
onstrates the utility of this approach for fine-mapping complex trait
loci.

11. Nicolson TJ et al. Insulin storage and glucose homeostasis in mice
null for the granule zinc transporter ZnT8 and studies of the type 2
diabetes-associated variants. Diabetes. 2009;58:2070–83.

12. Hamming KS et al. Co-expression of the type 2 diabetes suscepti-
bility gene variants KCNJ11 E23K and ABCC8 S1369A alter the
ATP and sulfonylurea sensitivities of theATP-sensitive K+ channel.
Diabetes. 2009;58:2419–24.

13. Reich DE, Lander ES. On the allelic spectrum of human disease.
Trends Genet. 2001;17:502–10.

14. The International HapMap Consortium. A second generation hu-
man haplotype map of over 3.1 million SNPs. Nature. 2007;449:
851–61.

15. The International HapMap Consortium. Integrating common and
rare genetic variation in diverse human populations. Nature.
2010;467:52–8.

16. The 1000 Genomes Project Consortium. A map of human genome
variation from population-scale sequencing. Nature. 2010;467:
1061–73.

17.• The 1000 Genomes Project Consortium. An integrated map of
genetic variation from 1,092 human genomes. Nature. 2012;491:
56–65. This manuscript reports analysis of 1,094 whole genome
sequences from multiple ancestry groups and describes human
genetic variation across diverse populations.

18. Barrett JC, Cardon LR. Evaluating coverage of genome-wide asso-
ciation studies. Nat Genet. 2006;38:659–62.

19. Metzker ML. Sequencing technologies: the next generation. Nat
Rev Genet. 2010;11:31–46.

20. Davey JW et al. Genome-wide genetic marker discovery and
genotyping using next generation sequencing. Nat Rev Genet.
2011;12:499–510.

21. Voight BF et al. The metabochip, a custom genotyping array for
genetic studies of metabolic, cardiovascular and anthropometric
traits. PLoS Genet. 2012;8:e1002793.

22. Marchini J, Howie B. Genotype imputation for genome-wide asso-
ciation studies. Nat Rev Genet. 2010;11:499–511.

23.• Howie B et al. Fast and accurate genotype imputation in genome-
wide association studies through pre-phasing. Nat Genet. 2012;44:
955–9. This manuscript describes the most up to date approaches
for imputation into GWAS scaffolds.

24. Howie BN et al. A flexible and accurate genotype imputation
method for next generation genome-wide association studies.
PLoS Genet. 2009;5:e1000529.

25. Clarke GM et al. Basic statistical analysis in genetic case–control
studies. Nat Protoc. 2011;6:121–33.

26. Price AL et al. New approaches to population stratification in
genome-wide association studies. Nat Rev Genet. 2010;11:
459–63.

27. The Wellcome Trust Case Control Consortium. Genome-wide as-
sociation study of 14,000 cases of seven common diseases and 3,
000 shared controls. Nature. 2007;447:661–78.

28. Stephens M, Balding DJ. Bayesian statistical methods for genetic
association studies. Nat Rev Genet. 2009;10:681–90.

29. Wakefield J. A Bayesian measure of the probability of false discov-
ery in genetic epidemiology studies. Am J Hum Genet. 2007;81:
208–27.

30.•• Maller JB et al. Bayesian refinement of association signals for 14
loci in 3 common diseases. Nat Genet. 2012;44:1294–301. This
manuscript describes approaches for fine-mapping complex trait
loci with high-density reference panels.

31.• Yang J et al. Conditional and joint multiple-SNP analysis of GWAS
summary statistics identifies additional variants influencing com-
plex traits. Nat Genet. 2012;44:369–75. This manuscript describes
methodology to perform approximate conditional analysis,
allowing evaluation of independent association signals on the basis
of meta-analysis summary statistics.

32. Rosenberg NA et al. Genome-wide association studies in diverse
populations. Nat Rev Genet. 2010;11:356–66.

33. Zaitlen N et al. Leveraging genetic variability across populations
for the identification of causal variants. Am J HumGenet. 2010;86:
23–33.

34.•• Morris AP. Transethnic meta-analysis of genomewide association
studies. Genet Epidemiol. 2011;35:809–22. This manuscript de-
scribes methodology for trans-ethnic meta-analysis and fine
mapping.

35. Wang X et al. Comparing methods for performing trans-ethnic
meta-analysis of genome-wide association studies. Hum Mol
Genet. 2013;22:2302–11.

36. Adzhubei IA et al. A method and server for predicting damaging
missense mutations. Nat Methods. 2010;7:248–9.

37. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect
protein function. Nucleic Acids Res. 2003;31:3812–4.

38. Stranger BE et al. Population genomics of human gene expression.
Nat Genet. 2007;39:1217–24.

39. Dixon AL et al. A genome-wide association study of global gene
expression. Nat Genet. 2007;39:1202–7.

40. Dimas AS et al. Common regulatory variation impacts gene ex-
pression in a cell typed-dependent manner. Science. 2009;325:
1246–50.

41. Nica AC et al. The architecture of gene regulatory variation across
multiple human tissues: the MuTHER study. PLoS Genet. 2011;7:
e1002003.

42. The ENCODE Project Consortium. The ENCODE (ENCyclopedia
of DNA Elements) Project. Science. 2004;306:636–40.

43. The ENCODE Project Consortium. Identification and analysis of
functional elements in 1 % of the human genome by the ENCODE
pilot project. Nature. 2007;447:799–816.

44. Kellis M et al. Defining functional DNA elements in the human
genome. Proc Natl Acad Sci U S A. 2014;111:6131–8.

45. Shea J et al. Comparing strategies to fine-map the association of
common SNPs at chromosome 9p21 with type 2 diabetes and
myocardial infarction. Nat Genet. 2011;43:801–5.

46. Waters KM et al. Consistent association of type 2 diabetes risk
variants found in Europeans in diverse racial and ethnic groups.
PLoS Genet. 2010;26:e1001078.

47. Fogarty MP et al. Allele-specific transcriptional activity at type 2
diabetes-associated single nucleotide polymorphisms in regions of
pancreatic islet open chromatin at the JAZF1 locus. Diabetes.
2013;62:1756–62.

549, Page 8 of 8 Curr Diab Rep (2014) 14:549


	Fine Mapping of Type 2 Diabetes Susceptibility Loci
	Abstract
	Introduction
	Assaying Genetic Variation for the Fine Mapping of GWAS Loci
	Targeted Re-sequencing
	Custom-Designed Genotyping
	The Cardio-MetaboChip
	Exome Re-sequencing and Array Genotyping
	Imputation

	Methodology for Fine-Mapping T2D Susceptibility Loci
	Credible Sets of Causal Variants
	Assessing the Evidence for Multiple Association Signals at the Same Locus
	Trans-Ethnic Fine Mapping
	Incorporating Functional and Regulatory Annotation

	Progress in Fine-Mapping T2D Susceptibility Loci
	Evidence for Multiple Association Signals at T2D Susceptibility Loci
	Trans-Ethnic Fine Mapping
	Incorporating Functional and Regulatory Annotation

	Conclusion
	References
	Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance



