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Abstract Verstraete, Dehaene and DeMoor showed that each of the two-qubit states
can be generated from one of two canonical families of two-qubit states by means of
transformations preserving the tensor structure of the state space. Precisely, each of
such states can be generated from a three-parameter family of Bell-diagonal states or
from three-parameter rank-deficient states. In this paper, we show that this classifica-
tion of two-qubit states can be refined. In particular, we show that the latter canonical
family of states can be reduced to three fixed states and a two-parameter family of
two-qubit states. For this family of states, we provide a simple parametrization that
guarantees positive semidefiniteness of the states and enables easier calculation of
the Wootters concurrence and quantum discord. Moreover, we present a new general
parametrization of all two-qubit states generated from the canonical families of states
using sets of (pseudo)orthogonal four-vectors (frames). An advantage of the presented
approach lies in the fact that the standard conditions for positive semidefiniteness of
states are equivalent to (pseudo)orthogonality conditions for four-vectors serving as
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parameters (and appropriate conditions for parameters of the corresponding canonical
family of states).

Keywords Quantum computing · Quantum mechanics · Two-qubit state · Quantum
discord

1 Introduction

The vast majority of quantum information protocols exploit quantum correlations.
Various notions of quantumness of correlations exist in the literature (see, for example,
[1,2]).We restrict our attention to the simplest non-trivial case of two-partite system—
two-qubit system. The space of states of such a system is of the formH = HA⊗HB ,
whereHA = C

2 andHB = C
2 are spaces of states of systems A and B, respectively.

Therefore, the most general transformations considered in the context of quantum
correlations have to preserve the tensor structure of the spaceH . Such transformations
are of the form

ρ �→ (A ⊗ B)ρ(A ⊗ B)†, (1)

where A, B are 2×2 matrices.
Themain goal of our paper is to discuss the classification of all two-qubit states with

respect to transformations preserving the tensor product structure of the state space.
This last condition is important from the physical point of view since each partition
of a quantum system into subsystems corresponds to a decomposition of the space of
states into the tensor product of subsystem spaces. Also the entanglement of a physical
system is always relative to the tensor product decomposition [3]. As a consequence,
the following question arises: what is the structure of the two-qubit space of states if
we take into account transformations (1).

In [4], it was shown that each of two-qubit states can be generated from one of the
two canonical families of two-qubit states by means of transformations (1) (provided
that det A �= 0, det B �= 0). Precisely, each of such states can be generated froma three-
parameter family of Bell-diagonal states or from three-parameter rank-deficient states
(in [4] rank-deficient states are described by four parameters but one parameter can be
eliminated by normalization). However, as we show below, the classification given in
[4] can be refined. Since the Bell-diagonal states are widely discussed in the literature,
we focus our attention on the latter family of states. In particular, we will show that
this three-parameter family of states should be replaced by three fixed states and a two-
parameter family of states. We show also that this set of states is a minimal generating
set with respect to transformations (1). It is worth to note that, in contrast to the Bell-
diagonal states, in these cases it is impossible to depolarize both subsystem states
by means of transformations (1). We find an appropriate parametrization guaranteeing
positive semidefiniteness of states from the two-parameter family. Moreover, for those
states we give explicit (and compact) formulas for quantum discord.

Furthermore, for all canonical families of states we determine transformations leav-
ing them invariant (stability groups). This can be useful in further investigations of
the structure of state space. We give also a new general parametrization of all two-
qubit states generated from the corresponding canonical families. This parametrization
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employs (pseudo)orthogonal frames. For a general two-qubit state parametrized in this
way, the positive semidefiniteness conditions for the density matrix are equivalent to
(pseudo)orthogonality conditions for four-vectors serving as parameters (and appro-
priate conditions for parameters of the corresponding canonical family of states).

The proof of our classification theorem is based on the canonical homomorphism of
the SL(2,C) group onto the proper orthochronous Lorentz group. We utilize also the
theory of vector spaces in which the usual positive definite inner product is replaced
by an indefinite one. Thus, for the readers convenience, we have collected basic results
in “Appendix 1.”

2 Two-qubit states

We consider here two-qubit states, i.e., states acting in the Hilbert spaceH = HA ⊗
HB , whereHA = HB = C

2. An arbitrary 4×4matrix can bewritten in the following
form:

ρ = 1
4

3∑

μ,ν=0

Rμνσμ ⊗ σν, (2)

where σ0 = I , σi , i = 1, 2, 3, are Pauli matrices. Amatrix ρ corresponds to a quantum
state iff it is hermitian, positive semidefinite and has a unit trace. The hermiticity of
ρ is equivalent to the condition that the matrix R = [Rμν] is real. The unit trace of ρ

can be obtained by a proper normalization. However, checking if a matrix ρ is positive
semidefinite requires more effort. For example, one can use the following property
[5]: A hermitian matrix ρ is positive semidefinite iff all of the coefficients

s1 = Tr ρ, (3a)

s2 = 1
2

(
s1 Tr ρ − Tr ρ2), (3b)

s3 = 1
3

(
s2 Tr ρ − s1 Tr ρ

2 + Tr ρ3), (3c)

s4 = 1
4

(
s3 Tr ρ − s2 Tr ρ

2 + s1 Tr ρ
3 − Tr ρ4), (3d)

are nonnegative.
Notice that local transformations

ρ �→ (A ⊗ B)ρ(A ⊗ B)†, A, B ∈ SL(2,C), (4)

are completely positive maps, as they are directly written in the so-called Kraus form
and therefore preserve positive semidefiniteness of matrix ρ, and moreover, they pre-
serve the tensor product structure of the space H = HA ⊗ HB .

Now, it is well known that there exists a canonical homomorphism from SL(2,C)

group into Lorentz group. In fact, in this homomorphism we can obtain only proper
orthochronous Lorentz transformations, that is it is a homomorphism from SL(2,C)

onto L↑
+. LetΛ1 andΛ2 be images of A and B in this homomorphism, respectively.One

can easily see that the transformation (4) corresponds to the following transformation
of a matrix R defined in Eq. (2):
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R �→ Λ1RΛT
2 . (5)

Our main result is summarized in the following theorem:

Theorem 1 (Canonical form of two-qubit state) A two-qubit density matrix ρ written
in the form (2) can be generated via the transformation

ρ = (A ⊗ B)ρ̃(A ⊗ B)†

Tr
[
(A ⊗ B)ρ̃(A ⊗ B)†

] , A ⊗ B ∈ SL(2,C) ⊗ SL(2,C) (6)

from a density matrix ρ̃, where

ρ̃ = 1
4

3∑

μ,ν=0

Σμνσμ ⊗ σν, (7)

and Σ has one of the following forms:
Case I:

ΣI =

⎛

⎜⎜⎝

1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , or Σ ′
I =

⎛

⎜⎜⎝

1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , (8)

[Σ ′
I is obtained from (147)with y′ = 1, we separate this case for the reasons explained

in “Appendix 2”],
Case II:

ΣII =

⎛

⎜⎜⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , (9)

Case III:

ΣIII =

⎛

⎜⎜⎝

1 0 0 0
0 X 0 0
0 0 Y 0
0 0 0 Z

⎞

⎟⎟⎠ , (10)

where we can choose 1 ≥ X ≥ Y ≥ |Z | and the following conditions hold

X2 + Y 2 + Z2 ≤ 3, (11a)

X2 + Y 2 + Z2 + 2XY Z ≤ 1, (11b)

(1 − X − Y − Z)(1 − X+Y+Z)(1 + X − Y + Z)(1 + X + Y − Z) ≥ 0, (11c)

Case IV:

ΣIV =

⎛

⎜⎜⎝

1 0 0 y
0 x 0 0
0 0 x 0
y 0 0 2y − 1

⎞

⎟⎟⎠ , (12)
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with 0 ≤ x < 1, 0 < y < 1 − x.
The transformation (6) corresponds to the following transformation of Σ:

R = Λ1ΣΛT
2

(Λ1ΣΛT
2 )00

. (13)

The detailed proof of Theorem 1 is presented in “Appendix 2.”
Before further discussion of statesΣI,ΣII,ΣIII, andΣIV, let us recall some properties

of the canonical homomorphism SL(2,C) → L↑
+. For arbitrary four-vector a we

consider a 2 × 2 hermitian matrix aσ = aμσμ = a0 I + a · σ . It holds det(aσ) =
a0

2 − a2. For each A ∈ SL(2,C) we define a transformation

aσ �→ A(aσ)A† = a′σ. (14)

We see that det[A(aσ)A†] = det(aσ), therefore a′ = Λ(A)a, where Λ(A) ∈ L↑
+.

In this way, we have defined the canonical homomorphism A �→ Λ(A). Notice that
for arbitrary four-vectors a and b, the scalar product

ab = ημνa
μbν = 1

4

[
det(aσ + bσ) − det(aσ − bσ)

]
, (15)

where the Minkowski metric tensor [ημν] = diag(1,−1,−1,−1) is preserved under
the transformations (14).

Now, denoting

ẽ0 =

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ , ẽ1 =

⎛

⎜⎜⎝

0
1
0
0

⎞

⎟⎟⎠ , ẽ2 =

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠ , ẽ3 =

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠ , (16)

we have
σα = (ẽα)νσν, (17)

and
ẽα ẽβ = ημν(ẽ

α)μ(ẽβ)ν = ηαβ. (18)

Thus, the four-vectors {ẽα} form a (pseudo)orthogonal frame. Notice that α, β, . . .

enumerate four-vectors in a frame, while μ, ν, . . . enumerate components of four-
vectors. Furthermore, under the transformation (14)

ẽασ �→ eασ = A(ẽασ )A†, eα = Λ(A)ẽα (19)

and transformed four-vectors {eα} form a frame, too:

eαeβ = ηαβ. (20)

Notice the obvious fact that ẽ0 (and consequently e0) is a time-like four-vector,
while ẽi (and consequently ei ) are space-like four-vectors.
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Next, one-qubit state can be written as

uσ = uμσμ = u0σ0 + u · σ , (21)

with u0 = 1/2,u = n/2 andn2 ≤ 1.Note that for pure statesn2 = 1 and consequently
the four-vector uμ is light-like (with u0 > 0), while for mixed states uμ is time-like
(withu0 > 0, too). The space-like case ofuμ is excluded.Moreover, the transformation

A(uσ)A†

Tr[A(uσ)A†] = u′σ
Tr(u′σ)

, (22)

where A ∈ SL(2,C), u′ = Λ(A)u preserves the character of the state, i.e., if u is
light-like, then u′ is light-like, too, and similarly for time-like u.

Now, subsystems in two-qubit state are one-qubit states obtained by partial traces.
Therefore, their properties are the same as discussed above. In particular, for time-like
and light-like four-vectors uμ, we have Tr(uσ) �= 0, and consequently, the transfor-
mations (6) are well defined.

Note that under the transformation (6), the Wootters concurrence [6] changes as
[4]:

C(ρ) = C(ρ̃)

Tr
[
(A ⊗ B)ρ̃(A ⊗ B)†

] . (23)

Now, let us analyze the cases ΣI, ΣII, ΣIII, and ΣIV in detail.

2.1 The orbit generated by the states ΣI and Σ ′
I [Eq. (8)]

The density matrix corresponding to ΣI has the following form:

ρ̃I = 1
4σ0 ⊗ (σ0 + σ1). (24)

This is a mixed, separable state, and after the transformation (6), it takes the form

ρ̃I �→ ρI = (e0σ) ⊗ (
( f 0 + f 1)σ

)

4(e0)0
[
( f 0)0 + ( f 1)0

] , (25)

where four-vectors {eα} are defined by (19) and fulfill the condition (20), and the same
relations are fulfilled by four-vectors { f α}. Notice that e0 is a time-like four-vector,
while f 0 + f 1 is a light-like four-vector.

Equation (25) gives the general parametrization of the orbit generated by the state
ΣI. Similarly, the density matrix corresponding to Σ ′

I has the form

ρ̃′
I = 1

4 (σ0 + σ1) ⊗ σ0. (26)

This is also a mixed, separable state, and the transformation (6) transforms it to

ρ̃′
I �→ ρ′

I =
(
(e0 + e1)σ

) ⊗ (
f 0σ

)

4
[
(e0)0 + (e1)0

]
( f 0)0

, (27)
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where e0, e1, and f 0 have the same meaning as in (25). Here, e0 + e1 is a light-
like four-vector, while f 0 is a time-like four-vector. Equation (27) gives the general
parametrization of the orbit generated by the state Σ ′

I .
Notice that the states (25) and (27) have the form of the tensor product of a pure

and mixed state.

2.2 The orbit generated by the state ΣII [Eq. (9)]

The corresponding density matrix has the following form:

ρ̃II = 1
4 (σ0 + σ1) ⊗ (σ0 + σ1). (28)

This is a pure, separable state. Therefore, all states generated from ρ̃II via the trans-
formation (6)

ρ̃II �→ ρII = (aσ) ⊗ (bσ)

4a0b0
, (29)

where a = e0 + e1 and b = f 0 + f 1 are light-like and are also pure and separable.
This statement follows from Eq. (23) and from the observation that pure states are
transformed into pure ones under (6). The opposite statement is also true: all pure,
separable two-qubit states can be generated from ρ̃II via the transformation (6). Indeed,
any pure, separable, two-qubit state can be written as

1
2 (I + n · σ ) ⊗ 1

2 (I + ñ · σ ), n2 = ñ2 = 1. (30)

The above state corresponds to ρII given in (29) if we take a = ( 12 ,
n
2 ) and b =

( 12 ,
ñ
2 ). Observe that such defined a and b are light-like. Now, arbitrary light-like four-

vector can be generated via Lorentz transformation from the standard four-vector
(1, 1, 0, 0). This proves our statement.

2.3 The orbit generated by the state ΣIII [Eq. (10)]

The corresponding density matrix has the following form

ρ̃III(X,Y, Z) = 1
4

⎛

⎜⎜⎝

1 + Z 0 0 X − Y
0 1 − Z X + Y 0
0 X + Y 1 − Z 0

X − Y 0 0 1 + Z

⎞

⎟⎟⎠ , (31)

with the conditions (11) and 1 ≥ X ≥ Y ≥ |Z |. The concurrence of this state is equal
to

C(ρ̃III(X,Y, Z)) =
{
0 if 1 + X + Y + Z ≥ 0,
− 1

2 (1 + X + Y + Z) if 1 + X + Y + Z < 0.
(32)
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All states generated from ρ̃III via the transformation (6) can be written in the fol-
lowing form

ρ̃III �→ ρIII = 1
4N

[
(e0σ) ⊗ ( f 0σ) + X (e1σ) ⊗ ( f 1σ)

+Y (e2σ) ⊗ ( f 2σ) + Z(e3σ) ⊗ ( f 3σ)
]
, (33)

where four-vectors {eα} are defined by (19) and fulfill the condition (20), the same rela-
tions are fulfilled by four-vectors { f α}; N = (e0)0( f 0)0+X (e1)0( f 1)0+Y (e2)0( f 2)0

+ Z(e3)0( f 3)0 is a normalization factor.
Among the states (31) only four are pure, i.e., the states ρ̃III(−1,−1,−1),

ρ̃III(−1, 1, 1), ρ̃III(1,−1, 1), and ρ̃III(1, 1,−1). However, all of those states are con-
nected with each other by transformations of the form (6). Moreover, only for the state
ρ̃III(1, 1,−1) the condition 1 ≥ X ≥ Y ≥ |Z | is fulfilled. Therefore, all two-qubit
pure entangled states can be generated from ρ̃III(1, 1,−1).

Now, let us determine transformations that leave ΣIII invariant under the action of
the form given in Eq. (13). We assume that X �= −1, Y �= −1, Z �= −1 (the case
X = Y = Z = −1 corresponds to pure state, we have just considered it). Moreover,
in all of the cases considered below, the little group contains the following discrete
transformations:

CΣIIIC
T = ΣIII, (34)

where C has one of the following forms

C = diag{1, 1, 1, 1}, C = diag{1,−1,−1, 1}, (35a)

C = diag{1,−1, 1,−1}, C = diag{1, 1,−1,−1}. (35b)

Now, let us determine transformations that leave ΣIII invariant under the action
of the form given in Eq. (13). The simplest method to determine a continuous little
group is to find an infinitesimal form of the transformation, i.e., such infinitesimal
antisymmetric matrices A, Ã and such infinitesimal symmetric matrices S, S̃, that

(I + A + S)ΣIII(I + Ã + S̃)T = ΣIII, (36)

and

A =
(
0 0T

0 Ω

)
, S =

(
0 bT

b O

)
(37)

with 3× 3 antisymmetric matrix Ω , 3× 3 zero matrix O and with Ã, S̃ of analogous
form.

Solving the appropriate equations, we receive the following little groups: (i) X =
Y = Z = 0: little group consists of arbitrary rotations on the left and arbitrary rotations
on the right; (ii) X = Y = Z < 0: little group consists of all rotations on the left
and the same rotations on the right (diagonal SO(3) group); (iii) X , Y , and Z are
pairwise distinct: little group is trivial and contains only operations given in Eq. (35);
(iv) X = Y �= Z , Z = −1: in this case we have two subcases: (iva) X = Y = 0:
little group consists of Lorentz boosts in the direction of the third axis on the left and
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the same boosts on the right and arbitrary rotations in the X − Y plane on the left
and arbitrary rotations in the same plane on the right, (ivb) X = Y �= 0: little group
consists of Lorentz boosts in the direction of the third axis and rotations in the X − Y
plane on the left and the same boosts and rotations on the right; (v) X = Y �= Z ,
Z �= −1: in this case we also have two subcases: (va) X = Y = 0: little group
consists of rotations in the X − Y plane on the left and arbitrary rotations in the same
plane on the right, (vb) X = Y �= 0: little group consists of rotations in the X − Y
plane on the left and the same rotations on the right.

2.4 The orbit generated by the state ΣIV [Eq. (12)]

The corresponding density matrix has the following form

ρ̃IV(x, y) = 1
2

⎛

⎜⎜⎝

2y 0 0 0
0 1 − y x 0
0 x 1 − y 0
0 0 0 0

⎞

⎟⎟⎠ , (38)

where 0 ≤ x < 1, 0 < y < 1 − x . This is a mixed state, and its concurrence is equal
to

C(ρ̃IV(x, y)) = x . (39)

All states generated from ρ̃IV via the transformation (6) can be written in the fol-
lowing form

ρ̃IV �→ ρIV = 1
4N [(e0σ) ⊗ ( f 0σ) + x(e1σ) ⊗ ( f 1σ) + x(e2σ) ⊗ ( f 2σ)

+ (2y − 1)(e3σ) ⊗ ( f 3σ) + y(e0σ) ⊗ ( f 3σ) + y(e3σ) ⊗ ( f 0σ)],
(40)

where four-vectors {eα} are defined by (19) and fulfill the condition (20), and the
same relations are fulfilled by four-vectors { f α}; N = (e0)0( f 0)0 + x[(e1)0( f 1)0
+(e2)0( f 2)0]+(2y−1)(e3)0( f 3)0+y[(e0)0( f 3)0+(e3)0( f 0)0] is the normalization
factor.

Let us comment the relationship between our parametrization of the generating
matrix (38) and the corresponding form of rank-deficient generating family given in
[4]. First of all notice that matrices from this rank-deficient family in general are
not positive semidefinite. These matrices are positive semidefinite provided that the
parameters fulfill appropriate conditions (see Eq. 3). In such a case the rank-deficient
density matrices given in [4] form a 3D manifold which belongs to the orbit defined
by (40) (except some special cases belonging to the orbits generated from (8, 9)).
However, the generating set introduced in [4] is not a minimal one. Indeed, our set of
states defined in (38) form a 2D manifold belonging to the same orbit. We proved that
this is a minimal generating set (see “Appendix 2”).

For the state (38), we can also calculate a quantum discord [2,7] because this state
may have non-classical correlations beyond quantum entanglement. The concept of
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quantum discord is based on the idea that two equivalent ways of calculating mutual
information in classical information theory give different results when generalized
to quantum ground. Namely, let us consider two discrete random variables A and B
with values a and b occurring with probabilities pa and pb, respectively. The classi-
cal mutual information describing the total amount of correlations between random
variables A, B is defined as

Icl(A:B) = H(A) + H(B) − H(A, B), (41)

where H(A) = −∑
a pa log pa denotes the Shannon entropy and analogous formulas

hold for H(B) and for the joint entropy H(A, B) (all logarithms are base 2). For
classical random variables, a conditional probability pa|b is equal to pa|b = pab/pb.
Therefore, the classical mutual information can be written in an equivalent form

Jcl(A:B) = H(A) − H(A|B), (42)

where the conditional entropy H(A|B) = H(A, B) − H(B).
In the quantum case, we consider a two-partite system described by a density

matrix ρ with subsystems A, B with density matrices ρA = TrB(ρ), ρB = TrA(ρ).
The formula (41) is generalized in a straightforward way to

I (A:B) = S(ρA) + S(ρB) − S(ρ), (43)

where S(ρA) = −Tr(ρA log ρA) is the von Neumann entropy of a subsystem A and
analogous formulas holds for S(ρB), S(ρ). On the other hand, the quantum general-
ization of (42) cannot be done in a straightforward way, i.e.,

J (A:B) = S(ρA) − S(ρ|B), (44)

since the conditional quantum entropy S(ρ|B) depends on an observable we have
measured on B. Recall that after a non-selective projective measurement on B, the
system is transformed into a statistical ensemble {pk, ρk}, k = 1, 2, where

p1 = Tr[(IA ⊗ ΠB)ρ], ρ1 = (IA ⊗ ΠB)ρ(IA ⊗ ΠB)

p1
, (45)

and similar formulas for p2, ρ2 with ΠB replaced with Π⊥
B (here, ΠB and Π⊥

B are
orthogonal rank-one projectors). Therefore, we define the quantum version of (42) by
taking the least disturbing measurement, i.e.,

C (A:B) = max{ΠB } J (A:B) = S(ρA) − min{ΠB } S (ρ|{ΠB}) , (46)

where
S(ρ|{ΠB}) = p1S(ρ1) + p2S(ρ2) (47)

(compare (45)). Consequently, the quantum discord describing the amount of gen-
uinely quantum correlations is defined as

123



Classification of two-qubit states 4675

D(A:B) = I (A:B) − C (A:B) = S(ρB) − S(ρ) + min{ΠB } S(ρ|{ΠB}). (48)

The quantum discord D(A:B) can be seen as the minimal amount of correlations
which are lost when the non-selective von Neumann projective measurement is taken
on the system B [8,9]. Moreover, the quantum discord D(A:B) is a lower bound for
the global quantum correlations present in a bipartite state ρ [9].

Since evaluation of quantum discord involves a complicated optimization proce-
dure, the analytical expressions for quantum discord are known only for two-qubit
Bell-diagonal states [10], for seven-parameter two-qubit X states [11] (not always
correct exactly, but approximately correct with a very small absolute error [12]), for
two-mode Gaussian states [13,14], for a class of two-qubit states with parallel nonzero
Bloch vectors [15] and for two-qubit Werner and isotropic states [16]. Despite this
fact, quantum discord has been studied in different contexts [2].

Moreover, recently it has been shown that computing quantum discord is an NP-
complete problem [17].

However, we present here the calculation of the discord of the state (38) since our
method of calculation is simpler. First of all, eigenvalues of (38) are equal to:

λ0 = 0, λ1 = y, λ2 = 1
2 (1 − y − x), λ3 = 1

2 (1 − y + x), (49)

and
ρA = ρB = 1

2 (I + yσ3). (50)

Therefore

S(ρ) = 1− 1
2

[
2y log(2y)+(1−y−x) log(1−y−x)+(1−y+x) log(1−y+x)

]
, (51)

and

S(ρA) = S(ρB) = 1 − 1
2

[
(1 − y) log(1 − y) + (1 + y) log(1 + y)

]
. (52)

Now, to calculate the quantum conditional entropy, we need the most general pro-
jector ΠB . Such a projector can be parametrized as follows

ΠB ≡ Π(e) = 1
2 (I + e · σ ), (53)

where e is an arbitrary unit vector (e2 = 1). Notice that in [11,15,18] (and also, e.g.,
in [10]), the more complicated parametrization of this projector was used. It holds

Π⊥
B = Π(−e). (54)

Therefore

S(ρ|{ΠB}) = p(e)S
(
TrB[(I ⊗ Π(e))ρ(I ⊗ Π(e))]

p(e)

)

+ p(−e)S
(
TrB[(I ⊗ Π(−e))ρ(I ⊗ Π(−e))]

p(−e)

)
. (55)
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Simple calculation shows that in our case

p(e) = Tr
[
(I ⊗ Π(e))ρ

] = 1
2 (1 + e3y) (56)

and
p(−e) = Tr

[
(I ⊗ Π(−e))ρ

] = 1
2 (1 − e3y). (57)

Furthermore
TrB[(I ⊗ Π(e))ρ(I ⊗ Π(e))]

p(e)
= 1

2 (I + r(e) · σ ) (58)

with

r(e) =
( xe1
1 + e3y

,
xe2

1 + e3y
,
y + (2y − 1)e3

1 + e3y

)
. (59)

Eigenvalues of TrB[(I ⊗ Π(e))ρ(I ⊗ Π(e))]/p(e) and TrB[(I ⊗ Π(−e))ρ(I ⊗
Π(−e))]/p(−e) are equal to

λ±(e) = 1
2

[
1 ±

√
(1 − e2)x2 + [y + (2y − 1)e]2

1 + ey

]
(60)

and

λ±(−e) = 1
2

[
1 ±

√
(1 − e2)x2 + [y − (2y − 1)e]2

1 − ey

]
, (61)

respectively. S(ρ|Π(e)) and S(ρ|Π(−e)) depend only on e3, so, to simplify the nota-
tion, we have put e = e3. Therefore, we have to minimize, with respect to e ∈ 〈−1, 1〉,
the following function

S(ρ|{Π(e)}) = − 1
2 (1 + ey)

[
λ+(e) log λ+(e) + λ−(e) log λ−(e)

]

− 1
2 (1−ey)

[
λ+(−e) log λ+(−e)+λ−(−e) log λ−(−e)

]
. (62)

The value of e for which theminimum is achieved depends on x and y. The function
S(ρ|{Π(e)}) is symmetric with respect to e = 0, while its derivative (with respect to e)
is antisymmetric. Therefore, ∂eS(ρ|{Π(e)})∣∣e=0 = 0. The minimum can be achieved
only for e = 0or on the border for e = ±1.Thus, the triangle 0 ≤ x < 1, 0 < y < 1−x
is divided into two regions. In the first region, the minimum is achieved for e = 0
(region I in Fig. 1), while in the second region, the minimum is achieved for e = ±1
(region II in Fig. 1). Furthermore, the border between these two regions is described
by the equation

(1 −
√
x2 + y2) log(1 −

√
x2 + y2) + (1 + y) log(1 + y) − (1 − y) log(1 − y)

+ (1 +
√
x2 + y2) log(1 +

√
x2 + y2) − 2y log(2y) = 2. (63)
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Fig. 1 Density plot of the discord (65) in the parameter space (0 ≤ x < 1, 0 < y < 1 − x). I and II
denote regions in which S(ρ|{Π(e)}) given in (62) achieves minimum for different values of e. The border
between regions (dashed line) is described by Eq. (63). Solid lines represent level curves of the discord

The minima in corresponding regions are equal to

SI(e = 0) = 1 − 1
2

[
(1 −

√
x2 + y2) log(1 −

√
x2 + y2)

+ (1 +
√
x2 + y2) log(1 +

√
x2 + y2)

]
(64a)

and

SII(e = ±1) = − 1
2

[
(1 − y) log(1 − y) − (1 + y) log(1 + y) + 2y log(2y)

]
, (64b)

respectively. Evidently, SI and SII are equal on the curve given in Eq. (63).
Therefore, using the definition (48) and (51, 52) we can easily determine quantum

discord in both regions, I and II:

DI = 1 + 1
2

[
2y log(2y) + (1 − y − x) log(1 − y − x)+(1 − y + x) log(1 − y + x)

− (1−y) log(1 − y)−(1 + y) log(1 + y)−(1−
√
x2 + y2) log(1 −

√
x2 + y2)

− (1 +
√
x2 + y2) log(1 +

√
x2 + y2)

]
(65a)
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Fig. 2 Quantum discord (65) of the state (38) as a function of x and y where 0 ≤ x < 1, 0 < y < 1 − x .
Dashed line corresponds to the border between regions I and II from Fig. 1

and

DII = 1
2 (1− y− x) log(1− y− x)+ 1

2 (1− y+ x) log(1− y+ x)− (1− y) log(1− y).
(65b)

In Fig. 2, we have depicted the quantum discord as a function of x and y.
Applying the samemethods as in the previous subsection, we arrive at the following

form of little group of ΣIV: (i) when x = 0, little group consists of arbitrary rotations
around the third axis on the left and arbitrary rotations around the third axis on the
right and (ii) when x �= 0, little group consists of arbitrary rotations around the third
axis on the left and the same rotations on the right (diagonal SO(2) group).

3 Conclusions

We have thoroughly discussed the classification of two-qubit states with respect to
transformations (6). This problem for the first time was discussed in [4], where it was
shown that each two-qubit state can be obtained with the help of transformations (6)
from one of the two canonical families of states. One of these families corresponds to
Bell-diagonal states, while the other one is a three-parameter family of rank-deficient
states. We have shown that the latter family of states should be replaced by three fixed
states and a two-parameter family of states. We have shown also that this set of states
is a minimal generating set with respect to transformations (6). We have exhaustively
discussed this two-parameter family of states. In particular, we have found an explicit
and very simple parametrization guaranteeing positive semidefiniteness of states from
this two-parameter family of states. We have also calculated theWootters concurrence
and quantumdiscord for these states. It is worth noting that for these states the quantum
discord is zero if and only if the state is separable.
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Moreover, we have also found a new general parametrization of all two-qubit states
generated from the canonical families, where sets of (pseudo)orthogonal four-vectors
(frames) were used. An advantage of our parametrization lies in fact that the stan-
dard conditions for positive semidefiniteness of density matrices [5] are equivalent to
(pseudo)orthogonality conditions for four-vectors serving as parameters (and appro-
priate conditions for parameters of the corresponding canonical family of states).
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4 Appendix 1: Algebraic prerequisites

We use the results from [19]. Real Jordan blocks are defined as follows:

Jm(λ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 . . . 0
0 λ 1 . . . 0
...

... 0
...

... λ 1

0 0
... 0 λ

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (66)

Jm(λ) is a m × m real matrix, λ ∈ R; and

J2m(λ ± iμ) =

⎛

⎜⎜⎜⎜⎜⎝

j(λ,μ) I2 O . . . O
O j(λ,μ) I2 . . . O
...

O O . . . j(λ,μ) I2
O O . . . O j(λ,μ)

⎞

⎟⎟⎟⎟⎟⎠
, (67)

where

j(λ,μ) =
(

λ μ

−μ λ

)
, O =

(
0 0
0 0

)
, (68)

I2 is a 2× 2 identity matrix. J2m(λ ± iμ) is a 2m × 2m real matrix, λ,μ ∈ R, μ �= 0.

Theorem 2 (Real Jordan form) For any real, n×n matrix A, there exists an invertible
real matrix S such that

SAS−1 = J, (69)

where J (a real Jordan form of A) is a block diagonal matrix and has the form

J = Jm1(λ1)⊕Jm2(λ2)⊕· · ·⊕Jmr (λr )⊕J2mr+1(λr+1±iμr+1)⊕· · ·⊕J2mq (λq±iμq),

(70)
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where the λ j are real and the μ j are real and positive. λ j for 1 ≤ j ≤ r and λk ± iμk

for r + 1 ≤ k ≤ q are eigenvalues of the matrix A. The size of a Jordan block J j is
determined by the multiplicity of the corresponding eigenvalue in the characteristic
polynomial of A.

For a matrix J given in Eq. (70), we define a matrix

Pε,J = ε1P1 ⊕ · · · ⊕ εr Pr ⊕ Pr+1 ⊕ · · · ⊕ Pq , (71)

where ε = (ε1, . . . , εr ) and ε j = ±1 for each j . Matrices Pj have the following form

Pj =

⎛

⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1
0 0 . . . 1 0
...

...

0 1 . . . 0 0
1 0 . . . 0 0

⎞

⎟⎟⎟⎟⎟⎠
(72)

and are of the size equal to that of J j .
The following theorem (theorem 6.1.5 from [19]) holds:

Theorem 3 A pair (A, H) of real matrices, where H is real and invertible and A =
H−1ATH is r-unitary similar to a pair (J, Pε,J ), where J is a real Jordan form of
A, and Pε,J is given in Eq. (71). The signs ε j are determined uniquely by (A, H) up
to permutation of signs in the blocks of Pε,J corresponding to the Jordan blocks of J
with the same real eigenvalue and the same size.

A pair (A, H) is said to be r -unitary similar to a pair (J, Pε,J ) iff there exists a
non-degenerate real matrix S such that

A = S−1 J S, H = STPε,J S. (73)

5 Appendix 2: Canonical Form of Two-Qubit States

In this Appendix, we give a detailed proof of the Theorem 1.
Each two-qubit density matrix can be written in the form given in Eq. (2). Now,

define a real matrix
A = ηRηRT, (74)

where η = diag(+,−,−,−) is the Minkowski metric tensor. One can easily check
that it holds

A = η−1ATη = ηATη. (75)

Therefore, Theorem 3 implies that the pair (A, η) is r -unitary equivalent to a pair
(J, Pε,J ), that is, there exists a non-degenerate, real matrix S such that

A = S−1 J S, η = STPε,J S, (76)
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where J is a real Jordan form of A and Pε,J is given in Eq. (71). Below we give all
possible forms of J and corresponding Pε,J that are r -unitary equivalent to (A, η).

J(1) =

⎛

⎜⎜⎝

λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

⎞

⎟⎟⎠ , Pε,J(1) =

⎛

⎜⎜⎝

0 0 0 ε

0 0 ε 0
0 ε 0 0
ε 0 0 0

⎞

⎟⎟⎠ ; (77)

J(2) =

⎛

⎜⎜⎝

λ1 1 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ2

⎞

⎟⎟⎠ , Pε,J(2) =

⎛

⎜⎜⎝

0 0 ε1 0
0 ε1 0 0
ε1 0 0 0
0 0 0 ε2

⎞

⎟⎟⎠ ; (78)

J ′
(2) =

⎛

⎜⎜⎝

λ1 0 0 0
0 λ2 1 0
0 0 λ2 1
0 0 0 λ2

⎞

⎟⎟⎠ , Pε,J ′
(2)

=

⎛

⎜⎜⎝

ε1 0 0 0
0 0 0 ε2
0 0 ε2 0
0 ε2 0 0

⎞

⎟⎟⎠ ; (79)

J(3) =

⎛

⎜⎜⎝

λ1 1 0 0
0 λ1 0 0
0 0 λ2 1
0 0 0 λ2

⎞

⎟⎟⎠ , Pε,J(3) =

⎛

⎜⎜⎝

0 ε1 0 0
ε1 0 0 0
0 0 0 ε2
0 0 ε2 0

⎞

⎟⎟⎠ ; (80)

J(4) =

⎛

⎜⎜⎝

λ1 1 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

⎞

⎟⎟⎠ , Pε,J(4) =

⎛

⎜⎜⎝

0 ε1 0 0
ε1 0 0 0
0 0 ε2 0
0 0 0 ε3

⎞

⎟⎟⎠ ; (81)

J ′
(4) =

⎛

⎜⎜⎝

λ1 0 0 0
0 λ2 0 0
0 0 λ3 1
0 0 0 λ3

⎞

⎟⎟⎠ , Pε,J ′
(4)

=

⎛

⎜⎜⎝

ε1 0 0 0
0 ε2 0 0
0 0 0 ε3
0 0 ε3 0

⎞

⎟⎟⎠ ; (82)

J ′′
(4) =

⎛

⎜⎜⎝

λ1 0 0 0
0 λ2 1 0
0 0 λ2 0
0 0 0 λ3

⎞

⎟⎟⎠ , Pε,J ′′
(4)

=

⎛

⎜⎜⎝

ε1 0 0 0
0 0 ε2 0
0 ε2 0 0
0 0 0 ε3

⎞

⎟⎟⎠ ; (83)

J(5) =

⎛

⎜⎜⎝

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎞

⎟⎟⎠ , Pε,J(5) =

⎛

⎜⎜⎝

ε1 0 0 0
0 ε2 0 0
0 0 ε3 0
0 0 0 ε4

⎞

⎟⎟⎠ ; (84)

J(6) =

⎛

⎜⎜⎝

σ τ 1 0
−τ σ 0 1
0 0 σ τ

0 0 −τ σ

⎞

⎟⎟⎠ , Pε,J(6) =

⎛

⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟⎟⎠ ; (85)
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J(7) =

⎛

⎜⎜⎝

σ τ 0 0
−τ σ 0 0
0 0 σ ′ τ ′
0 0 −τ ′ σ ′

⎞

⎟⎟⎠ , Pε,J(7) =

⎛

⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ ; (86)

J(8) =

⎛

⎜⎜⎝

σ τ 0 0
−τ σ 0 0
0 0 λ 1
0 0 0 λ

⎞

⎟⎟⎠ , Pε,J(8) =

⎛

⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 ε

0 0 ε 0

⎞

⎟⎟⎠ ; (87)

J ′
(8) =

⎛

⎜⎜⎝

λ 1 0 0
0 λ 0 0
0 0 σ τ

0 0 −τ σ

⎞

⎟⎟⎠ , Pε,J ′
(8)

=

⎛

⎜⎜⎝

0 ε 0 0
ε 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ ; (88)

J(9) =

⎛

⎜⎜⎝

σ τ 0 0
−τ σ 0 0
0 0 λ1 0
0 0 0 λ2

⎞

⎟⎟⎠ , Pε,J(9) =

⎛

⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 ε1 0
0 0 0 ε2

⎞

⎟⎟⎠ ; (89)

J ′
(9) =

⎛

⎜⎜⎝

λ1 0 0 0
0 σ τ 0
0 −τ σ 0
0 0 0 λ2

⎞

⎟⎟⎠ , Pε,J ′
(9)

=

⎛

⎜⎜⎝

ε1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 ε2

⎞

⎟⎟⎠ ; (90)

J ′′
(9) =

⎛

⎜⎜⎝

λ1 0 0 0
0 λ2 0 0
0 0 σ τ

0 0 −τ σ

⎞

⎟⎟⎠ , Pε,J ′′
(9)

=

⎛

⎜⎜⎝

ε1 0 0 0
0 ε2 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ . (91)

In Eqs. (77–91), λi ∈ R, σ, τ, σ ′, τ ′ ∈ R, τ, τ ′ > 0 and εi = ±1.
Now, from Eq. (76), it follows that Pε,J is symmetric. Therefore, it can be diago-

nalized by the similarity transformation with the help of orthogonal matrix. That is,
for every Pε,J there exists such a diagonal matrix D and orthogonal matrix Ω̃ that

Pε,J = Ω̃TDΩ̃. (92)

Each Pε,J is congruent with η. Thus, inserting necessary permutations, we can
write

Pε,J = ΩTηΩ with ΩTΩ = I. (93)

Sylvester’s law of inertia implies that some of the possibilities from (77–91) are
excluded (signature of a bilinear formdeterminedby the corresponding Pε,J is different
from the signature of the form determined by η). In this way, we exclude cases with
numbers (1), (3), (6), (7), (8).
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Notice that STΩT = Λ is a Lorentz transformation because using Eqs. (76, 93),
we have

STΩTη(STΩT)T = ST(ΩTηΩ)S

= STPε,J S

= η. (94)

Therefore, Eqs. (74, 76, 93) implies

RηRT = ΛηΩ JΩTΛT. (95)

Now, we want to determine matrix Σ such that

ΣηΣT = ηΩ JΩT. (96)

For such a matrix, we have

RηRT = ΛΣηΣTΛT. (97)

Thus
R = ΛΣΛ̃T, (98)

where Λ, Λ̃ are Lorentz transformations. Thus, we want to determine the simplest
form of Σ from Eq. (96) in all of the cases given in Eqs. (77–91). In some of these
cases, e.g., (2) and (2)′, Jordan forms differ by the permutation of Jordan blocks. For
example

J ′
(2) = X J(2)X

T, XXT = I, (99)

where X is a permutation matrix. If follows that

Pε,J ′
(2)

= SPε,J(2) S
T. (100)

We have
Pε,J ′

(2)
= Ω ′T

(2)ηΩ ′
(2) and Pε,J(2) = ΩT

(2)ηΩ(2). (101)

Therefore, we can take Ω(2) = Ω ′
(2)X and consequently

Σ2ηΣT
2 = ηΩ2 J(2)Ω

T
2

= ηΩ ′
(2)X J(2)X

TΩ ′T
(2)

= ηΩ ′
(2) J

′
(2)Ω

′T
(2). (102)

On the other hand
Σ ′

2ηΣ ′T
2 = ηΩ ′

(2) J
′
(2)Ω

′T
(2). (103)

Thus, determining all possible Σ ′
2 we will also find Σ2 among them. Concluding,

we can restrict our attention to the unprimed cases only.
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Finally, only the cases (2), (4), (5), and (9) remain. We determine orthogonal matri-
ces Ω for these cases using Eq. (93). We get

Ω(2) = 1√
2

⎛

⎜⎜⎝

1 0 −1 0
0

√
2 0 0

1 0 1 0
0 0 0

√
2

⎞

⎟⎟⎠ , ε1 = ε2 = −1; (104)

Ω(4) = 1√
2

⎛

⎜⎜⎝

1 ε1 0 0
−ε1 1 0 0
0 0

√
2 0

0 0 0
√
2

⎞

⎟⎟⎠ , ε2 = ε3 = −1; (105)

Ω(5) = I, ε1 = 1, ε2 = ε3 = ε4 = −1; (106)

Ω(9) = 1√
2

⎛

⎜⎜⎝

1 1 0 0
−1 1 0 0
0 0

√
2 0

0 0 0
√
2

⎞

⎟⎟⎠ , ε1 = ε2 = −1. (107)

Now, we want to determine the correspondingΣ matrices with the help of Eq. (96).
This equation does not determine Σ uniquely. Note that if Σ is a solution of Eq. (96)
also

Σ ′ = ΣΛT, (108)

where Λ is a Lorentz transformation, is a solution. We use this freedom to determine
the simplest form of Σ . Matrix Σ corresponds to a two-qubit quantum state ρ via the
relation analogous to Eq. (2):

ρ = 1
4

3∑

μ,ν=0

Σμνσμ ⊗ σν. (109)

Therefore, even taking into account normalization, we have to assume that

Σ00 �= 0. (110)

Moreover, the reduced density matrices

ρB = TrA(ρ) = 1
2

3∑

ν=0

Σ0νσν, (111)

ρA = TrB(ρ) = 1
2

3∑

μ=0

Σμ0σμ (112)
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are positive semidefinite. It follows that

(
Σ00

)2 −
(
Σ01

)2 −
(
Σ02

)2 −
(
Σ03

)2 ≥ 0, (113)
(
Σ00

)2 −
(
Σ10

)2 −
(
Σ20

)2 −
(
Σ30

)2 ≥ 0. (114)

When we perform transformation defined in Eq. (108), rows of Σ transform like
four-vectors under Λ. Taking into account Eq. (113), we see that the first row of the
matrix Σ transforms under Lorentz transformations like a time-like or light-like four-
vector. Therefore, using the freedom guaranteed by Eq. (108), the form of Σ can be
reduced to:

Σ t =

⎛

⎜⎜⎝

α0 0 0 0
β0 β1 0 0
γ 0 γ 1 γ 2 0
δ0 δ1 δ2 δ3

⎞

⎟⎟⎠ , (115)

in a time-like case and it can be reduced to

Σ l =

⎛

⎜⎜⎝

α0 εα0 0 0
β0 β1 β2 0
γ 0 γ 1 γ 2 γ 3

δ0 δ1 δ2 δ3

⎞

⎟⎟⎠ , ε = ±1, (116)

in a light-like case. In both cases, (115) and (116), it holds [compare Eq. (114)]

0 �=
(
α0

)2 ≥
(
β0

)2 +
(
γ 0

)2 +
(
δ0

)2
. (117)

Now, we insert (115) and (116) into Eq. (96) forΩ and J given in Eqs. (78, 104) or
in Eqs. (81, 105) or in Eqs. (84, 106) or in Eqs. (89, 107). Solving obtained conditions
we arrive at the following possibilities:
Case number (2), time-like first row:

Σ t
(2) =

⎛

⎜⎜⎜⎜⎜⎝

√
λ1 0 0 0

1√
2λ1

ε

√
2λ21+1√
2λ1

0 0

0 ε
√

λ1√
2λ21+1

ε′λ1
√
2λ1√

2λ21+1
0

0 0 0 ε′′√λ2

⎞

⎟⎟⎟⎟⎟⎠
, (118)

λ1 ≥ 1√
2
, ε = ±1, ε′ = ±1, ε′′ = ±1; (119)

Case number (2), light-like first row: this case is contradictory.
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Case number (4), time-like first row:

Σ t
(4) =

⎛

⎜⎜⎜⎜⎝

√
λ1 + ε1

2 0 0 0
1

2
√

λ1+ ε1
2

ε λ1√
λ1+ ε1

2

0 0

0 0 ε′√λ2 0
0 0 0 ε′′√λ3

⎞

⎟⎟⎟⎟⎠
, (120)

λ1 ≥ 1−ε1√
2

, ε1 = ±1, ε = ±1, ε′ = ±1, ε′′ = ±1; (121)

Case number (4), light-like first row:

Σ l
4 =

⎛

⎜⎜⎝

α0 −α0 0 0
β0 β1 β2 0
γ 0 −γ 0 γ 2 γ 3

δ0 −δ0 δ2 δ3

⎞

⎟⎟⎠ , (122)

with the condition (117) and

λ1 = 1
2 , 1 + (β0)2 = (β1)2 + (β2)2, (123)

1
2α0 = β0 + β1, γ 2δ2 + γ 3δ3 = 0, (124)

λ2 = (γ 2)2 + (γ 3)2, λ3 = (δ2)2 + (δ3)2, (125)

γ 0δ2 = δ0γ 2. (126)

Case number (5), time-like first vector:

Σ t
5 =

⎛

⎜⎜⎝

√
λ1 0 0 0
0 ε

√
λ2 0 0

0 0 ε′√λ3 0
0 0 0 ε′′√λ4

⎞

⎟⎟⎠ , (127)

ε = ±1, ε′ = ±1, ε′′ = ±1; (128)

Case number (5), light-like first row:

Σ l
5 =

⎛

⎜⎜⎝

α0 εα0 0 0
β0 εβ0 β2 0
γ 0 εγ 0 γ 2 γ 3

δ0 εδ0 δ2 δ3

⎞

⎟⎟⎠ , (129)

with the conditions (117), λ1 = 0, and we have three possibilities in this case:

β2 = 0 γ 2δ2 + γ 3δ3 = 0 (130)

λ3 =
(
γ 2

)2 + (γ 3)2, λ4 =
(
δ2

)2 +
(
δ3

)2
, (131)
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or

γ 2 = 0, δ2 = 0, γ 3 = 0,
(
δ3

)2 = λ4, (132)

or

γ 2 = 0, δ2 = 0,
(
γ 3

)2 = λ3, δ3 = 0. (133)

Case number (9), time-like first row:

Σ t
9 =

⎛

⎜⎜⎜⎝

√
σ 0 0 0

τ√
σ

ε
√

σ 2+τ 2√
σ

0 0

0 0 ε′√λ1 0
0 0 0 ε′′√λ2

⎞

⎟⎟⎟⎠ , (134)

σ 2 ≥ τ 2, ε = ±1, ε′ = ±1, ε′′ = ±1; (135)

Case number (9), light-like first row:

Σ l
9 =

⎛

⎜⎜⎝

α0 εα0 0 0
β0 β1 β2 0
γ 0 εγ 0 γ 2 γ 3

δ0 εδ0 δ2 δ3

⎞

⎟⎟⎠ , (136)

with the conditions (117) and

σ = 0, τ �= 0 (137)

ε = ±1,
(
β0

)2 =
(
β1

)2 +
(
β2

)2
, (138)

τ = α0
(
β0 − εβ1

)
, γ 2δ2 + γ 3δ3 = 0 (139)

β2γ 2 = γ 0
(
β0 − εβ1

)
, β2δ2 = δ0

(
β0 − εβ1

)
, (140)

λ1 =
(
γ 2

)2 +
(
γ 3

)2
, λ2 =

(
δ2

)2 +
(
δ3

)2
. (141)

Now, all of the matrices (118, 120, 122, 127, 129, 134, 136) correspond to two-qubit
quantum states via the relation (109). Therefore, after the transformation

R = Λ1ΣΛT
2 , (142)

the state (109) changes according to Eq. (4). Thus, the matrix R from Eq. (142) has to
fulfill conditions analogous to Eqs. (113, 114). To proceed further, we takeΛ2 = I and
Λ1 = B(n, ξ) (boost in the direction of the vector n with rapidity ξ ) and calculate the
matrices B(x̂, ξ)Σ , B(ẑ, ξ)Σ . Next, the first rows of thematrices B(x̂, ξ)Σ , B(ẑ, ξ)Σ

should fulfill the condition analogous to (113) for all values of ξ . Using this method,
we can show that the matrices Σ t

2, Σ
l
4, Σ

t
9, Σ

l
9 cannot correspond to quantum states.

Moreover, we can restrict the domain of parameters in the cases Σ t
4 and Σ l

5. We can
show with the help of this method that in the case of Σ t

4 [Eq. (120)], we have to put
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ε1 = 1 (which implies that in this case λ1 ≥ 0) and in the case of Σ l
5 [Eq. (129)] we

have to put β2 = γ 2 = γ 3 = δ2 = δ3 = 0.
Let us remind here that our aim is to find the simplest, inequivalent Σs from which

all possible Rs corresponding to quantum states can be generated via Eq. (142). We
can use this observation to further simplify the remaining cases Σ t

4, Σ
t
5, Σ

l
5.

First of all, in Σ l
5 the first two columns are proportional and the last two columns

consist of zeros. Therefore, with the help of appropriate Lorentz transformation acting
on the left-hand side we can transform Σ l

5 to one of the following forms (depending
on the character of the first column):

Σ ll
5 =

⎛

⎜⎜⎝

α0 εα0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , ε = ±1, (143)

or

Σ lt
5 =

⎛

⎜⎜⎝

α0 εα0 0 0
εα0 α0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , ε = ±1. (144)

Next, taking

Λ1 = Λ2 =

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞

⎟⎟⎠ (145)

we can transform Σ ll
5 , Σ

lt
5 with ε = −1 to Σ ll

5 , Σ
lt
5 with ε = 1. Thus, from the case

(5) with the light-like first row [Eq. (129)], we obtain two inequivalent possibilities

Σ ll
5 = α0

⎛

⎜⎜⎝

1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , Σ lt
5 = α0

⎛

⎜⎜⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ . (146)

Σ t
4 can be re-parametrized in the following form:

Σ t
4 = a

⎛

⎜⎜⎝

1 0 0 0
y′ ε(1 − y′) 0 0
0 0 x ′ 0
0 0 0 z′

⎞

⎟⎟⎠ , (147)

where y′ = 1
2λ1+1 ∈ (0, 1〉, a =

√
λ1 + 1

2 ≥ 1√
2
, x ′ = ε′

√
λ2

λ1+1/2 ∈ R, z′

= ε′′
√

λ3
λ1+1/2 ∈ R.
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Σ t
5 can be rewritten as

Σ t
5 = b

⎛

⎜⎜⎝

1 0 0 0
0 X 0 0
0 0 Y 0
0 0 0 Z

⎞

⎟⎟⎠ , (148)

where b = √
λ1, X = ε

√
λ2
λ1
, Y = ε′

√
λ3
λ1
, Z = ε′′

√
λ4
λ1
.

Now, let us notice that matrices Σ and αΣ (α ∈ R, α �= 0) correspond to the
same density matrix ρ since we normalize ρ to unit trace. Therefore, we can omit the
overall factors in Eqs. (146, 147, 148). Next,Σs from Eqs. (146, 147, 148) correspond
to positive semidefinite matrices via the relation (109) iff all of the coefficients (3) are
nonnegative.

For Σ ll
5 and Σ lt

5 from Eq. (146), all of the coefficients (3) are identically nonnega-
tive.

For Σ t
4 from Eq. (147), nonnegativity of the coefficients (3) implies:

x ′ = z′ for ε = −1, (149)

x ′ = −z′ for ε = 1, (150)

and
x ′2 ≤ 1 − y′. (151)

Moreover, the cases with ε = 1 and ε = −1 [Eqs. (149, 150)] are connected via
the relation

Σ t
4

∣∣
ε=1Λ

T
2 = Σ t

4

∣∣
ε=−1, (152)

where Λ2 is given in Eq. (145). Therefore, the case 4 with the time-like first row
[Eq. (120)] reduces to (147) with ε = −1, z′ = x ′, and with the condition given in
Eq. (151). Therefore,

Σ t
4 =

⎛

⎜⎜⎝

1 0 0 0
0 x ′ 0 0
0 0 x ′ 0
y′ 0 0 y′ − 1

⎞

⎟⎟⎠ , (153)

with x ′ ∈ 〈−1, 1〉, 0 < y′ ≤ 1− x ′2, (note that (153) can be obtained from (147) with
the conditions (149, 150, 152) via the appropriate permutation).

Now, for y′ �= 1 we can symmetrize (153) via Lorentz boosts. That is why we
exclude the case y′ �= 1 and treat it separately [compare (8)]. The symmetrized form
of (153) is given in Eq. (12). Note that

x = 4x ′

y′ + 2
√
1 − y′ , y = y′

y′ + 2
√
1 − y′ . (154)

For Σ t
5 from Eq. (148), nonnegativity of the coefficients (3) implies the conditions

given in Eq. (11). Moreover, applying transformations from L↑
+, we can rearrange X ,

Y , Z in such a way that 1 ≥ X ≥ Y ≥ |Z |.
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This completes the proof of the Theorem 1.
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