
Experimental analysis of the dynamical response of energy
harvesting devices based on bistable laminated plates

A. Syta • C. R. Bowen • H. A. Kim • A. Rysak •

G. Litak

Received: 27 September 2014 / Accepted: 4 March 2015 / Published online: 13 March 2015

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The use of bistable laminates is a potential

approach to realize broadband piezoelectric based

energy harvesting systems. In this paper the dynamic

response of a piezoelectric material attached to a

bistable laminate plate is examined based on the

experimental generated voltage time series. The

system was subjected to harmonic excitations and

exhibited single-well and snap-through vibrations of

both periodic and chaotic character. To identify the

dynamics of the system response we examined the

frequency spectrum, bifurcation diagrams, phase por-

traits, and the 0–1 test.

1 Introduction

Recently, various energy harvesting devices have been

developed in an attempt to convert ambient vibrations

to electrical energy [1, 2]. This interest has stemmed

from the need to develop autonomous low-powered

electronic systems such as wireless sensor net-

works and safety monitoring systems. For vibration

harvesting the use of piezoelectric materials is a

potential route for generating the necessary power

levels, typically in the lW to mW range. The

advantages of these materials are their higher strain

energy densities compared to electrostatic and elec-

tromagnetic systems and their ease of integration with

mechanically vibrating structures [3].

In many cases, such as those on railway carriages

[4] or other forms of transport [5, 6], the ambient

vibrations can exhibit multiple time-dependent fre-

quencies, may change with time and can include

components at relatively low frequencies. It has been

reported that introducing nonlinear effects can lead to

an improvement of the frequency bandwidth of the

vibration energy harvester [7].

As a result, a variety of approaches for incorporat-

ing non-linearity in the stiffness of energy harvesters

have been considered, most notably by designing

bistable harvesters with two distinct energy wells [8–

13] using repulsive or attractive magnetic interactions

between a cantilever and an external magnet, axial

loading of canilevers and the use of post-buckled

beams.

An alternative method of developing bistability was

reported by Arrieta et al. [14–18] where a piezoelectric

element was attached to an asymmetric bistable

laminate plate made from a carbon fibre reinforced

polymer (CFRP) laminate with a [0/90]T layup. Due to

the difference in the coefficient of thermal expansion

between the carbon fibre and epoxy matrix the thermal

residual stress developed on cooling of the laminate
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from an elevated cure temperature leads to it exhibit-

ing two distinct stable states. When subjected to large

amplitude oscillations the laminate undergoes snap-

through between the two stable states. For energy

harvesting [19] when a piezoelectric material is

attached to the bistable laminate surface it can

generate power by repeated straining as it experiences

deformation as a result of mechanical vibrations.

Experimentally, such harvesting devices have been

shown to exhibit high levels of power extraction over a

wide range of frequencies when harmonically excited

from a central mounting [20], with the scope for

improved power generation through changes in the

geometry. The potential advantages of using the

intrinsic thermal stress in the laminate to induce

bistability, compared to using magnetic configurations

[19, 21] is that (1) the laminate can be designed to

occupy a smaller space and there are no stray magnetic

fields, (2) the laminate can be readily combined with

piezoelectric materials and (3) there is potential to

tailor the laminate lay-up, laminate elastic properties

and geometry to provide additional control over the

harvester response to the vibrations that are being

harvested.

In the present work we employ an electro-me-

chanical system to generate mechanical vibrations

leading to snap-through of the laminate between its two

stable states. Such a system has the potential of have a

broadband frequency response in terms of its voltage

output. At this stage it is of interest to note that a

monostable system is characterized by a single poten-

tial well while a bistable by a double potential well. In

contrast to the simplest mono-stable linear system,

which shows narrow frequency resonance, bistable

structures are inherently nonlinear and are character-

ized by an inclined (nonsymmetric) resonance curve

covering the wider region of frequencies. Another

effect caused by strongly nonlinear bistable system can

be the appearance of multiple solutions. In such a case,

the solutions can be grouped into the hopping cases with

large amplitudes and those sitting in the single potential

well with small amplitude of oscillations. The advan-

tage of a bistable resonator is visible for lower

frequencies. In our system of a bistable plate, hopping

between potential wells is realized by a snap-through

phenomenon. Due to the linear coupling between

displacement and voltage in a piezoelectric patch, a

larger vibration of amplitude response for given

excitation frequency implies larger power output.

The motivation of this work is to develop methods

to identify the bistable mechanical resonator response

to vibrations; these include single well oscillations,

continuous snap-through between stable states and the

existence of chaotic or periodic snap-through be-

haviour [20, 22]. An understanding of the nature of the

complex dynamic response of such a system could be

used to optimise the ambient vibration energy

harvesting.

2 Experimental setup

A square [0/90]T carbon fibre reinforced laminate was

considered as the basis for developing a broadband

energy harvesting device. The laminate measured

190 mm by 190 mm and was made from M21/T800

CFRP prepreg material. A single piezoelectric Macro

Fiber Composite (MFC) layer (M8585-P2,

85 mm 9 85 mm) was bonded to the laminate sur-

face. Figure 1a shows the two stable state of the

CFRP-MFC combination which is mounted to an

electrodynamic shaker (LDS V455) at its centre, see

Fig. 1b. Note that in most cases, application of MFC

with interdigitated electrode (IDE), where the po-

larisation direction is along the fibre length, is

characterised by a low efficiency for energy harvesting

comparing to a mono-fiber piezo-ceramic element

(PZT) [23–25]. In this case the M8585-P2 device is

polarised through thickness by continuous upper and

lower electrodes. Compared to an IDE based device

such a configuration has (1) a more uniform electric

field distribution (2) a high device capacitance,

leading to low peak voltages as a result of the

piezoelectric charge and (3) a low electrical impe-

dance due to the high device capacitance. The MFC

has also an advantage in better flexibility. This

property is crucial in our system as the axis of bending

is changing due to bistability of a plate.

3 Experimental results

Under kinematic excitation the laminate plate can

show a variety of responses reflected in the measure-

ment of the open-circuit voltage. In Fig. 2 we show the

results for a sampling frequency of 1000 Hz.

The voltage-time response as a result of vibration

testing with a 10g peak acceleration at frequencies
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Fig. 1 a The laminate used for these tests measures

190 mm 9 190 mm 9 0.5 mm, has a [0/90]T layup and has a

single piezoelectric layer Micro-Fibre-Composite (MFC)

attached to the top surface of dimensions

85 mm 9 85 mm 9 0.3 mm, and b experimental setup show-

ing mechanical shaker attachment
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Fig. 2 Voltage time series

of experimental results

corresponding for

increasing frequencies f ¼
30, 35, 40, 45, 50, 51, 55, 57,

60, 65, 70, 75, 80 Hz

corresponding to subplots

(a–m), respectively. Note

single well mode cases (a–

d and j-m), and snap-

through buckling cases:

regular (f, g), chaotic (e, h),

and transient chaotic-regular

(i). Stationary and transient

chaotic responses are

denoted by red colour for

better clarity. Each

excitation had

10g amplitude acceleration.

Sampling frequency was

1000 Hz
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ranging from of 30–80 Hz are summarised in Fig. 2.

Interestingly, the voltage-time response exibits both

periodic and non-periodic (chaotic) behaviour. In

essence the results can be classified as

(1) single well oscillations with no snap-through at

small amplitude oscillations, as seen in Fig. 2a–

d and j–m,

(2) cross-well oscillations with snap-through at

regular intervals (but not every cycle, Fig. 2g),

(3) cross-well oscillations with snap-through at

irregular intervals chaotic Fig. 2e, h,

(4) continuous snap-through at every cycle, Fig. 2f.

For better clarity the stationary chaos and transient

chaotic responses are denoted by red colour. Figure 2i

presents an interesting case where there is transient

chaotic-regular behaviour. Schematic images of the

possible mode shapes during single well and snap-

through are shown in Fig. 3. Figure 4a–m shows the

corresponding Fourier transforms of the examined

measured voltage output. One can observe that the

excitation frequency is accompanied by the higher
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Fig. 2 continued
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harmonics in all the figures. In addition, in Fig. 4e, h, i

there is smearing of the discrete frequency response

into bands as expected for chaotic cases. Note that the

frequency spectra represent a qualitative criterion of

the system response. In the discussion below, the

nature of the dynamic behavior of the responses will

be explained using established tools.

Interestingly, the more complex response cases are

close to the resonance region. This has been summarised

in Fig. 5a which is a bifurcation map created from the

local maxima collected from cycles in the corresponding

votage time series (Fig. 2). One can distinguish the

regular and chaotic responses as singluar points and point

bands, respectively. Note the case f = 51 Hz is not a

edutilpmallamsro

(a)

(b) snap-through

large amplitude

⇐⇒

Fig. 3 Vibration modes of a

bistable square plate a single

well: small amplitude

vibrations around one of the

equilibrium states; b snap-

through: large amplitude

vibrations
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Fig. 4 Frequency spectra

(a–m) corresponding to

voltage time series Fig. 2a–

m, respectively
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clear case and has been clasified as a multifrequency

regular case because of the discrete Fourier spectrum

(see Fig. 4f). The associated resonance curve is estimat-

ed via the voltage output variance varðuÞ ¼ r2
u which is

plotted versus frequency f (Fig. 5b). Note that the

large voltage response is acompanied by cross-well

oscillations of regular and chaotic nature. Interesting-

ly, chaotic oscillations are characterised by a smaller

voltage output (see red points in Fig. 5b).

In the next sections, we propose to use the 0–1 test

for more accurate chaos identification.

4 The ‘0–1 test’

The ‘0–1 test’, invented by Gottwald and Melbourne

[26, 27], can be applied for any system of a finite

dimension to identify the chaotic dynamics but it is

based on the statistical properties of a single coordi-

nate only. Thus it is suitable to quantify the response

where only one parameter was measured in time. As it

is related to the universal properties of the dynamical

system such as spectral measures, it can distinguish a

chaotic system from a regular one.
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A particular advantage of the 0–1 test over the

frequency spectrum is that it provides information

regarding the dynamics in a single parameter value,

similar to the Lyapunov exponent. However, the

Lyapunov exponent can be difficult to estimate in any

non-smooth simulated or measured data [31]. The

present system (Fig. 1) used an asymmetric bistable

laminate plate as an example showing non-linear

elastic properties. Therefore the 0–1 test can provide

the suitable algorithm to identify the chaotic solution

[32–35].

Starting from the voltage output uðiÞ, for sampling

points i ¼ 1; . . .;Nt, (where Nt ¼ 4000) we define new

coordinates pðnÞ and qðnÞ as

pðnÞ ¼
Xn

j¼0

ðuðjÞ � uÞ
ru

cosðjcÞ;

qðnÞ ¼
Xn

j¼0

ðuðjÞ � uÞ
ru

sinðjcÞ;
ð1Þ

where u denotes the average value of u while ru its

standard deviation, c is a constant 2 ½0; p�. Note that

qðnÞ is a complementary coordinate in the two

dimensional space. Furthermore, starting from bound-

ed coordinate uðiÞ we build a new series of pðnÞ which

can be either bounded or unbounded depending on

dynamics of the examined process.

Continuing the calculation procedure, the total

mean square displacement is defined as

McðnÞ ¼ lim
N!1

1

N

XN

j¼1

½ pðjþ nÞ � pðjÞð Þ2

þ qðjþ nÞ � qðjÞð Þ2�;
ð2Þ

The asymptotic growth of McðnÞ can be easily

characterized by the corresponding ratio K 0
cðnÞ

K 0
cðnÞ ¼

lnðMðnÞÞ
ln n

: ð3Þ

In the limit of a very long time n ! 1 (in practice

n ¼ nmax ¼ 400 while N ¼ 3600) we obtaine the

corresponding values of Kc for a chosen c value.

Note, our choice of nmax and N limits (in Eqs. 4 and 5)

is consistent with that proposed by Gottwald and

Melbourne [28–30] N; nmax ! 1 but simultaneously

nmax should be about N=10.

It is important to note that the parameter c acts like a

frequency in a spectral calculation. If c is badly

chosen, it could resonate with the excitation frequency

or its ultra- or sub-harmonics. In the 0–1 test regular

motion would yield a ballistic behaviour in the ðp; qÞ-
plane [28] and the corresponding McðnÞ results in an

asymptotic growth rate even for a regular system. The

disadvantage of the test, its strong dependence on the

chosen parameter c, can be overcome by a proposed

modification. Gottwald and Melbourne [28, 33, 34]

suggest to take randomly chosen values of c

and compute the median of the corresponding Kc-

values.

Consequently, the new covariance formulation

Kc ¼
covðX;McÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞvarðMc

p
Þ
; ð4Þ

where vectors X ¼ ½1; 2; . . .; nmax�; and

Mc ¼ [Mcð1Þ, Mcð2Þ, …, McðnmaxÞ].
In the above, the covariance covðx; yÞ and variance

varðxÞ, for arbitrary vectors x and y of nmax elements,

and the corresponding averages x and y respectively,

are defined

covðx; yÞ ¼ 1

nmax

Xnmax

n¼1

ðxðnÞ � xÞðyðnÞ � yÞ;

varðxÞ ¼ covðx; xÞ:
ð5Þ
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Fig. 5 Bifurcation diagram (a)—created on the basis of local

maximum points of the corresponding time series (Fig. 2), resonance

curve (b)—varðuÞ versus frequency f . Note, the red points

correspond to chaotic oscillations (see f ¼ 50, 57, and 60 Hz)
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Finally, the median is taken of Kc-values (Eq. 6)

corresponding to 100 random values of c 2 ð0; pÞ.
Such an average K-value can now be estimated for

various excitation frequency f . The control parameter

K signals the appearance of regular and chaotic

solution for K close to 0 and one, respectively.

5 Regular and chaotic oscillations by the ‘0–1 test’

The results of the parameter K are presented in Fig. 6.

We show that for chaotic regions K� 0:9 while for

regular regions K is closer to 0 (K� 0:1). The case of
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Fig. 6 Control parameter of the 0–1 test, K (c). K ! 0 indicates

a regular solution while K ! 1 signals chaos. Note, the red

points correspond to chaotic oscillations (see f ¼ 50, 57, and

60 Hz)
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Fig. 7 Phase portraits du=dt
versus u obtained by

numerical differentiation for

chosen voltage time series at

frequencies a f ¼50 Hz

(K ¼ 0:918), b 51 Hz

(K ¼ 0:579), c 57 Hz

(K ¼ 0:994), d 65 Hz

(K ¼ 0:059); and finally the

transient chaos versus

regular cases (see Figs. 2, 6)

f ¼ 60 Hz (K ¼ 0:892)

plotted in (e) and (f),
respectively
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intermediate value (see K ¼ 0:58 for f ¼51 Hz in

Fig. 6) signals the vicinity to bifurcation points (see

f ¼51 Hz in the bifurcation diagram Fig. 5a) or a very

long transient. In such cases a longer time series can

outweigh the classification assignment to a regular

response.

For selected chaotic and neighbour frequency cases

we now plot the corresponding phase portraits

(Fig. 7). It is possible to differentiate regular responses

as the close orbits patterns in contrast to strange

chaotic attractors. Interestingly, the transient case

shows the clear difference between the initial (tran-

sient chaotic) and final (regular) behaviour (Fig. 7e, f,

respectively). For better clarity we also show exam-

ples of the phase plane in the new ðp; qÞ coordinates

(Eq. 1). Figure 8a, b shows the growth of the

displacement in regular (Figs. 2f, 4f) and chaotic

(Figs. 2f, 4f) solutions suggesting the bounded and

unbounded cases. The corresponding values of Kc,

Kc ¼ 0:066 and Kc ¼ 0:988, distinguish unambigu-

ously the regular and chaotic cases.

6 Conclusions

The dynamics of a CFRP bistable laminate combined

with a piezoelectric MFC has been examined and the

existence of chaotic responses have been successfully

identified using the 0–1 test. The results obtained are

consistent with quantitative methods such as Fourier

frequency spectra and corresponding phase portraits.

Note that the present investigations are contaminated

by a relatively small measurement noise level which is

present in any experimental data. This is visible in the

values of K � 0:1 for regular responses. However,

better convergence with K ! 0 or 1 was achieved

indicating that a distinction between regular and

chaotic motion could be achieved if a longer time

series was applied. It is also noted that due to the

elastic non-linear properties of the examined system a

relevant quantitative characterisation (via Lyapunov

exponents) of responses is difficult. A further study

may involve more sophisticated time-series approach-

es with a suitable dimensional space embedding [36].

Note that the above identification could be useful

for optimising the energy harvester response to a

specific vibration input. By focusing on the resonance

region (by comparing Figs. 5a, b, 6) it is possible to

observe a less complex motion (smaller K) leading to

the higher variance of the voltage output [higher

var(u)]. For example local minima in Fig. 5b are

correlated with peaks in Fig. 6 for the same frequen-

cies f ¼ 45 and 55 Hz. Further studies and needed to

draw a more general conclusion on the relationship

between the power output and K.
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