

Received 4 January 2018 Accepted 2 February 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; benzothiazinones; envelope pucker.

CCDC references: 1821702; 1821701

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

Crystal structures of two 2,3-diaryl-2,3-dihydro-4*H*-1,3-benzothiazin-4-ones

Hemant P. Yennawar, ^a Michaela J. Buchwalter, ^b Baylee K. Colburn^b and Lee J. Silverberg^{b*}

^aThe Pennsylvania State University, Dept. Biochemistry and Molecular Biology, University Park, PA 16802, USA, and ^bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA. *Correspondence e-mail: ljs43@psu.edu

The syntheses and crystal structures of 2,3-bis[3-(trifluoromethyl)phenyl]-2,3dihydro-4H-1,3-benzothiazin-4-one (di-m-CF₃; C₂₂H₁₃F₆NOS) (1) and 2,3-bis(4methylphenyl)-2,3-dihydro-4H-1,3-benzothiazin-4-one (di-p-CH₃; C₂₂H₁₉NOS) (2) are reported. Each structure is racemic: the asymmetric unit of 2 consists of two molecules. In both 1 and 2, the six-membered 1,3-thiazine ring is close to an envelope conformation with the chiral C atom forming the flap. In 1, the 2-aryl group is pseudo-equatorial, while in 2 it is pseudo-axial. In 1, the pendant aryl rings form a V shape with an inter-centroid distance of 3.938 (3) Å and an acute dihedral angle of 48.3 (2)° between them. Both CF_3 groups are disordered over two orientations in 0.687 (19):0.313 (19) and 0.667 (16):0.33 (16) ratios. In each of the independent molecules of 2, the aryl rings are almost orthogonal to each other [dihedral angles = 85.50 (12) and $86.07 (11)^{\circ}$]. In both structures, the chiral C atom and the O atoms participate in C-H···O-type hydrogen bonding between symmetry-related molecules of 1 or the independent enantiomers in 2, forming chains along the *c*-axis direction in 1 and the *b*-axis direction in 2. Additionally, in 1, π - π contacts of both face-to-face and edge-to-face type, as well as π -H···O and π -H···F interactions are observed. In **2**, a racemic mixture of molecules forms layers in the *ac* plane linked by weak π - π and C-H··· π interactions.

1. Chemical context

N-Aryl (R^1 = aryl or heteroaryl) 2,3-dihydro-4*H*-1,3-benzothiazin-4-ones display antitumor (Feng *et al.*, 2015; Kamel *et al.*, 2010; Nofal *et al.*, 2014) and antimicrobial (Mandour *et al.*, 2007) activity, as well as inhibition of HIV-RT (Jeng *et al.*, 2015), and cyclooxygenase COX-2 enzyme (Zarghi *et al.*, 2009).

As part of our studies in this area, we have previously reported the crystal structures of a number of 2-aryl-3-phenyland 3-aryl-2-phenyl-2,3-dihydro-4*H*-1,3-benzothiazin-4-ones (Yennawar *et al.*, 2013, 2014, 2015, 2016). Herein we report the syntheses and crystal structures of two 2,3-diaryl-2,3-dihydro-

OPEN $\widehat{\ensuremath{\partial}}$ Access

4H-1,3-benzothiazin-4-ones (di-*m*-CF₃ **1**, and di-*p*-CH₃ **2**). Each has been synthesized using the same T3P/pyridine method that was used for the previously reported compounds.

2. Structural commentary

The title compounds are shown in Figs. 1 and 2. In 1, the 2-aryl group is pseudo-equatorial, unlike the structures that we have reported previously, while in 2 it is pseudo-axial (both independent molecules) (Yennawar et al., 2013, 2014, 2015, 2016). The benzothiazine rings in both 1 and 2 have envelope conformations with the chiral carbon atom forming the flap, with puckering parameters in 1 of Q = 0.596 (7) Å, $\theta =$ 118.2 (8)°, $\varphi = 22.7$ (9)° and in **2** (molecules A and B) Q =0.5490 (19) and 0.5715 (17) Å; $\theta = 63.5$ (2) and 116.31 (19)°; φ = 40.8 (2) and 223.5 (2)°, respectively. In 1, the pendant aryl rings form an approximate V shape with an acute dihedral angle of 48.3 (2)° and inter-centroid distance of 3.938 (3) Å between them. In each of the independent molecules of 2, the aryl rings are almost orthogonal to each other [dihedral angles = 85.50 (12) for the C1 molecule and 86.07 (11)° for the C23 molecule].

Figure 1

The molecular structure of 1 with displacement ellipsoids drawn at the 50% probability level. Disorder in the CF₃ groups is not shown for clarity.

		-		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1-H1\cdots O1^i$	0.98	2.61	3.360 (5)	133
$C10-H10\cdots O1^{i}$	0.93	2.59	3.370 (5)	141
$C14-H14\cdots F2A^{ii}$	0.93	2.59	3.27 (2)	130
$C18-H18\cdots F4^{ii}$	0.93	2.56	3.394 (10)	149
$C21 - H21 \cdots O1^i$	0.93	2.50	3.368 (6)	156

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$, (ii) x, y, z - 1.

Table 2

Hydrogen-bond geometry (Å, °) for 2.

Cg4 and Cg8 are the centroids of the C16–C21 and C31–C36 rings, respectively.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C1-H1\cdots O2$	0.98	2.46	3.399 (3)	161
$C23-H23\cdots O1^{i}$	0.98	2.34	3.268 (2)	158
$C28-H28\cdots Cg8^{ii}$	0.93	2.60	3.514 (3)	169
$C32-H32\cdots Cg4$	0.93	2.90	3.818 (2)	171

Symmetry codes: (i) x, y - 1, z; (ii) $x + \frac{3}{2}, y + \frac{1}{2}, z + 1$.

3. Supramolecular features

In the two structures, $C-H \cdots O$ interactions (Tables 1 and 2) in which the chiral carbon atom (C1 in 1; C1 and C23 in 2) donates its H atom to the oxygen atom of a symmetry related molecule in 1, or the independent enantiomer in 2. This results in infinite chains along the *c*- and *b*-axis directions, respec-

Figure 2

The two independent molecules of **2** showing the $C-H\cdots O$ interaction between the enantiomers. The displacement ellipsoids are drawn at the 50% probability level.

Figure 3

Packing diagram of **1** with red dotted lines representing $C-H\cdots O$ and green dotted lines showing $C(\pi)-H\cdots F$ contacts forming chains comprising of alternating enantiomers, along the *c*-axis direction.

tively. In **1**, these chains are further consolidated by π -H···O and π -H···F interactions [C10···O1ⁱ = 3.370 (5); C21···O1ⁱ = 3.368 (6) Å; symmetry code: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$], and π -H···F [C14···F2 A^{ii} = 3.27 (2); C18···F4ⁱⁱ = 3.394 (10) Å; symmetry code: (ii) x, y, z - 1] (Fig. 3), although in the latter the participating molecules reverse their donor and acceptor roles. Within these chains, the fused benzene rings of adjacent molecules exibit intermolecular face-to-face type π - π interactions [$Cg \cdots Cg = 3.9920$ (15) Å]. The structure also features interactions of edge-to-face type between the fused benzene and 2-aryl rings [$Cg \cdots Cg = 5.0083$ (14) Å]. In **2**, weak π - π [$Cg \cdots Cg = 4.735$ (2) Å] and C-H··· π interactions (Table 2) are present between the racemic mixture of molecules in *ac* plane (Fig. 4).

3.1. Database survey

Along with the structures we have previously published (Yennawar *et al.*, 2013, 2014, 2015, 2016), crystal structures of three other compounds with the same 2,3-dihydro-4*H*-1,3-benzothiazin-4-one core have been reported (Kröger *et al.* 2015; Wang *et al.*, 2017; Yin *et al.*, 2016). The structure reported

by Yin displays an envelope pucker with the 2-C atom as the flap for the thiazine ring that is sandwiched between two fused rings. CIFs were not available for the other two compounds.

4. Synthesis and crystallization

General: A two-necked 25 ml round-bottom flask was ovendried, cooled under N₂, and charged with a stir bar and the imine (6 mmol). Thiosalicylic acid (0.93 g, 6 mmol) and then 2methyltetrahydrofuran (2.3 mL) were added and the solution was stirred. Pyridine (1.95 mL, 24 mmol) and, finally, 2,4,6tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide (T3P) in 2-methyltetrahydrofuran (50 weight percent; 7.3 mL, 12 mmol) were added. The reaction was stirred at room temperature and followed by TLC. The mixture was poured into a separatory funnel with dichloromethane and distilled water. The layers were separated and the aqueous one was then extracted twice with dichloromethane. The organic layers

Figure 4

Packing diagram of **2** with red dotted lines representing $C-H\cdots O$ contacts forming chains along the *b*-axis direction comprising of alternating enantiomers.

research communications

 Table 3

 Experimental details.

	1	2
Crystal data		
Chemical formula	$C_{22}H_{13}F_6NOS$	$C_{22}H_{19}NOS$
M_r	453.39	345.44
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, C2/c
Temperature (K)	298	298
a, b, c (Å)	16.602 (6), 15.546 (6), 7.915 (3)	24.821 (7), 12.151 (3), 26.219 (7)
β (°)	99.344 (8)	112.470 (4)
$V(\dot{A}^3)$	2015.8 (13)	7307 (3)
Z	4	16
Radiation type	Μο <i>Κα</i>	Μο Κα
$\mu (\text{mm}^{-1})$	0.23	0.19
Crystal size (mm)	$0.10 \times 0.03 \times 0.02$	$0.29 \times 0.28 \times 0.2$
Data collection		
Diffractometer	Bruker SMART CCD	Bruker SMART CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2001)	Multi-scan (SADABS; Bruker, 2001)
T_{\min}, \hat{T}_{\max}	0.738, 0.9	0.100, 0.85
No. of measured, independent and	17435, 4882, 1964	26265, 8985, 5453
observed $[I > 2\sigma(I)]$ reflections		
R _{int}	0.062	0.046
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.663	0.668
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.111, 0.329, 0.91	0.058, 0.174, 0.96
No. of reflections	4882	8985
No. of parameters	337	455
No. of restraints	72	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.64, -0.49	0.32, -0.33

Computer programs: SMART and SAINT (Bruker, 2001), SHELXS97 and SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

were combined and washed with saturated sodium bicarbonate and then saturated sodium chloride. The organic layer was dried over sodium sulfate and concentrated under vacuum. The crude product was chromatographed on 30 g flash silica gel and then recrystallized.

2,3-Bis[3-(trifluoromethyl)phenyl]-2,3-dihydro-4H-1,3benzothiazin-4-one (1): Recrystallized from 2-propanol solution. Yield: 0.5199 g (19%), m.p. 392–393 K. Colorless blocks of **1** were grown by slow evaporation from cyclohexane solution.

2,3-Bis(4-methylphenyl)-2,3-dihydro-4*H*-1,3-benzothiazin-4-one **2**: Recrystallized from 2-propanol solution. Yield: 0.6288 g (30%), m.p. 412–414 K. Colorless needles of **2** were grown by slow evaporation from ethanol solution.

5. Refinement

Crystal data, data collection and structure refinement details for both compounds are summarized in Table 3. Both CF_3 groups of **1** are disordered over two orientations in a 0.687 (19):0.313 (19) ratio for the C15 group and a 0.667 (16):0.33 (16) ratio for the C22 group. The disorder was restrained using SIMU and DELU commands in *SHELX* for the twelve resulting atoms.

Acknowledgements

The authors thank Euticals Inc. for the gift of T3P.

References

- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Feng, J., Li, X., Shao, J., Zhu, M., Li, Y., Chen, H. & Li, X. (2015). *Chin. J. Org. Chem.* 35, 1370–1374.
- Kamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. M. (2010). *Eur. J. Med. Chem.* 45, 572–580.
- Kröger, D., Schlüter, T., Fischer, M., Geibel, I. & Martnes, J. (2015). ACS Comb. Chem. 17, 202-207.
- Mandour, A. H., El-Sawy, E. R., Ebid, M. S. & El-Sayed, Z. G. (2007). Egypt. J. Chem. 50, 555–568.
- Nofal, Z. M., Soliman, E. A., Abd El-Karim, S. S., El-Zahar, M. I., Srour, A. M., Sethumadhavan, S. & Maher, T. J. (2014). J. *Hetercyclic Chem.* 51, 1797–1806.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, H., Shi, T., Gao, W., Zhang, H., Wang, Y., Li, J., Hou, S., Chen, J., Peng, X. & Wang, Z. (2017). Org. Biomol. Chem. 15, 8013–8017.
- Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). *Acta Cryst.* E**70**, 0465.
- Yennawar, H., Cali, A. S., Xie, Y. & Silverberg, L. J. (2015). Acta Cryst. E71, 414–417.
- Yennawar, H. P., Coyle, D. J., Noble, D. J., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1108–1112.
- Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, 01679.
- Yin, Z., Zhu, M., Wei, S., Shao, J., Hou, Y., Chen, H. & Li, X. (2016). Bioorg. Med. Chem. Lett. 26, 1738–1741.
- Zarghi, A., Zebardast, T., Daraie, B. & Hedayati, M. (2009). Bioorg. Med. Chem. 17, 5369–5373.

Acta Cryst. (2018). E74, 363-366 [https://doi.org/10.1107/S2056989018002049]

Crystal structures of two 2,3-diaryl-2,3-dihydro-4H-1,3-benzothiazin-4-ones

Hemant P. Yennawar, Michaela J. Buchwalter, Baylee K. Colburn and Lee J. Silverberg

Computing details

For both structures, data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

2,3-Bis[3-(trifluoromethyl)phenyl]-2,3-dihydro-4H-1,3-benzothiazin-4-one (1)

Crystal data

C₂₂H₁₃F₆NOS $M_r = 453.39$ Monoclinic, P2₁/c a = 16.602 (6) Å b = 15.546 (6) Å c = 7.915 (3) Å $\beta = 99.344$ (8)° V = 2015.8 (13) Å³ Z = 4

Data collection

Bruker SMART CCD	17435 measured reflections
diffractometer	4882 independent reflections
Radiation source: fine-focus sealed tube	1964 reflections with $I > 2\sigma(I)$
Parallel-graphite monochromator	$R_{\rm int} = 0.062$
phi and ω scans	$\theta_{\rm max} = 28.1^{\circ}, \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -21 \rightarrow 18$
(SADABS; Bruker, 2001)	$k = -20 \rightarrow 20$
$T_{\min} = 0.738, \ T_{\max} = 0.9$	$l = -10 \rightarrow 9$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.111$ $wR(F^2) = 0.329$ S = 0.914882 reflections 337 parameters 72 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 920 $D_x = 1.494 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1716 reflections $\theta = 2.5-26.2^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 298 KNeedle, colorless $0.10 \times 0.03 \times 0.02 \text{ mm}$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.2P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.64$ e Å⁻³ $\Delta\rho_{min} = -0.49$ e Å⁻³ Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc²\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.118 (13)

Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (30 s exposure) covering -0.300° degrees in ω . The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The disorder in the two CF3 moieties were subject to SIMU and DELU Shelx restraints.

 $U_{\rm iso}*/U_{\rm eq}$ Occ. (<1) х Ζ v **S**1 0.92091 (9) 0.0814(2)0.1041(7)0.42945 (8) F1 1.0377 (5) 0.126(4)0.687 (19) 0.1828(9)0.6037(15)F1A 0.119(2)1.066(3)0.498(4)0.189(12)0.313 (19) F2 0.2537(9)1.1469 (13) 0.6119 (16) 0.177(6) 0.687 (19) F2A 0.234(3)1.071 (3) 0.628(3)0.189 (13) 0.313 (19) F3 0.1288(10)1.1503 (13) 0.4887 (16) 0.180(7)0.687 (19) F3A 0.188(3)1.1751 (9) 0.531(3)0.150(11) 0.313 (19) F4 0.0493 (6) 0.8379 (9) 0.3828 (12) 0.115 (3) 0.667 (16) F4A 0.811 (3) 0.023(2)0.324 (5) 0.203 (14) 0.333 (16) F5 -0.0427(5)0.7991 (8) 0.1878 (11) 0.131(3)0.667 (16) F5A -0.0572(10)0.881 (2) 0.175(3)0.151 (11) 0.333 (16) F6 -0.0248(11)0.225(2)0.667 (16) 0.9333(7)0.177 (9) F6A 0.0366(12)0.9396(11) 0.329(2)0.124(6)0.333 (16) 01 0.6905 (2) 0.0183(4)0.0887(10)0.2812(2)N1 0.2902(2)0.8323(2)0.0806(4)0.0675 (9) C1 0.3401 (3) 0.9014(3)0.1739 (6) 0.0669(11)H1 0.3577 0.8816 0.2917 0.080* C2 0.3238(3)0.7513 (3) 0.0694(5)0.0654 (11) C3 0.4140(3)0.7453(3)0.1057(5)0.0721 (12) C4 0.4660(3)0.8163(4)0.1067(7)0.0897(14)C5 0.5502(4)0.8019(5)0.1133(10)0.127(2)Н5 0.5847 0.1069 0.152* 0.8485 C6 0.5819(5)0.7210(7)0.1290 (10) 0.143(3)H6 0.6377 0.7128 0.1333 0.172* C7 0.5317(5)0.6513 (6) 0.1385 (10) 0.131(2)Η7 0.5537 0.5963 0.1530 0.157* C8 0.4488 (4) 0.6633 (4) 0.1265 (7) 0.0991 (17) H8 0.4153 0.6158 0.1324 0.119* 0.1814 (5) C9 0.2939 (3) 0.9826(2)0.0663 (11) C10 0.2680(3)1.0050(3)0.3319(6) 0.0705 (11) H10 0.2804 0.9698 0.4276 0.085* C11 0.2233(3)1.0795 (3) 0.3417 (6) 0.0715 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C12	0.2041 (3)	1.1332 (3)	0.2009 (7)	0.0801 (13)
H12	0.1730	1.1825	0.2077	0.096*
C13	0.2313 (3)	1.1127 (3)	0.0526 (6)	0.0848 (14)
H13	0.2207	1.1494	-0.0412	0.102*
C14	0.2745 (3)	1.0380 (3)	0.0413 (6)	0.0782 (13)
H14	0.2912	1.0239	-0.0619	0.094*
C15	0.1930 (5)	1.1029 (4)	0.5032 (9)	0.0955 (17)
C16	0.2051 (3)	0.8448 (2)	0.0275 (5)	0.0658 (11)
C17	0.1733 (3)	0.8600 (3)	-0.1429 (6)	0.0771 (13)
H17	0.2073	0.8583	-0.2252	0.092*
C18	0.0922 (3)	0.8776 (3)	-0.1905 (6)	0.0836 (13)
H18	0.0716	0.8886	-0.3048	0.100*
C19	0.0414 (3)	0.8791 (3)	-0.0713 (6)	0.0815 (13)
H19	-0.0137	0.8918	-0.1046	0.098*
C20	0.0712 (3)	0.8618 (3)	0.0984 (6)	0.0714 (12)
C21	0.1529 (3)	0.8443 (2)	0.1492 (5)	0.0652 (10)
H21	0.1730	0.8323	0.2634	0.078*
C22	0.0157 (4)	0.8648 (4)	0.2259 (9)	0.0948 (17)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S1	0.0821 (10)	0.0974 (11)	0.1418 (15)	-0.0087 (7)	0.0449 (9)	0.0044 (8)
F1	0.190 (10)	0.102 (5)	0.105 (6)	0.008 (5)	0.087 (7)	0.019 (4)
F1A	0.18 (2)	0.24 (3)	0.17 (2)	-0.03 (2)	0.109 (17)	-0.02(2)
F2	0.204 (10)	0.221 (13)	0.120 (7)	-0.074 (10)	0.069 (6)	-0.082 (8)
F2A	0.30 (4)	0.20 (3)	0.077 (11)	0.03 (3)	0.071 (18)	0.009 (16)
F3	0.180 (11)	0.231 (16)	0.151 (8)	0.115 (11)	0.095 (8)	0.052 (9)
F3A	0.26 (3)	0.062 (8)	0.151 (18)	0.008 (14)	0.09 (2)	-0.034 (8)
F4	0.107 (5)	0.182 (9)	0.064 (4)	0.017 (4)	0.034 (3)	0.003 (4)
F4A	0.21 (3)	0.23 (3)	0.19 (3)	0.05 (2)	0.09 (2)	0.09 (2)
F5	0.097 (5)	0.153 (8)	0.151 (6)	-0.041 (5)	0.047 (4)	0.000 (5)
F5A	0.071 (9)	0.23 (3)	0.159 (12)	0.029 (14)	0.043 (8)	0.01 (2)
F6	0.196 (17)	0.114 (6)	0.260 (18)	0.079 (8)	0.160 (15)	0.059 (8)
F6A	0.111 (11)	0.154 (13)	0.119 (10)	0.016 (9)	0.051 (8)	-0.026 (8)
01	0.095 (2)	0.0711 (19)	0.100 (3)	0.0082 (17)	0.0163 (19)	-0.0159 (17)
N1	0.065 (2)	0.064 (2)	0.076 (2)	0.0045 (16)	0.0163 (17)	-0.0079 (16)
C1	0.075 (3)	0.061 (2)	0.067 (3)	-0.0041 (19)	0.017 (2)	-0.0013 (19)
C2	0.074 (3)	0.062 (2)	0.062 (3)	0.009 (2)	0.016 (2)	-0.0102 (19)
C3	0.080 (3)	0.077 (3)	0.063 (3)	0.008 (2)	0.021 (2)	-0.005 (2)
C4	0.071 (3)	0.114 (4)	0.089 (4)	0.007 (3)	0.028 (2)	0.003 (3)
C5	0.073 (4)	0.142 (6)	0.169 (7)	0.007 (4)	0.029 (4)	0.008 (5)
C6	0.089 (5)	0.190 (9)	0.154 (7)	0.043 (6)	0.031 (4)	-0.004 (6)
C7	0.117 (6)	0.137 (6)	0.135 (6)	0.054 (5)	0.011 (4)	0.004 (5)
C8	0.102 (4)	0.104 (4)	0.089 (4)	0.037 (3)	0.008 (3)	0.003 (3)
C9	0.079 (3)	0.055 (2)	0.066 (3)	-0.0081 (19)	0.017 (2)	-0.0027 (18)
C10	0.080 (3)	0.063 (2)	0.072 (3)	-0.002 (2)	0.023 (2)	0.001 (2)
C11	0.084 (3)	0.062 (2)	0.071 (3)	0.003 (2)	0.021 (2)	0.000 (2)

C12	0.089 (3)	0.065 (3)	0.086 (3)	0.002 (2)	0.013 (2)	-0.003 (2)
C13	0.109 (4)	0.069 (3)	0.076 (3)	0.008 (3)	0.011 (3)	0.009 (2)
C14	0.095 (3)	0.080 (3)	0.061 (3)	-0.003 (2)	0.019 (2)	0.003 (2)
C15	0.123 (5)	0.086 (4)	0.085 (4)	0.012 (4)	0.039 (4)	0.005 (3)
C16	0.074 (3)	0.058 (2)	0.069 (3)	0.0075 (18)	0.020(2)	0.0015 (18)
C17	0.095 (4)	0.080 (3)	0.061 (3)	-0.003 (2)	0.025 (2)	-0.007(2)
C18	0.083 (3)	0.098 (4)	0.067 (3)	0.004 (3)	0.004 (2)	0.004 (2)
C19	0.071 (3)	0.086 (3)	0.084 (3)	0.003 (2)	0.003 (2)	0.005 (2)
C20	0.071 (3)	0.065 (2)	0.082 (3)	0.0051 (19)	0.021 (2)	0.002 (2)
C21	0.066 (3)	0.066 (2)	0.065 (3)	-0.0011 (18)	0.0158 (19)	-0.0019 (18)
C22	0.081 (4)	0.096 (4)	0.116 (5)	0.015 (3)	0.038 (3)	0.015 (4)

Geometric parameters (Å, °)

S1—C1	1.784 (4)	C6—C7	1.377 (10)
S1—C4	1.736 (6)	С7—Н7	0.9300
F1—C15	1.317 (11)	C7—C8	1.376 (9)
F1A-C15	1.35 (2)	C8—H8	0.9300
F2—C15	1.393 (12)	C9—C10	1.375 (6)
F2A—C15	1.20 (3)	C9—C14	1.400 (6)
F3—C15	1.285 (10)	C10—H10	0.9300
F3A-C15	1.151 (14)	C10—C11	1.384 (6)
F4—C22	1.343 (14)	C11—C12	1.388 (6)
F4A—C22	1.14 (3)	C11—C15	1.493 (7)
F5—C22	1.408 (9)	C12—H12	0.9300
F5A-C22	1.238 (17)	C12—C13	1.363 (7)
F6—C22	1.258 (10)	C13—H13	0.9300
F6A—C22	1.428 (15)	C13—C14	1.376 (7)
O1—C2	1.210 (5)	C14—H14	0.9300
N1—C1	1.478 (5)	C16—C17	1.387 (6)
N1-C2	1.385 (5)	C16—C21	1.397 (6)
N1-C16	1.420 (5)	C17—H17	0.9300
C1—H1	0.9800	C17—C18	1.364 (6)
C1—C9	1.483 (6)	C18—H18	0.9300
C2—C3	1.481 (6)	C18—C19	1.365 (7)
C3—C4	1.401 (7)	C19—H19	0.9300
С3—С8	1.398 (7)	C19—C20	1.380 (6)
C4—C5	1.408 (8)	C20—C21	1.378 (6)
С5—Н5	0.9300	C20—C22	1.473 (7)
C5—C6	1.362 (10)	C21—H21	0.9300
С6—Н6	0.9300		
C4—S1—C1	95.2 (2)	F2A—C15—F1	46 (2)
C2—N1—C1	119.6 (3)	F2A—C15—F1A	104 (2)
C2—N1—C16	119.8 (3)	F2A—C15—F2	56 (2)
C16—N1—C1	119.8 (3)	F2A—C15—F3	130.6 (15)
S1—C1—H1	107.7	F2A—C15—C11	112.4 (13)
N1—C1—S1	110.7 (3)	F3—C15—F1	108.0 (9)

N1—C1—H1	107.7	F3—C15—F1A	60.0 (16)
N1—C1—C9	112.8 (3)	F3—C15—F2	106.2 (10)
C9—C1—S1	109.9 (3)	F3—C15—C11	116.9 (8)
С9—С1—Н1	107.7	F3A—C15—F1	127.8 (12)
O1—C2—N1	120.8 (4)	F3A—C15—F1A	108.4 (19)
Q1—C2—C3	122.1 (4)	F3A—C15—F2	58.2 (17)
N1—C2—C3	116.7 (4)	F3A—C15—F2A	107 (2)
C4—C3—C2	123.6 (4)	F3A—C15—F3	50.8 (16)
C8-C3-C2	117.9 (5)	F3A—C15—C11	116.7(12)
C8-C3-C4	118 3 (5)	C17-C16-N1	1210(4)
$C_3 C_4 S_1$	110.5(5) 122.3(4)	C_{17} C_{16} C_{21}	121.0(4) 1103(4)
$C_3 = C_4 = S_1$	122.3(4) 118.9(5)	$C_{11} = C_{10} = C_{21}$	119.5(4)
$C_{5} = C_{4} = C_{5}$	110.9(5)	$C_{21} = C_{10} = M_1$	119.0 (4)
$C_{3} - C_{4} - S_{1}$	110.0 (5)	$C_{10} - C_{17} - H_{17}$	119.0
C4—C5—F15	119.4	C18 - C17 - C10	120.4 (4)
$C_0 = C_2 = C_4$	121.1 (/)	C18 - C17 - H17	119.8
C6—C5—H5	119.4		119.8
С5—С6—Н6	119.9	C17—C18—C19	120.4 (4)
C5—C6—C7	120.2 (7)	C19—C18—H18	119.8
С7—С6—Н6	119.9	C18—C19—H19	119.9
С6—С7—Н7	120.1	C18—C19—C20	120.3 (4)
C8—C7—C6	119.9 (7)	C20—C19—H19	119.9
С8—С7—Н7	120.1	C19—C20—C22	119.7 (5)
С3—С8—Н8	119.3	C21—C20—C19	120.2 (4)
C7—C8—C3	121.4 (7)	C21—C20—C22	120.1 (5)
С7—С8—Н8	119.3	C16—C21—H21	120.4
C10—C9—C1	119.1 (4)	C20-C21-C16	119.3 (4)
C10—C9—C14	117.8 (4)	C20—C21—H21	120.4
C14—C9—C1	123.1 (4)	F4—C22—F5	98.0 (8)
C9—C10—H10	119.8	F4—C22—F6A	72.6 (10)
C9-C10-C11	120.4 (4)	F4—C22—C20	114.3 (6)
С11—С10—Н10	119.8	F4A—C22—F4	32 (2)
C10-C11-C12	121 0 (4)	F4A - C22 - F5	67 (2)
C10-C11-C15	121.0(1) 120.6(4)	F4A = C22 = F5A	$\frac{111}{2}$
C_{12} C_{11} C_{15}	120.0(4) 118.4(4)	$F_{4A} = C_{22} = F_{6}$	111(2) 128.8(10)
C11 - C12 - H12	120.5	$F_{4A} = C_{22} = F_{6A}$	123.0(17)
$C_{12}^{12} = C_{12}^{112} = C_{11}^{112}$	120.3	$F_{4A} = C_{22} = 10 \Lambda$	105(2) 1157(17)
$C_{13} = C_{12} = C_{11}$	119.0 (4)	$F_{A} = C_{22} = C_{20}$	113.7(17) 142.0(7)
$C_{13} = C_{12} = H_{12}$	120.3	F3-C22-F0A	143.9(7)
C12—C13—H13	119.9	F5—C22—C20	108.4(6)
C12 - C13 - C14	120.2 (4)	F3A—C22—F4	120.9 (12)
C14—C13—H13	119.9	F5A—C22—F5	58.2 (14)
C9—C14—H14	119.2	F5A—C22—F6	48.3 (11)
C13—C14—C9	121.5 (4)	F5A—C22—F6A	99.0 (13)
C13—C14—H14	119.2	F5A—C22—C20	118.1 (11)
F1—C15—F1A	59.2 (19)	F6—C22—F4	114.2 (11)
F1—C15—F2	99.0 (10)	F6—C22—F5	105.3 (10)
F1—C15—C11	115.1 (6)	F6—C22—F6A	52.8 (8)
F1A—C15—F2	142.1 (11)	F6—C22—C20	114.6 (7)
F1A-C15-C11	107.7 (10)	F6A—C22—C20	107.1 (7)

F2—C15—C11	109.8 (6)		
S1—C1—C9—C10	-131.6 (4)	C10-C11-C15-F1A	-89(3)
S1-C1-C9-C14	49.1 (5)	C10-C11-C15-F2	85.3 (13)
S1-C4-C5-C6	-178.4(6)	C10-C11-C15-F2A	25 (3)
01 - C2 - C3 - C4	157.0 (5)	C10-C11-C15-F3	-153.7(14)
01-C2-C3-C8	-17.7(6)	C10-C11-C15-F3A	149 (3)
N1—C1—C9—C10	104.3 (4)	C11-C12-C13-C14	2.6 (7)
N1—C1—C9—C14	-75.1 (5)	C12—C11—C15—F1	153.3 (10)
N1—C2—C3—C4	-16.9 (6)	C12—C11—C15—F1A	90 (3)
N1—C2—C3—C8	168.4 (4)	C12—C11—C15—F2	-96.1 (13)
N1—C16—C17—C18	-175.7 (4)	C12—C11—C15—F2A	-157 (3)
N1—C16—C21—C20	176.0 (4)	C12—C11—C15—F3	24.9 (15)
C1—S1—C4—C3	29.4 (5)	C12—C11—C15—F3A	-33 (3)
C1—S1—C4—C5	-156.4 (5)	C12—C13—C14—C9	-2.1(7)
C1—N1—C2—O1	168.2 (4)	C14—C9—C10—C11	0.7 (6)
C1—N1—C2—C3	-17.8 (5)	C15—C11—C12—C13	180.0 (5)
C1—N1—C16—C17	105.6 (4)	C16—N1—C1—S1	-131.0(3)
C1—N1—C16—C21	-72.5 (5)	C16—N1—C1—C9	-7.3 (5)
C1—C9—C10—C11	-178.7 (4)	C16—N1—C2—O1	-1.6 (6)
C1—C9—C14—C13	179.8 (4)	C16—N1—C2—C3	172.4 (4)
C2—N1—C1—S1	59.2 (4)	C16—C17—C18—C19	-1.0 (7)
C2—N1—C1—C9	-177.1 (3)	C17—C16—C21—C20	-2.1 (6)
C2-N1-C16-C17	-84.7 (5)	C17—C18—C19—C20	-0.8 (7)
C2—N1—C16—C21	97.2 (5)	C18—C19—C20—C21	1.1 (7)
C2-C3-C4-S1	5.1 (7)	C18—C19—C20—C22	179.2 (5)
C2—C3—C4—C5	-169.1 (5)	C19—C20—C21—C16	0.4 (6)
C2—C3—C8—C7	171.5 (5)	C19—C20—C22—F4	173.1 (8)
C3—C4—C5—C6	-4.0 (10)	C19—C20—C22—F4A	137 (3)
C4—S1—C1—N1	-57.7 (3)	C19—C20—C22—F5	65.0 (9)
C4—S1—C1—C9	177.0 (3)	C19—C20—C22—F5A	2 (2)
C4—C3—C8—C7	-3.5 (8)	C19—C20—C22—F6	-52.4 (14)
C4—C5—C6—C7	0.1 (12)	C19—C20—C22—F6A	-108.7 (11)
C5—C6—C7—C8	2.1 (12)	C21—C16—C17—C18	2.4 (6)
C6—C7—C8—C3	-0.4 (10)	C21—C20—C22—F4	-8.8 (10)
C8—C3—C4—S1	179.8 (4)	C21—C20—C22—F4A	-45 (3)
C8—C3—C4—C5	5.6 (8)	C21—C20—C22—F5	-116.9 (8)
C9-C10-C11-C12	-0.2 (7)	C21—C20—C22—F5A	180 (2)
C9—C10—C11—C15	178.3 (5)	C21-C20-C22-F6	125.8 (13)
C10—C9—C14—C13	0.4 (7)	C21—C20—C22—F6A	69.5 (11)
C10-C11-C12-C13	-1.5 (7)	C22—C20—C21—C16	-177.7 (4)
C10-C11-C15-F1	-25.3 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C1—H1…O1 ⁱ	0.98	2.61	3.360 (5)	133
C10—H10…O1 ⁱ	0.93	2.59	3.370 (5)	141

			supporting	giniornation
C14—H14…F2A ⁱⁱ	0.93	2.59	3.27 (2)	130
C18—H18…F4 ⁱⁱ	0.93	2.56	3.394 (10)	149
C21—H21…O1 ⁱ	0.93	2.50	3.368 (6)	156

F(000) = 2912

 $\theta = 2.2 - 26.5^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$

Block, colorless $0.29 \times 0.28 \times 0.2$ mm

T = 298 K

 $D_{\rm x} = 1.256 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6387 reflections

cupporting information

Symmetry codes: (i) *x*, -*y*+3/2, *z*+1/2; (ii) *x*, *y*, *z*-1.

2,3-Bis(4-methylphenyl)-2,3-dihydro-4H-1,3-benzothiazin-4-one (2)

Crystal data

C₂₂H₁₉NOS $M_r = 345.44$ Monoclinic, C2/c a = 24.821 (7) Å b = 12.151 (3) Å c = 26.219 (7) Å $\beta = 112.470$ (4)° V = 7307 (3) Å³ Z = 16

Data collection

Bruker SMART CCD	26265 measured reflections
diffractometer	8985 independent reflections
Radiation source: fine-focus sealed tube	5453 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.046$
Detector resolution: 8.34 pixels mm ⁻¹	$\theta_{\text{max}} = 28.3^{\circ}, \theta_{\text{min}} = 1.7^{\circ}$
phi and ω scans	$h = -32 \rightarrow 30$
Absorption correction: multi-scan	$k = -16 \rightarrow 11$
(SADABS; Bruker, 2001)	$l = -34 \rightarrow 34$
$T_{\min} = 0.100, \ T_{\max} = 0.85$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.174$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 0.96 8985 reflections	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
455 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\text{max}} = 0.32 \text{ e A}^{3}$ $\Delta \rho_{\text{min}} = -0.33 \text{ e } \text{Å}^{-3}$

Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω . The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.69203 (9)	0.43913 (16)	0.38181 (8)	0.0537 (5)
H1	0.6853	0.3881	0.4077	0.064*
C2	0.71007 (9)	0.64058 (16)	0.38441 (9)	0.0554 (5)
C3	0.74576 (9)	0.62403 (17)	0.35099 (9)	0.0583 (5)
C4	0.77404 (9)	0.52539 (19)	0.34957 (9)	0.0620 (6)
C5	0.81323 (11)	0.5215 (3)	0.32349 (12)	0.0829 (8)
H5	0.8327	0.4562	0.3234	0.099*
C6	0.82346 (14)	0.6118 (3)	0.29810 (13)	0.0991 (10)
H6	0.8499	0.6078	0.2808	0.119*
C7	0.79488 (14)	0.7100 (3)	0.29771 (12)	0.0967 (9)
H7	0.8015	0.7714	0.2797	0.116*
C8	0.75636 (12)	0.7158 (2)	0.32431 (10)	0.0754 (7)
H8	0.7373	0.7817	0.3244	0.090*
C9	0.64495 (8)	0.41536 (15)	0.32575 (8)	0.0505 (5)
C10	0.63218 (10)	0.30700 (17)	0.31082 (9)	0.0625 (6)
H10	0.6523	0.2517	0.3352	0.075*
C11	0.59011 (10)	0.2790 (2)	0.26034 (10)	0.0718 (6)
H11	0.5819	0.2050	0.2519	0.086*
C12	0.56009 (9)	0.3567 (2)	0.22225 (10)	0.0695 (6)
C13	0.57233 (12)	0.4638 (2)	0.23774 (12)	0.0974 (10)
H13	0.5523	0.5187	0.2131	0.117*
C14	0.61355 (11)	0.4943 (2)	0.28892 (12)	0.0887 (9)
H14	0.6198	0.5684	0.2982	0.106*
C15	0.51477 (12)	0.3251 (3)	0.16630 (11)	0.1052 (10)
H15A	0.5279	0.2617	0.1525	0.158*
H15B	0.5091	0.3853	0.1411	0.158*
H15C	0.4786	0.3085	0.1699	0.158*
C16	0.66457 (9)	0.56341 (15)	0.44320 (9)	0.0524 (5)
C17	0.69408 (9)	0.61834 (16)	0.49170 (9)	0.0568 (5)
H17	0.7309	0.6469	0.4985	0.068*
C18	0.66956 (10)	0.63141 (18)	0.53031 (9)	0.0622 (6)
H18	0.6902	0.6684	0.5630	0.075*
C19	0.61458 (11)	0.59039 (19)	0.52124 (11)	0.0691 (6)
C20	0.58631 (11)	0.5337 (2)	0.47281 (12)	0.0772 (7)
H20	0.5496	0.5045	0.4661	0.093*
C21	0.61053 (10)	0.51887 (19)	0.43411 (11)	0.0699 (6)
H21	0.5907	0.4792	0.4021	0.084*
C22	0.58743 (14)	0.6089 (3)	0.56288 (13)	0.1016 (10)
H22A	0.6164	0.5989	0.5994	0.152*
H22B	0.5563	0.5572	0.5566	0.152*
H22C	0.5723	0.6825	0.5592	0.152*
N1	0.69068 (7)	0.54944 (13)	0.40328 (7)	0.0539 (4)
01	0.69975 (7)	0.73376 (11)	0.39598 (7)	0.0718 (4)
S1	0.76424 (2)	0.40690 (5)	0.38303 (3)	0.0683 (2)
C23	0.63847 (8)	-0.06355 (14)	0.43575 (7)	0.0456 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H23	0.6665	-0.1129	0.4294	0.055*
C24	0.63691 (9)	0.13713 (15)	0.45273 (8)	0.0496 (5)
C25	0.60023 (8)	0.11523 (15)	0.48487 (8)	0.0483 (4)
C26	0.60103 (8)	0.01584 (16)	0.51208 (7)	0.0489 (5)
C27	0.57311 (10)	0.0090 (2)	0.54882 (8)	0.0626 (6)
H27	0.5749	-0.0562	0.5680	0.075*
C28	0.54295 (10)	0.0972 (2)	0.55722 (10)	0.0737 (7)
H28	0.5245	0.0915	0.5820	0.088*
C29	0.53988 (10)	0.1944 (2)	0.52887 (10)	0.0754 (7)
H29	0.5185	0.2534	0.5338	0.091*
C30	0.56844 (9)	0.20366 (19)	0.49332 (9)	0.0633 (6)
H30	0.5666	0.2695	0.4746	0.076*
C31	0.57976 (8)	-0.08712 (14)	0.39016 (7)	0.0439 (4)
C32	0.56036 (9)	-0.19472 (16)	0.38227 (8)	0.0548 (5)
H32	0.5833	-0.2498	0.4048	0.066*
C33	0.50727 (9)	-0.22179 (19)	0.34125 (9)	0.0617 (5)
H33	0.4952	-0.2948	0.3370	0.074*
C34	0.47204 (9)	-0.14356 (19)	0.30666 (8)	0.0563 (5)
C35	0.49174 (9)	-0.03677 (19)	0.31450 (8)	0.0615 (5)
H35	0.4686	0.0179	0.2917	0.074*
C36	0.54490 (9)	-0.00759 (16)	0.35518 (8)	0.0545 (5)
H36	0.5571	0.0654	0.3589	0.065*
C37	0.41430 (10)	-0.1747 (2)	0.26196 (9)	0.0809 (8)
H37A	0.4210	-0.2060	0.2313	0.121*
H37B	0.3904	-0.1102	0.2500	0.121*
H37C	0.3949	-0.2275	0.2762	0.121*
C38	0.70360 (8)	0.06513 (15)	0.41266 (8)	0.0473 (4)
C39	0.69724 (9)	0.01669 (17)	0.36311 (8)	0.0576 (5)
H39	0.6649	-0.0271	0.3444	0.069*
C40	0.73937 (11)	0.0338 (2)	0.34142 (10)	0.0724 (7)
H40	0.7351	0.0005	0.3082	0.087*
C41	0.78753 (11)	0.0989 (2)	0.36779 (12)	0.0747 (7)
C42	0.79376 (10)	0.14326 (19)	0.41859 (11)	0.0704 (6)
H42	0.8267	0.1850	0.4380	0.084*
C43	0.75286 (9)	0.12709 (16)	0.44072 (9)	0.0573 (5)
H43	0.7581	0.1578	0.4748	0.069*
C44	0.83113 (14)	0.1224 (3)	0.34151 (15)	0.1201 (12)
H44A	0.8307	0.0632	0.3171	0.180*
H44B	0.8694	0.1292	0.3698	0.180*
H44C	0.8208	0.1899	0.3210	0.180*
N2	0.66062 (7)	0.04828 (12)	0.43611 (6)	0.0465 (4)
O2	0.64754 (7)	0.23142 (11)	0.44332 (6)	0.0678 (4)
S2	0.63943 (2)	-0.09836 (4)	0.50364 (2)	0.05417 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0599 (12)	0.0329 (10)	0.0653 (12)	0.0020 (9)	0.0204 (10)	-0.0012 (8)

C2	0.0560 (12)	0.0385 (11)	0.0750 (14)	-0.0016 (9)	0.0286 (11)	-0.0044 (10)
C3	0.0598 (12)	0.0487 (12)	0.0675 (13)	-0.0064 (10)	0.0257 (11)	-0.0112 (10)
C4	0.0472 (11)	0.0687 (15)	0.0640 (13)	-0.0005 (10)	0.0145 (10)	-0.0168 (11)
C5	0.0703 (16)	0.093 (2)	0.0903 (19)	0.0011 (14)	0.0363 (14)	-0.0239 (16)
C6	0.097 (2)	0.121 (3)	0.098 (2)	-0.016 (2)	0.0573 (19)	-0.025 (2)
C7	0.112 (2)	0.102 (2)	0.093 (2)	-0.028(2)	0.0587 (18)	-0.0087 (17)
C8	0.0900 (17)	0.0667 (16)	0.0801 (16)	-0.0135 (13)	0.0443 (14)	-0.0061 (12)
C9	0.0505 (11)	0.0419 (11)	0.0613 (12)	0.0008 (8)	0.0240 (9)	0.0054 (9)
C10	0.0744 (14)	0.0440 (12)	0.0622 (13)	0.0062 (10)	0.0184 (11)	-0.0029(9)
C11	0.0758 (15)	0.0628 (15)	0.0705 (15)	0.0017 (12)	0.0210 (12)	-0.0155 (12)
C12	0.0528 (13)	0.0935 (19)	0.0638 (14)	-0.0045 (13)	0.0242 (11)	0.0013 (13)
C13	0.0771 (17)	0.086 (2)	0.097 (2)	-0.0040 (15)	-0.0033 (15)	0.0405 (16)
C14	0.0775 (16)	0.0513 (14)	0.103 (2)	-0.0058(12)	-0.0039 (15)	0.0209 (13)
C15	0.0727 (17)	0.162 (3)	0.0672 (16)	-0.0157 (19)	0.0113 (14)	-0.0036 (18)
C16	0.0529 (11)	0.0340 (10)	0.0706 (13)	0.0001 (9)	0.0240 (10)	0.0026 (9)
C17	0.0518 (11)	0.0449 (11)	0.0717 (14)	0.0029 (9)	0.0214 (11)	0.0034 (10)
C18	0.0692 (14)	0.0507 (13)	0.0652 (13)	0.0101 (11)	0.0241 (11)	0.0056 (10)
C19	0.0734 (15)	0.0563 (14)	0.0862 (17)	0.0118 (12)	0.0401 (14)	0.0145 (12)
C20	0.0647 (14)	0.0688 (16)	0.107 (2)	-0.0104 (13)	0.0428 (15)	0.0027 (15)
C21	0.0627 (14)	0.0587 (14)	0.0902 (17)	-0.0162 (11)	0.0314 (13)	-0.0136 (12)
C22	0.110 (2)	0.113 (3)	0.105 (2)	0.0228 (19)	0.069 (2)	0.0217 (18)
N1	0.0616 (10)	0.0333 (9)	0.0711 (11)	-0.0028 (7)	0.0302 (9)	-0.0030(7)
01	0.0907 (11)	0.0344 (8)	0.1102 (13)	-0.0027(7)	0.0605 (10)	-0.0048 (8)
S1	0.0560 (3)	0.0515 (3)	0.0850 (4)	0.0120 (3)	0.0131 (3)	-0.0085(3)
C23	0.0511 (10)	0.0333 (9)	0.0518 (10)	0.0012 (8)	0.0190 (9)	-0.0019 (8)
C24	0.0622 (12)	0.0357 (10)	0.0507 (10)	-0.0008 (9)	0.0215 (9)	-0.0013 (8)
C25	0.0505 (11)	0.0446 (11)	0.0466 (10)	0.0015 (8)	0.0151 (9)	-0.0037 (8)
C26	0.0482 (10)	0.0543 (12)	0.0396 (9)	-0.0021 (9)	0.0116 (8)	-0.0038 (8)
C27	0.0664 (13)	0.0720 (15)	0.0490 (11)	-0.0074 (11)	0.0218 (10)	0.0003 (10)
C28	0.0637 (14)	0.103 (2)	0.0597 (14)	-0.0045 (14)	0.0289 (12)	-0.0125 (13)
C29	0.0691 (15)	0.0851 (19)	0.0761 (16)	0.0135 (13)	0.0324 (13)	-0.0165 (14)
C30	0.0673 (13)	0.0574 (13)	0.0652 (13)	0.0121 (11)	0.0255 (11)	-0.0033 (10)
C31	0.0515 (10)	0.0358 (10)	0.0474 (10)	0.0014 (8)	0.0222 (8)	-0.0012(7)
C32	0.0569 (12)	0.0394 (11)	0.0631 (12)	0.0019 (9)	0.0172 (10)	-0.0016 (9)
C33	0.0611 (12)	0.0526 (12)	0.0692 (13)	-0.0099 (10)	0.0224 (11)	-0.0129 (10)
C34	0.0525 (11)	0.0703 (15)	0.0479 (11)	-0.0006 (10)	0.0213 (9)	-0.0054 (10)
C35	0.0602 (13)	0.0687 (15)	0.0500 (11)	0.0088 (11)	0.0148 (10)	0.0086 (10)
C36	0.0628 (13)	0.0448 (11)	0.0533 (11)	0.0006 (9)	0.0193 (10)	0.0042 (9)
C37	0.0628 (14)	0.109 (2)	0.0610 (14)	-0.0087 (14)	0.0124 (11)	-0.0117 (13)
C38	0.0509 (11)	0.0389 (10)	0.0518 (10)	0.0011 (8)	0.0192 (9)	0.0018 (8)
C39	0.0607 (12)	0.0590 (13)	0.0560 (12)	-0.0046 (10)	0.0253 (10)	-0.0039 (10)
C40	0.0881 (17)	0.0731 (16)	0.0668 (14)	0.0089 (14)	0.0415 (14)	0.0102 (12)
C41	0.0670 (15)	0.0662 (16)	0.103 (2)	0.0093 (12)	0.0463 (15)	0.0281 (14)
C42	0.0585 (13)	0.0553 (14)	0.0948 (18)	-0.0043 (11)	0.0266 (13)	0.0115 (13)
C43	0.0567 (12)	0.0439 (11)	0.0657 (13)	-0.0038 (9)	0.0172 (10)	0.0000 (9)
C44	0.107 (2)	0.126 (3)	0.164 (3)	0.013 (2)	0.092 (3)	0.049 (2)
N2	0.0555 (9)	0.0333 (8)	0.0537 (9)	-0.0032 (7)	0.0244 (8)	-0.0036 (7)
O2	0.0971 (11)	0.0352 (8)	0.0838 (10)	-0.0006 (8)	0.0485 (9)	0.0009 (7)
	· · /	<pre>、 /</pre>	\ ' /	· /	\ /	\' /

-						0
<u>S2</u>	0.0635 (3)	0.0438 (3)	0.0498 (3)	0.0034 (2)	0.0157 (2)	0.0073 (2)
Geome	etric parameters (1	Å, °)				
C1—F	H1	0.9800		С23—Н23		0.9800
C1-C	<u>.</u>	1.515 (3))	C23—C31		1.518 (2)
C1—N	V 1	1.459 (2))	C23—N2		1.465 (2)
C1—S	51	1.823 (2))	C23—S2		1.821 (2)
C2—C	C3	1.479 (3)	C24—C25		1.482 (3)
C2—N	V 1	1.373 (3)	C24—N2		1.378 (2)
C2—C	01	1.224 (2))	C24—O2		1.222 (2)
С3—С	24	1.397 (3)	C25—C26		1.399 (3)
С3—С	28	1.394 (3)	C25—C30		1.400 (3)
C4—C	C5	1.387 (3)	C26—C27		1.388 (3)
C4—S	51	1.750 (3))	C26—S2		1.745 (2)
C5—H	45	0.9300		С27—Н27		0.9300
С5—С	C6	1.357 (4))	C27—C28		1.372 (3)
C6—H	46	0.9300		C28—H28		0.9300
С6—С	C7	1.386 (4))	C28—C29		1.382 (3)
C7—H	ł7	0.9300		C29—H29		0.9300
С7—С	C8	1.384 (4))	C29—C30		1.374 (3)
C8—F	48	0.9300		C30—H30		0.9300
С9—С	C10	1.376 (3))	C31—C32		1.381 (3)
С9—С	C14	1.373 (3))	C31—C36		1.385 (3)
C10—	-H10	0.9300		С32—Н32		0.9300
C10—	-C11	1.379 (3))	C32—C33		1.385 (3)
C11—	H11	0.9300		С33—Н33		0.9300
C11—	-C12	1.369 (3))	C33—C34		1.373 (3)
C12—	-C13	1.363 (4))	C34—C35		1.374 (3)
C12—	-C15	1.517 (3))	C34—C37		1.512 (3)
C13—	-H13	0.9300		С35—Н35		0.9300
C13—	-C14	1.391 (4))	C35—C36		1.389 (3)
C14—	-H14	0.9300		С36—Н36		0.9300
C15—	-H15A	0.9600		С37—Н37А		0.9600
C15—	-H15B	0.9600		С37—Н37В		0.9600
C15—	-H15C	0.9600		С37—Н37С		0.9600
C16—	-C17	1.374 (3))	C38—C39		1.379 (3)
C16—	-C21	1.380 (3))	C38—C43		1.384 (3)
C16—	-N1	1.437 (3))	C38—N2		1.435 (2)
C17—	-H17	0.9300		С39—Н39		0.9300
C17—	-C18	1.375 (3))	C39—C40		1.384 (3)
C18—	-H18	0.9300		C40—H40		0.9300
C18—	-C19	1.385 (3))	C40—C41		1.378 (4)
C19—	-C20	1.378 (4))	C41—C42		1.390 (4)
C19—	-C22	1.503 (4))	C41—C44		1.516 (4)
C20—	-H20	0.9300		C42—H42		0.9300
C20—	-C21	1.375 (3))	C42—C43		1.362 (3)
C21—	-H21	0.9300		C43—H43		0.9300

C22—H22A	0.9600	C44—H44A	0.9600
C22—H22B	0.9600	C44—H44B	0.9600
C22—H22C	0.9600	C44—H44C	0.9600
С9—С1—Н1	106.2	C31—C23—H23	106.3
C9—C1—S1	111.38 (14)	C31—C23—S2	112.08 (13)
N1—C1—H1	106.2	N2—C23—H23	106.3
N1-C1-C9	115.24 (16)	N2-C23-C31	115.16 (15)
N1-C1-S1	110.97 (13)	N2-C23-S2	110.17 (12)
S1—C1—H1	106.2	S2—C23—H23	106.3
N1-C2-C3	118.41 (18)	N2-C24-C25	117.95 (16)
01	120.15 (19)	02-C24-C25	120.68 (18)
$01 - C^2 - N1$	121 41 (19)	02 - C24 - N2	121 31 (18)
C4-C3-C2	123.6(2)	$C_{26} = C_{25} = C_{24}$	123.57(17)
$C_{8} - C_{3} - C_{2}$	1173(2)	$C_{26} = C_{25} = C_{21}$	123.37(17) 118.74(19)
C8-C3-C4	117.3(2) 118.7(2)	C_{30} C_{25} C_{24}	117 26 (18)
C_{3} C_{4} S_{1}	121 68 (18)	$C_{25} = C_{26} = S_{2}$	121.60 (15)
C_{5} C_{4} C_{3}	119.8 (2)	$C_{23} = C_{20} = C_{25}$	121.00(19) 119.51(19)
$C_{5} - C_{4} - S_{1}$	119.0(2) 118.5(2)	$C_{27} = C_{26} = S_{25}^{27}$	118.82 (16)
C4—C5—H5	119.6	$C_{26} = C_{27} = H_{27}$	119.6
$C_{6} - C_{5} - C_{4}$	120.8 (3)	$C_{28} = C_{27} = C_{26}$	120.8(2)
C6-C5-H5	119.6	$C_{28} = C_{27} = H_{27}$	119.6
C5-C6-H6	119.0	C_{27} C_{28} H_{28}	119.0
C_{5} C_{6} C_{7}	120.6 (3)	$C_{27} = C_{28} = C_{29}$	120.2(2)
C7—C6—H6	110 7	C_{29} C_{28} H_{28}	110.0
C6-C7-H7	120.3	$C_{29} = C_{20} = H_{20}$	120.1
C_{8} C_{7} C_{6}	110 3 (3)	$C_{20} = C_{20} = C_{20}$	120.1 110.0(2)
C8-C7-H7	119.3 (5)	C_{30} C_{29} C_{28} C_{30} C_{29} H_{29}	119.9 (2)
$C_3 = C_8 = H_8$	110.6	$C_{25} = C_{20} = H_{20}$	120.1
$C_{7} C_{8} C_{3}$	120.8 (3)	$C_{23} = C_{30} = C_{130}$	119.0 120.8(2)
$C_7 = C_8 = C_3$	110.6	$C_{29} = C_{30} = C_{29}$	120.8 (2)
$C_{10} = C_{0} = C_{10}$	117.0	$C_{23} = C_{30} = 1150$	119.0
$C_{10} = C_{9} = C_{1}$	117.02(17) 124.68(10)	$C_{32} = C_{31} = C_{23}$	110.12(10) 117.98(19)
C14 = C9 = C1	124.06(19)	$C_{22} = C_{21} = C_{20}$	117.00(10) 122.08(16)
$C_{14} - C_{9} - C_{10}$	117.3 (2)	$C_{20} = C_{21} = C_{22}$	123.98 (10)
C_{9} C_{10} C_{11}	119.5	$C_{31} = C_{32} = C_{32}$	119.5
$C_{11} = C_{10} = U_{10}$	121.1 (2)	$C_{31} = C_{32} = C_{33}$	120.98 (19)
C10 C11 H11	119.5	Сзэ—Сз2—Нз2	119.5
C10—C11—H11	118.9	C32—C33—H33	119.1
C12 - C11 - C10	122.1 (2)	$C_{34} = C_{33} = C_{32}$	121.7 (2)
	118.9	C34—C33—H33	119.1
C12 - C12	121.8(3)	$C_{33} = C_{34} = C_{35}$	117.03 (19)
	110.3 (2)	$C_{33} = C_{34} = C_{37}$	121.0 (2)
$C_{12} = C_{12} = C_{12}$	121.8 (3)	$C_{33} - C_{34} - C_{57} - C$	122.0 (2)
C12—C13—H13	118./	C34—C35—H35	118.8
C12 - C13 - C14	122.7 (2)	C34—C35—C36	122.4 (2)
C14—C13—H13	118.7	C36—C35—H35	118.8
C9—C14—C13	120.2 (2)	C31—C36—C35	120.02 (19)
C9—C14—H14	119.9	C31—C36—H36	120.0

C13—C14—H14	119.9	С35—С36—Н36	120.0
C12—C15—H15A	109.5	С34—С37—Н37А	109.5
C12—C15—H15B	109.5	С34—С37—Н37В	109.5
C12—C15—H15C	109.5	С34—С37—Н37С	109.5
H15A—C15—H15B	109.5	Н37А—С37—Н37В	109.5
H15A—C15—H15C	109.5	Н37А—С37—Н37С	109.5
H15B—C15—H15C	109.5	Н37В—С37—Н37С	109.5
C17—C16—C21	119.3 (2)	C39—C38—C43	119.51 (19)
C17—C16—N1	120.17 (18)	C39—C38—N2	120.43 (17)
C21—C16—N1	120.5 (2)	C43—C38—N2	120.02 (18)
С16—С17—Н17	119.7	С38—С39—Н39	120.3
C16—C17—C18	120.5 (2)	C38—C39—C40	119.4 (2)
C18—C17—H17	119.7	C40—C39—H39	120.3
C17—C18—H18	119.5	C39—C40—H40	119.1
C17 - C18 - C19	121.1 (2)	C41 - C40 - C39	121.8 (2)
C19—C18—H18	119.5	C41—C40—H40	119.1
C18 - C19 - C22	120 5 (3)	C40-C41-C42	117.1
C_{20} C_{19} C_{22}	1174(2)	C40-C41-C44	120.9(3)
C_{20} C_{19} C_{22}	117.4(2) 122.2(3)	C42 - C41 - C44	120.9(3) 121.7(3)
C_{10} C_{20} H_{20}	118.9	C41 - C42 - H42	119.2
C_{21} C_{20} C_{120} C_{19}	122 2 (2)	C43 - C42 - C41	119.2 121.6 (2)
$C_{21} = C_{20} = H_{20}$	118.9	C_{43} C_{42} H_{42}	119.2
C_{16} C_{21} H_{21}	120.3	C_{38} C_{43} H_{43}	119.2
C_{20} C_{21} C_{16}	110.4(2)	C_{42} C_{43} C_{38}	119.9 120.2(2)
$C_{20} = C_{21} = C_{10}$	120.3	C42 - C43 - C38	120.2 (2)
$C_{20} = C_{21} = H_{21}$	109.5	C41 - C44 - H44A	109.5
$C_{10} = C_{22} = H_{22R}$	109.5	C_{41} C_{44} H_{44} B	109.5
C19 - C22 - H22D	109.5	C41 - C44 - H44C	109.5
H22A C22 H22B	109.5	$H_{AAA} = C_{AA} = H_{AAB}$	109.5
$H_{22}A = C_{22} = H_{22}B$	109.5	H44A = C44 = H44B	109.5
$H_{22} = C_{22} = H_{22} C_{22}$	109.5	$H_{44} R = C_{44} + H_{44} C$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.5 122.62(17)	1144D - C44 - 1144C	109.5
$C_2 = N_1 = C_1$	122.03(17) 110.03(16)	$C_{24} = N_{2} = C_{23}$	121.03(10) 120.08(15)
$C_2 = N_1 = C_{10}$	119.03(10) 119.22(16)	$C_{24} = N_{2} = C_{36}$	120.08(13) 117.03(14)
C_{10} N_{1} C_{1}	116.25(10) 07.06(10)	$C_{38} = N_2 = C_{23}$	117.93(14)
C4—51—C1	97.90 (10)	C20—S2—C25	97.79(9)
C1-C9-C10-C11	-1796(2)	C^{3} C^{31} C^{32} C^{33}	-179 76 (18)
C1 - C9 - C14 - C13	179.0(2)	$C_{23} = C_{31} = C_{32} = C_{33}$	179.92 (18)
$C_{2} = C_{3} = C_{4} = C_{5}$	-170.8(2)	$C_{25} = C_{51} = C_{50} = C_{55}$	168 90 (18)
$C_2 = C_3 = C_4 = C_3$	50(3)	$C_{24} = C_{25} = C_{26} = C_{27}$	-7.9(3)
$C_2 = C_3 = C_4 = S_1$	3.9(3)	$C_{24} = C_{25} = C_{20} = S_{20}$	-170.02(10)
$C_2 - C_3 - C_6 - C_7$	-14.5(2)	$C_{24} = C_{23} = C_{30} = C_{23}$	170.92(19)
$C_3 = C_2 = N_1 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	14.5(3)	$C_{25} = C_{24} = N_2 = C_{25}$	-170.16(16)
$C_{3} = C_{4} = C_{5} = C_{6}$	-16(A)	$C_{23} = C_{24} = 1_{12} = C_{30}$	2 4 (3)
$C_{3} = C_{4} = C_{3} = C_{4}$	1.0(4)	$C_{23} = C_{20} = C_{21} = C_{20}$	2.4(3) -25.28(17)
$C_{4} = C_{4} = C_{1}$	20.04(19)	$C_{23} - C_{20} - S_{2} - C_{23}$	23.30(17)
$C_{4} = C_{5} = C_{6} = C_{7}$	1.1(4)	$C_{20} = C_{23} = C_{30} = C_{29}$	1.7 (3)
$C_{4} = C_{2} = C_{4} = C_{1}$	U.U (4)	120-127-128-129	0.2(3)
C3-C4-S1-C1	-15/.21 (18)	$U_2 / - U_2 6 - S_2 - U_2 3$	157.85 (16)

C5—C6—C7—C8	1.0 (5)	C27—C28—C29—C30	-1.8 (4)
C6—C7—C8—C3	-0.5 (4)	C28—C29—C30—C25	0.7 (3)
C8—C3—C4—C5	2.1 (3)	C30—C25—C26—C27	-3.4 (3)
C8—C3—C4—S1	178.83 (17)	C30—C25—C26—S2	179.83 (15)
C9—C1—N1—C2	-76.4 (2)	C31—C23—N2—C24	73.1 (2)
C9-C1-N1-C16	99.6 (2)	C31—C23—N2—C38	-99.91 (19)
C9—C1—S1—C4	78.97 (15)	C31—C23—S2—C26	-76.93 (14)
C9—C10—C11—C12	1.6 (4)	C31—C32—C33—C34	0.4 (3)
C10—C9—C14—C13	-2.7 (4)	C32—C31—C36—C35	1.3 (3)
C10-C11-C12-C13	-2.5 (4)	C32—C33—C34—C35	0.0 (3)
C10-C11-C12-C15	178.7 (2)	C32—C33—C34—C37	179.8 (2)
C11—C12—C13—C14	0.9 (4)	C33—C34—C35—C36	0.3 (3)
C12—C13—C14—C9	1.7 (5)	C34—C35—C36—C31	-0.9 (3)
C14—C9—C10—C11	1.1 (3)	C36—C31—C32—C33	-1.1 (3)
C15—C12—C13—C14	179.7 (3)	C37—C34—C35—C36	-179.51 (19)
C16—C17—C18—C19	-0.4 (3)	C38—C39—C40—C41	-0.5 (3)
C17—C16—C21—C20	2.3 (3)	C39—C38—C43—C42	2.3 (3)
C17—C16—N1—C1	129.4 (2)	C39—C38—N2—C23	44.1 (2)
C17—C16—N1—C2	-54.5 (3)	C39—C38—N2—C24	-129.0 (2)
C17—C18—C19—C20	1.7 (3)	C39—C40—C41—C42	2.8 (4)
C17—C18—C19—C22	-177.7 (2)	C39—C40—C41—C44	-176.1 (2)
C18—C19—C20—C21	-0.9 (4)	C40—C41—C42—C43	-2.6 (3)
C19—C20—C21—C16	-1.1 (4)	C41—C42—C43—C38	0.1 (3)
C21—C16—C17—C18	-1.6 (3)	C43—C38—C39—C40	-2.1 (3)
C21—C16—N1—C1	-48.5 (3)	C43—C38—N2—C23	-133.54 (18)
C21—C16—N1—C2	127.6 (2)	C43—C38—N2—C24	53.3 (2)
C22-C19-C20-C21	178.5 (2)	C44—C41—C42—C43	176.3 (2)
N1-C1-C9-C10	-160.31 (19)	N2-C23-C31-C32	170.50 (16)
N1-C1-C9-C14	18.9 (3)	N2-C23-C31-C36	-8.1 (3)
N1—C1—S1—C4	-50.86 (16)	N2-C23-S2-C26	52.70 (14)
N1—C2—C3—C4	-17.9 (3)	N2-C24-C25-C26	18.3 (3)
N1—C2—C3—C8	169.1 (2)	N2-C24-C25-C30	-169.31 (17)
N1-C16-C17-C18	-179.55 (18)	N2-C38-C39-C40	-179.77 (19)
N1-C16-C21-C20	-179.7 (2)	N2-C38-C43-C42	180.00 (18)
O1—C2—C3—C4	160.1 (2)	O2—C24—C25—C26	-158.83 (19)
O1—C2—C3—C8	-13.0 (3)	O2—C24—C25—C30	13.6 (3)
O1—C2—N1—C1	167.6 (2)	O2—C24—N2—C23	-165.96 (18)
O1—C2—N1—C16	-8.4 (3)	O2—C24—N2—C38	6.9 (3)
S1—C1—C9—C10	72.1 (2)	S2—C23—C31—C32	-62.5 (2)
S1—C1—C9—C14	-108.7 (2)	S2—C23—C31—C36	118.86 (18)
S1—C1—N1—C2	51.4 (2)	S2-C23-N2-C24	-54.8 (2)
S1—C1—N1—C16	-132.69 (16)	S2-C23-N2-C38	132.13 (14)
S1—C4—C5—C6	-178.4 (2)	S2—C26—C27—C28	179.28 (16)

Hydrogen-bond geometry (Å, °)

C = A = a + 1 + C = 0 and $A = a = a + b = a = a + b = a +$	-fd- C1(C21	1 C21 C2(
Cg4 and $Cg8$ are the centrolds	of the C_{10} - C_{21}	and USI-USO rings.	respectively.
-8			, p

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
С1—Н1…О2	0.98	2.46	3.399 (3)	161
C23—H23…O1 ⁱ	0.98	2.34	3.268 (2)	158
C28—H28…Cg8 ⁱⁱ	0.93	2.60	3.514 (3)	169
C32—H32…Cg4	0.93	2.90	3.818 (2)	171

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) *x*+3/2, *y*+1/2, *z*+1.