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Abstract In this paper the original results of uniaxial

cyclic compression test on cohesive soil are presented. The

shakedown phenomena in cohesive soil are described.

Energy-based method highlights the change of soil material

behaviour from plastic shakedown through plastic creep

shakedown to incremental collapse. The samples were

cyclically loaded under undrained conditions with the

constant amplitude of stress in one-way test procedure. In

this study the energy-based method was presented as a

proper method to categorise response of cohesive soil to

cyclic loading in uniaxial conditions. A shakedown crite-

rion factor, SE, was introduced to help understand the

shakedown phenomena in cohesive soil. In cohesive soils

the absence of a limit between plastic shakedown and

plastic creep shakedown was pointed out.

Keywords Cohesive soil � Shakedown � Energy � Cyclic

loading � Uniaxial compression � Soil mechanics

Introduction

The behaviour of the soil under cyclic loading has been

studied by many researches recently (Kokusho and Kaneko

2014; Feng et al. 2015; Cai et al. 2015; Sas et al. 2014, 2015).

The most extensive studies were focused on liquefaction

phenomena because of the danger that can be caused by its

appearance (Kokusho and Kaneko 2014; Kokusho et al.

2012). One of the causes of liquefaction phenomena occur-

rence is the presence of high frequent cyclic loading which

can be forced by traffic, earthquake or machinery vibrations.

In opposite to this high frequent loading there also exists the

slow quasi-static repeated loading excitated by, for instance,

soil mass movements (there is no danger of liquefaction)

(Zhou and Gong 2001). When it comes to cohesive soil the

liquefaction phenomena does not exist. There is still a little

knowledge about the cohesive soil behaviour under quasi-

static cyclic loading. Quasi-static loading is characterised by

time effect negligibility. In geotechnical field of studies

such loading appears when its frequency is less than

2–5 Hz (Danne and Hettler 2015; Wichtmann 2005).

The quasi-static phenomena occurs when harmonic excita-

tion applied on a specimen causes displacement: u ¼
uamplcosðxtÞ with acceleration €u ¼ �uamplx2cosðxtÞ, where

uamplx2\\g (Danne and Hettler 2015).

Quasi-static loads are often encountered in industrial

foundations, technical roads or local motorways. In the

road engineering the effect of the cyclic loading can be

observed as the rutting, and in foundation engineering it

exists in the form of foundation settlement (Cuéllar et al.

2014; Kokkali et al. 2014; Soares et al. 2014). In the case

of quasi-static loading the damage is not caused by the

bearing capacity lost, but due to the plastic strain

accumulation.
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Among many types of soil, cohesive soil is merely

examined by the researches; one of the reasons is that this

type of soil is not often used as the bearing material.

Nevertheless, the cohesive soil should be investigated

because even the low stress level can cause high defor-

mation which leads to weaken the above bearing layers.

Therefore, engineers seek for the new design procedures

which take into account the cyclic loading phenomena in

cohesive soil (Soares et al. 2014; Lu et al. 2014).

Shakedown theory in soil mechanics is derived from the

observations of the soil response to cyclic loading in var-

ious range of stresses (Goldscheider 1978). Shakedown

theory has been used to explain the behaviour of engi-

neering structures loaded with repetitive force. The pres-

sure vessels under thermal cyclic loading problem were the

first application of this concept, and later it was applied to

the rolling on metal surfaces problem (König and Maier

1981). When it comes to geomechanics the shakedown

theory was used in the road structures (Werkmeister et al.

2001; Werkmeister 2006; Tao et al. 2010; Nega et al. 2015;

Sharp and Booker 1984; Boulbibane and Collins 2015).

The fundamental concept of shakedown theory is a

division of the behaviour of the soil into five categories

(König and Maier 1981):

• Purely elastic, where load is small enough to cause only

the elastic strains. No plastic strains occur and response

to cyclic loading is purely elastic (0).

• Elastic shakedown, where repeated loading causes

plastic strains in the first cycles. After this phase, no

further plastic strains occur and the material behave

purely elastic. The maximum stress level when this

phenomena occurs is called elastic shakedown limit (1).

• Plastic shakedown, where plastic strains occur, but after

a few cycles material achieves steady hysteretic

response. Nevertheless, the hardly noticeable small

plastic strains can be observed. The maximum stress

level when this phenomena occurs is called the plastic

shakedown limit (2).

• Plastic creep shakedown, where after a few cycles the

material hardens and the plastic strains occur (3).

• Incremental collapse, where the stress level causes

accumulation of extensive plastic strains. The plastic

strains in this stage cause cracks and the material

degradation (4).

The shakedown concept typically defines the appropri-

ate limit stress to prevent from excessive plastic strain

(Fadaee et al. 2008). Settlement of subgrade soils is

adverse because it mostly leads to road damage. The

excessive settlement of subgrade soils is typically caused

by the accumulation effect from traffic load. The repeated

stress and strain will not completely dissipate in the

unloading state and will accumulate and transfer along road

structure to subgrade layer (Puppala 2009).

Conducted tests with shakedown application mostly

concern unbound granular material (UGM) testing. The

shakedown concept is utilised as a method of permanent

strain behaviour analysis. The shakedown theory is now

utilised in permanent strain evaluation for UGM and the

procedure of shakedown analysis for this materials is

standardised and presented in European Standards: EN

13286–7 (2004; Cerni et al. 2012). The shakedown concept

in applications in transportation geotechnics mostly con-

cerns cyclic compression (Soliman and Shalaby 2015).

Shakedown concept was utilised for study of fine addition

to UGM. The resistance of material to permanent defor-

mation for UGM and non-cohesive soils was linked to

shear strength of material. The slip between particles under

traffic loading was recognised as most sensitive phe-

nomenon which triggers permanent deformation occur-

rence (Soliman and Shalaby 2015).

Under cyclic loading the same response can be observed

in cohesive as well as non-cohesive soil. A mechanism is

similar (rolling and sliding of grains develop plastic strain),

but in addition in cohesive soil the cohesion forces coun-

teract the development of the plastic strains (Chen et al.

2015; Karg et al. 2010). Identification of this mechanism is

very complicated and time-consuming, so the simplified

methods are usually employed for analysis. One of the

branches of the simplified methods is energy-based method

which is utilised in many fields of applied mechanics,

especially when it comes to cyclic and dynamic loading

(Liang et al. 2015; Seo et al. 2015). This method is based

on the first law of thermodynamics (assuming the negli-

gibility of kinetic energy) and tells that all external forces

transform into internal energy and are dissipated in the

form of the plastic strains. Using energy-based method we

were able to categorise a response of a material to one of

the shakedown categories. In this paper a new proposition

of the energy-based method application is proposed.

Studies under clayey subsoil traffic-load-influenced

depths employed shakedown concept to distinguish three

depths of cyclic traffic load influence: the threshold depth

beyond which traffic loads becomes negligible, the plastic

shakedown limit depth where subgrade experiences con-

tinuous deformation and the critical failure depth where

subsoil will fail due to excessive strain (Tang et al. 2015).

The studies on effects of cyclic confining pressure on the

deformation characteristics of natural soil have found that

the shapes of all hysteresis loops looks similar in general.

But with the number of cycles, the increment of residual

axial strain caused by a single cycle is reducing gradually

(Sun et al. 2015), which may be classified as plastic

shakedown.
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Other studies concerning low frequent cyclic loading,

cyclic loading in consolidometer or in variable confining

pressure mention the decrease on plastic strain rate during

cyclic loading which again may be related to shakedown

concept (Cai et al. 2013; Kalinowska and Jastrzębska 2014;

Li et al. 2011; Gu et al. 2012). Therefore, simple criterion

of distinguishing the permanent strain accumulation phe-

nomena in cohesive soil is needed for proper classification

of plastic strain development.

Materials and methods

Materials

In this study the cohesive soil material obtained from 2 m

deep earthwork was analysed. The samples of this material

were remoulded and tested physically and mechanically.

Table 1 presents results of mechanical and physical prop-

erties of material used in this study.

Based on sieve test (PKN-CEN ISO/TS 17892-4:2009)

with respect to Polish standards (PN-EN ISO

14688-2:2006), tested soil was recognised as sandy clay

(saCl).

Soil material before main tests was prepared with

respect to the Proctor method. This procedure leads to

establish constant test conditions (constant moisture and

maximum dry density). The undisturbed samples were first

dried and ground to powder. The material was next com-

pacted at optimum moisture content with respect to the

Proctor energy of compaction. The data about optimum

moisture and maximal dry density were gathered by pre-

vious Proctor’s test with respect to (PN-EN 13286-2:2010/

AC). The abovementioned conditions are as follows:

optimum moisture content, wopt. 10.5%, volume density

maximum dry density qs 2.15 g/cm3.

The compaction of the samples was performed by

rescaling the Proctor hammer with diameter of 3.5 cm and

mass equal to 500 g. The sample dimensions were as

follows: 7 cm diameter and 14 cm high. The clay powder

was mixed with water with respect to optimum moisture

content.

Methods

The tests of uniaxial cyclic loading were performed with

Instron’s loading frame where axial stress and displace-

ment were registered. One series of ten tests was per-

formed. Table 2 presents the parameters of each test in

constant frequency equal to 0.1 Hz.

Uniaxial cyclic loading tests were performed using one-

way loading test method without reversion of its direction.

A sample was placed on a base and a rigid cap was placed

on a top. The sample was covered by a rubber membrane to

prevent moisture loss during a test. In Fig. 1a a schema of

the uniaxial cyclic test is presented.

The one-dimensional tests are widely used in field of

geotechnical engineering where comparative or prelimi-

nary studies can highlight material properties or non-tra-

ditional materials have not been tested (Koseki et al. 2014).

The soil samples with ‘‘A’’ index represent high amplitude

of cyclic loading. The samples with ‘‘B’’ index denote

collapsed specimens and ‘‘C’’ index presents samples loa-

ded by repeating stress with small amplitude. The cyclic

stress can be characterised by five parameters which are

maximal stress rmax, minimal stress rmin, stress amplitude

ra, stress median rm and stress difference Dr. Those stress

values can fully describe repeated loading of any material

(Jain et al. 2015). Figure 1b presents schematic stress–time

curve with highlighter above-mentioned stress values.

Table 3 presents detailed stress values for each test.

Energy density calculations

The results of the tests were later analysed by calculating

the area of plastic energy density (dEP) and elastic energy

density (dEE). The calculations were performed by

Table 1 Physical and mechanical properties of sandy clay in this

study

Properties Symbol Value

Specific density of soil qs (g cm-3) 2.66

Maximum dry density qd (g cm-3) 2.15

Natural moisture wn (%) 12.82

Optimal moisture wopt (%) 10.5

Liquid limit wl (%) 37.4

Plasticity limit wp (%) 12.3

Plasticity index Ip (–) 25.1

Void ratio e0 (–) 0.41

Table 2 Parameters of uniaxial cyclic loading test for tested samples

Sample rmax (kPa) CSR (–) No. of cycles

A.1 39.0 0.17 500

A.2 116.9 0.50 1000

A.3 142.9 0.61 2000

A.4 153.1 0.65 100

B.1 194.9 0.83 11

B.2 168.9 0.72 8

C.1 118.2 0.53 10,000

C.2 134.4 0.61 10,000

C.3 134.4 0.61 10,000

C.4 156.9 0.70 10,000
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Mathematica software where the self-made algorithm of

the area calculation was employed.

The energy concept has been utilised in many fields in

theory of plasticity and elasticity. Many constitutive laws

and energy principles are based on energy concept (Desai

and Siriwardane 1984; Pasik et al. 2015; Panoskaltsis and

Bahuguna 1996). The energy-based methods can be

divided into two categories: stress methods and strain

methods. In the stress methods, the amount of strain

energy is calculated from recorded stress and strain data

during cyclic uniaxial loading. A hysteresis loop can be

plotted from stress–strain data (Daum 2008). Figure 2

presents a typical hysteresis loops obtained from the

cyclic compression loading from the stress-controlled

cyclic uniaxial test.

The plastic strain energy density is equal to the area

inside of hysteresis loop, and elastic energy density is

equal to area under unloading curve (Ostadan et al.

1996; Green et al. 2000). In this study the plastic

strain accumulation and elastic strain evolution are

changed to equivalent plastic and elastic energy den-

sity to study changes of aforementioned strains during

cyclic compression test. Plastic strain accumulation

would be not observed between two next cycles, which

was previously confirmed (Karg et al. 2010). The

plastic energy density is, therefore, more sensitive to

changes of soil sample behaviour during repeated

loading. In Fig. 2, dEP decreases rapidly and dEE

decrease is steady. The decline value of dEP is rep-

resented by area of hysteresis loop reduction. Reduc-

tion of dEE value with number of cycles represents the

reduction of inclination of the hysteresis loop towards

strain axis. The phenomena of dEE decreasing indicate

that the stiffness of the specimens tends to decrease.

The dEE descent has also impact on plastic strain

accumulation and needs to be taken into consideration

of plastic strain development.
Fig. 1 The methods in this study: a schema of the uniaxial cyclic

test, b schema of the stress characteristic values

Table 3 Stress characteristic values for uniaxial cyclic loading in this

study

Sample rmin rmax ra rm Dr

A.1 13.0 38.8 12.9 25.9 25.8

A.2 13.2 65.4 26.1 39.3 52.2

A.3 16.5 145.9 64.7 81.2 129.5

A.4 16.7 150.1 66.7 83.4 133.4

B.1 16.5 194.9 89.2 105.7 178.4

B.2 16.5 168.9 76.2 92.7 152.4

C.1 94.3 118.2 11.9 106.3 23.8

C.2 121.5 134.4 6.4 128.0 12.9

C.3 121.5 134.4 6.4 128.0 12.9

C.4 134.5 156.9 11.2 145.7 22.4
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Results and discussion

Uniaxial cyclic test results

The results of the experiment were focused on the

change of the energy densities during uniaxial cyclic

compression loading. The results of uniaxial cyclic

compression loading tests are presented in Figs. 3, 4 and

5. In Fig. 3 the results of the four tests from A.1 to A.4

are presented with stress–strain axis to study the shake-

down concept. The plot presents hysteretic loops among

different cycle numbers in test with the same stress

conditions. Figures 3 and 5 show that with number of

cycles the hysteresis loop inclination towards the X-axis

tends to increase.

During cyclic loading, each sample was loaded to dif-

ferent amplitude of stress. For sample A.1 where axial of

maximal stress rmax was equal to 39.0 kPa plastic strain

increment Dep after 500 cycles was equal to 0.0001034

(0.01034%).

For samples A.2, A.3 and A.4 the axial maximal stress

was equal to 116.9, 142.9 and 153.1 kPa, respectively, and

the plastic strain increment Dep was equal to 0.000416,

0.000401 and 0.000675, respectively.

Under higher maximal stress values (168.9 for B.2 and

194.9 kPa for B.1), the incremental collapse occurred.

Standard uniaxial compression test has shown maximal

strength of material rmax 223.8 kPa which is 0.87 and 0.75

of maximum stress applied in tests B.1 and B.2, respec-

tively (Fig. 4).

The samples B.1 and B.2 were destroyed during the

tests. It was noticed that the last cycle before the collapsing

was different from previous ones, and the crossing of the

loading–unloading curves occurred in the lower stress level

than in the previous cycles which may indicate the soft-

ening behaviour of the material.

The stress values characteristic parameters differed for

samples ‘‘A’’ and ‘‘C’’. The amplitude of loading and stress

median change results in another response of soil to repe-

ated loading. For these samples, the decrease of axial stress

was noted. The stiffness reduction was caused by charac-

teristic stress conditions which differ from the test condi-

tions in ‘‘A’’ phase of tests. This means that higher axial

stress median is the higher stiffness reduction will occur

(see Fig. 5).

In Fig. 6 a plot of the plastic strain increment during

cyclic loading is presented, where various responses to

cyclic loading can be distinguished. In a sample A.1 the

plastic shakedown response to repeated loading can be

noticed. In samples A.2 and A.3 at first the plastic shake-

down response can be noticed as well, but after 100 repe-

titions the plastic strain tends to increase and, therefore, the

plastic shakedown creep response occurs. The response of

sample A.4 can be categorized as plastic creep shakedown.

The characteristic of the curve from Fig. 4 is similar to the

incremental collapse response, but the material was not

destroyed. It may be caused by insufficient number of

cycles that was programmed.

Samples B.1 and B.2 after a few cycles of loading col-

lapsed due to accumulation of excessive plastic strains

caused by strain softening. The response of the material

can be categorised as incremental collapse.

Samples C.1 and C.3 follow the same pattern as samples

A.2 and A.3. The plastic strain tends to stabilise and plastic

shakedown occurs.

The plastic strain rate versus number of cycle for sam-

ples A.1–A.4 changes with logarithm of cycles. The

decrease of plastic strain can be distinguished for samples

from A.1 to A.4; nevertheless, the rate of this decrease in

terms of shakedown criterion proposed by Werkmeister

(2003) cannot be included in plastic shakedown response.

The Werkmeister proposition consists of the accumulated

permanent deformation analysis between 3000 and 5000

cycles. The proposition of such permanent strain accumu-

lation analysis was established based on testing program of

UGM (EN 13286-7:2004).

Fig. 2 Schema of the energy

calculation for cyclic loading in

this study
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Fig. 3 Plot of the axial stress–strain for uniaxial cyclic loading of sandy clay in various stress levels—shakedown concept test (a A.1, b A.2,

c A.3, d A.4), comparison of hysteretic loops among different cycle numbers

Fig. 4 Plot of the axial stress–

strain for uniaxial cyclic loading

of sandy clay in various stress

levels—incremental collapse

tests (red B.1, blue B.2, dashed

line standard uniaxial

compression test result)
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Aforementioned plastic shakedown limit is presented by

Eq. (1):

ep5000 � ep3000\0:4\10�3 ð1Þ

If the difference between 5000 and 3000 cycle is less

than 0.4�10-3, then plastic shakedown occurs; if the

difference crosses this limit, plastic shakedown creep

occurs.

Plastic strain rate analysis presented in Fig. 6 for ‘‘C’’

indexed samples leads to estimate the shakedown response

based on the Werkmeister proposition. The C.1 specimen

difference between 5000th cycle and 3000th cycle is equal

to 0.2�10-3. The samples C.2, C.3 and C.4 were classified

to plastic creep shakedown response and the difference was

equal to 0.43�10-3, 0.54�10-3, 0.494�10-3.

Energy calculation results

Figure 7a presents the energy calculation for the results of

cyclic loading for A.1 sample. During cyclic loading drop

of the dEP (plastic energy density) can be observed. First

loading caused the plastic strain equal to over 40% of all

registered plastic strains in this study. It can be noticed that

the dEE does not change so drastically as the dEP.

Figure 7b presents the energy calculation for the results

of A.2 sample. In this plot it can be observed that in the

beginning of the test the dEP is close to A.1 sample (0.108

for A.1 and 0.0303 for A.2 sample). After 205 repetitions

for A.1 sample dEP was lower than 0.0001. In case of A.2

sample the same dEP value occurred after 957 cycles. The

differences between dEP evolution means that the dEP in

sample A.2 decrease faster than in sample A.1 which can

be understood as the huge decrease of the plastic strain

rate.

Sample A.3 (Fig. 7c), where 2000 cycles were applied,

behaves similar to A.2. In the specimen A.3 the initial

value of dEP is lower than in A.2 sample. It can be seen that

dEE is greater than dEP from the beginning. This behaviour

was different from A.2 and A.3 where at the beginning dEP

is greater than dEE. The dEP decreases steadily and the

Fig. 5 Plot of the axial stress–strain for uniaxial cyclic loading of sandy clay in various stress levels—plastic creep concept (a C.1, b C.2, c C.3,

d C.4), comparison of hysteretic loops among different cycle numbers
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instant drop of this energy density was not noticed as it was

in the previous samples.

Figure 7d presents the results of cyclic loading for

sample A.4. The amplitude of the axial stress was equal to

153.1 kPa which was 0.68 of the maximum stress from the

static uniaxial compression strength test. The beginning of

the test was similar to A.3 sample. The dEP decreases in the

same way as in the sample A.3. The dEP in the first two

cycles was greater than the dEE.

Figure 7e, f presents the results of the tests of B.1 and

B.2 samples, respectively. For both of the specimens

incremental collapse occurs after eight and 12 cycles,

respectively. In both tests, the dEP density is greater than

the dEE during the whole test. Before the collapse, the

samples start to experience more plastic strain and the

softening phenomena can be observed.

The samples from C.1 to C.4 present similar respond to

cyclic loading (Fig. 7g–j). The stress amplitude and stress

difference for these samples were close with the values.

The plastic energy density drops after few first cycles.

Similar result was observed in the case of sample A.1.

The A.1 sample characterizes with stress amplitude equal

to 12.9 kPa, and the ra value for samples C.1 and C.4 was

equal to 11.9 kPa and 11.2 kPa, respectively. Figure 8

presents comparison between A.1 and C.1 sample energy

calculation. The energy density change during cyclic

loading for both cases is very similar. Figure 10b presents

comparison of plastic and elastic energy density between

A.1 and C.1 specimens. The linear function was fitted to

these relationships. The coefficient of determination R2 for

plastic energy density function was equal to 0.9388, and for

elastic energy density the R2 value was equal to 0.9042.

The conclusion can be drawn that for close stress amplitude

and stress difference values the energy density change is

similar.

Results of energy calculation discussion

Accumulated plastic energy density

Figure 9 presents the change of accumulated dEP during

cyclic loading in various axial stress amplitude rmax. It can

be seen that after some value of axial stress the accumu-

lated dEP function changes its rate from the small rate in

the beginning to higher rate after exceeding some r value.

Accumulation of the dEP change can be explained by the

fact of elastic and dEP quotient. From the previous

Figs. (7a–j, 8a–b), a conclusion was drawn that when the

dEP is closer to the dEE, the bigger plastic strain occurs.

From Fig. 9 it can be seen that after exceeding some r
value the accumulated dEP density changes its rate. The

higher the axial stress, the higher the accumulation of dEP.

This change of behaviour corresponds to a limit between

plastic shakedown and plastic creep shakedown. Never-

theless, this limit is hard to estimate due to a lack of clear

deflection point and its development in following cycles.

Determination of shakedown response from energy

densities

Werkmeister et al. (2001) conducted studies on the

responses of unbound aggregates subjected to cyclic

Fig. 6 Plot of the plastic strain

from uniaxial cyclic loading of

sandy clay vs. logarithm of

number of cycles. (Green ‘‘A’’

indexed tests, black ‘‘B’’

indexed tests, red ‘‘C’’ indexed

tests)
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Fig. 7 Plot of the energy density versus number of cycles uniaxial cyclic loading of sandy clay in various stress levels (a A.1, b A.2, c A.3,

d A.4, e B.1, f B.2, g C.1, h C.2, i C.3, j C.4)
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loading, which resulted in the proposition of the three

ranges of response:

• Range A—plastic shakedown category; the response is

plastic only for a first cycles of load and becomes

resilient after the post–compaction. The accumulation

of permanent strain decreases rapidly to a very small

level,

• Range B—plastic creep shakedown category; the level

of the plastic strain rate decreases to a low and nearly

constant level during the first loading cycles,

• Range C—incremental collapse category; the accumu-

lation of the plastic strain decreases slowly or does not.

Figure 10 presents an adjustment of shakedown criterion

concept for cohesive soil based on proposition by Werk-

meister (2006). The plot of normalized number of perma-

nent strain versus number of cycles was calculated from the

plastic strain rate analysis presented in Fig. 6. The expo-

nential function’s coefficient of determination of R2 for

samples A.1–A.4 was equal to 0.97 or higher. For cycle

3000 and 5000 plastic strains’ difference based on Eq. 1

was calculated. Samples A.1 and A.3 were included in

plastic shakedown range. Samples A.2 and A.4 were

included in plastic creep shakedown range.

The proposition of the quotient of plastic and elastic

energy dEP/dEE can help to understand the shakedown

phenomena and plastic strain development in cohesive soil.

In cohesive soil, limits of those three ranges are not clear as

in the case of non-cohesive soil. The limit between the

plastic shakedown and plastic creep shakedown ranges is

not sharp and, therefore, the response of cohesive soil to

cyclic loading is more fluent. The decrease of the plastic

strain in low stress conditions is characterized by low dEP

in first cycles and by the fast decrease in further cycles.

When stress level is greater, the initial dEP is also bigger

but a drop in dEP value is lower. The plastic shakedown

creep occurs when the abovementioned drop of dEP is not

presented; in other words, the decrease of the dEP is con-

stant. This causes greater plastic strain accumulation in the

first few cycles and the creep phenomena in the next stage.

When dEP is big enough like in the case of high stress

level, it may lead to incremental collapse even if the drop

of its rate is observed.

The stress characteristic parameters such as stress

amplitude and stress difference have their impact on the

energy density change and, therefore, on strain develop-

ment. The problem of cyclic stress impact on behaviour of

Fig. 8 Plot of the comparison of plastic and elastic energy density for samples A.1 and C.1

Fig. 9 Plot of accumulated plastic energy after first, tenth, 100th,

500th and 1000th cycle versus axial stress from uniaxial cyclic

loading of cohesive soil
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soil can be resolved by including the stress parameters in

energy calculations.

The plastic strain development during cyclic loading

can be described by proposed in following Eq. (2) SE

factor. The SE factor takes into account the shakedown

concept and stress parameters: stress amplitude and

stress median recognised as the cause of soil stiffness

loss:

ra
rm

� �
� log

dEP

dEE

� �
¼ SE ð2Þ

The SE factor value versus number of cycles is presented

in Fig. 11. The cohesive soil can behave in plastic creep

shakedown manner at the beginning of the test and later the

response shifts to plastic shakedown. In range A, plastic

strain can occur, but after numerous repetitions. In other

words, the plastic strain could not be observed between two

cycles but between 50 and 100 cycles. If the amplitude of

axial stress increases, the dEP approaches the dEE and more

plastic strain can be observed. If the amplitude of axial

stress is big enough or in other words, the dEP is nearly the

same as the dEE, the plastic strains occur in every cycle and

plastic creep shakedown can be recognized. If the amount

of dEP is greater than dEE, the plastic strain begins to

increase in fast rate and incremental collapse can be

observed.

In Fig. 11 it can be seen that incremental collapse

occurs when the SF is greater than 0. This corresponds

to the range C from the Werkmeister proposition.

Plastic creep shakedown occurs when value of SF is

between 0 and -0.25. When SF \-0.25 plastic

shakedown occurs.

Similar proposition of energy calculation was developed

for hot-mix asphalt (HMA). The principle of this mecha-

nism was describing of the fracture properties of HMA. In

this framework, upper and lower thresholds, namely dis-

sipated creep strain energy (DCSE) and fracture energy

(FE), were distinguished. The DCSE limit is bound with

continuous repeated loading and FE limit is associated with

fracture of the HMA with a single application (Zhang et al.

2001; Birgisson et al. 2007; Tasdemir et al. 2010). When

the energy threshold is exceeded, non-healable macro-

cracks develop and propagate along the mixture. Under this

energy threshold, the rate of damage is governed by the

creep properties of the mixture.

Conclusions

In this paper, cyclic uniaxial tests on cohesive soil were

conducted to characterise shakedown phenomena. The test

results were later analysed by application of the energy-

based method. Based on the experimental results the fol-

lowing conclusions can be drawn:

1. During the uniaxial cyclic loading tests, the three

ranges of the shakedown behaviour were observed

which depended on the stress amplitude level. For the

plastic shakedown response, rapid decrease of the dEP

and steady decrease of the dEE were recognised. This

behaviour results in small or in the lack of plastic strain

Fig. 10 Plot of shakedown criterion based on the Werkmeister proposition
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occurrence. For plastic creep shakedown a range of the

dEP decrease was less rapid, and the dEE decreased

more than that in plastic shakedown case. When the

value of the dEP decrease is near the dEE, plastic creep

shakedown may occur. Incremental collapse occurs

when the dEP is greater than the dEE in all cycles

which leads to failure.

2. Accumulated dEP depends on the axial stress ampli-

tude. This relation in non-linear and some inflection

areas were recognised. These areas represent possible

change of behaviour. Cohesive soil can behave as the

plastic creep shakedown, but after numerous repeti-

tions it may change to plastic shakedown.

3. A new proposition of distinguishing shakedown ranges

for cohesive soil was proposed. The presented method

bases on the ratio of plastic to dEE and helps to

recognise shakedown categories.

4. Energy-based method leads to the identification of

smooth limit between plastic shakedown and plastic

creep shakedown. The cohesive soil can behave in both

ways which depend on the stress amplitude levels and

the plastic and dEE during cyclic loading.

5. Shakedown limit determination was performed with

the calculation of the value of SF. When the SF C 0 the

incremental collapse occurs. When -0.25 B SF\ 0

cohesive soil behaves as the plastic creep shakedown.

When SF\-1 the plastic shakedown may occur.

6. Cohesive soil subjected to cyclic loading behaves

differently comparing to non-cohesive soil. The limit

between the plastic shakedown and the plastic creep

shakedown range is smooth and changes during cyclic

loading. It may by possible that after post-compaction

stage, the response can change due to fatigue of the

material.

7. The practical application of the common logarithm of

energy density quotient can lead to estimate maximal

amplitude of cyclic loading which can improve

pavement and foundation design process.
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