
SOCA (2015) 9:193–209
DOI 10.1007/s11761-014-0160-z

ORIGINAL RESEARCH PAPER

Mechanism and architecture for the migration of service
implementation during traffic peaks

Pekka Pääkkönen · Daniel Pakkala

Received: 27 August 2013 / Revised: 8 January 2014 / Accepted: 10 June 2014 / Published online: 21 June 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Service-Oriented Architecture has been widely
applied in enterprise computing systems for software-enabled
services. However, cost efficiency and scalability require-
ments have moved the execution environment towards the
cloud domain. Hybrid approaches have emerged, which
utilise both enterprise and cloud domains in order to bal-
ance between the cost of service execution and the provided
Quality of Service (QoS) for end users. This paper presents
a migration, monitoring and load-balancing mechanism and
architecture for scaling services between the enterprise and
cloud domains during traffic peaks. The argued benefit of the
proposal is the automation of the service-migration process
and improvement of the QoS. A prototype system is pre-
sented as a proof of the conceptual architecture. The perfor-
mance results in a hybrid cloud environment indicate that
service implementation can be migrated and load can be
balanced within 200ms. Furthermore, the mechanism can
improve the QoS for end users during traffic peaks. Our
approach differs from existing proposals by focusing on the
migration of service implementation, instead of themigration
of service as part of a virtual machine.

Keywords Service · Migration · Load balancing ·
Monitoring · QoS · Traffic peaks · Hybrid cloud

P. Pääkkönen (B) · D. Pakkala
VTT Technical Research Centre of Finland, Kaitoväylä 1,
90570 Oulu, Finland
e-mail: pekka.paakkonen@vtt.fi

D. Pakkala
e-mail: daniel.pakkala@vtt.fi

1 Introduction

The paradigms of Service-Oriented Architecture (SOA) and
Service-Oriented Computing (SOC) has beenwidely applied
in enterprise computing systems to enhance the efficiency,
agility and productivity of enterprises. However, in recent
years, the adoption of SOA and SOC has also increased in
other fields of computing. This allows the functional interop-
erability of technologically heterogeneous distributed com-
puting systems when developing new services. These ser-
vices are implemented with software that is deployed and
executed on one or more networked host computers. The
emergence of cloud computing, and especially the Software-
as-a-Service (SaaS) deployment paradigmwith programmat-
ically accessible interfaces [1], combined with the digitalisa-
tion of information, creates a path towards the Internet of ser-
vices. In this vision, services are provided and used over the
Internet by human clients (e.g. via Web browsers or mobile
applications), or by the client’s computing systems via pro-
grammatically accessible interfaces (e.g. viaWeb services or
REST). From the business viewpoint, the cost efficiency of
hosting services in a scalable fashion has become a relevant
concern. Organisations that provide software-based services
over the Internet are looking forways tominimise costswhile
providing adequate QoS.

Due to cost efficiency and scalability requirements, the
mainstream execution environment for software-based ser-
vices has changed from enterprise IT systems towards cloud
computing paradigm-based deployment environments. Some
services can be developed from the beginning to the cloud.
In addition, existing services may be migrated to the cloud
domain, whereas some services have constraints for cloud
migration. The constraints include, for example, privacy con-
cerns, concerns of intellectual property and the business sen-
sitivity of processed data. However, some use cases exist,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-014-0160-z&domain=pdf


194 SOCA (2015) 9:193–209

which may be of benefit to service migration. One example
may be a personalised newswebsite, which requires complex
processing. QoS may be low during a big news event due to
increased load at the server. Another use casemay require the
high-speed capturing and saving of network packets, which
may be limited by database at the server. Migration of load
between domains may increase the performance of network
monitoring.

The contribution of this paper is a service migration, mon-
itoring and load-balancing mechanism between enterprise
computing and cloud computing environments during traffic
peaks. The main idea is usage of Infrastructure-as–a-Service
(IaaS) cloud instances during traffic peaks to ensure QoS for
end users. In addition, the automation of service migration
and load balancing is focused on with user-defined rules. A
conceptual architecture has been realised in the described
prototype system. The architecture differs from existing pro-
posals by not migrating services as part of a virtual machine,
but instead focusing on the migration of service implemen-
tation. Performance results indicate that service migration
and load balancing are quick operations, and can be used for
enhancing QoS for end users.

The structure of the paper is as follows. Related litera-
ture is presented in Chapter 2. Research scope, problems and
method are presented inChapter 3. Conceptual architecture is
provided inChapter 4 and proof-of-concept inChapter 5. Per-
formance test procedures are provided in Chapter 6; results
are described in Chapter 7 and analysed in Chapter 8. Finally,
the results of the study are discussed in Chapter 9 and con-
cluded in Chapter 10.

2 Literature review

First, standardisation and definition of Internet-based ser-
vices has been studied extensively. Jones reviews different
standardisation efforts related to software-enabled services
[2]. Service is defined as a “discrete domain of control that
contains a collection of tasks to achieve related goals”. In
this scope, the service definition requires the specification
of several aspects including interface, contract, security and
performance. Yahia et al. [3] presented a service definition
for next-generation networks, where a service is comprised
of one or more reusable service components. In addition,
the software architecture definition for cloud computing has
been discussed [4]. In the proposed Reservoir architecture,
a service is an application to be deployed. A Service Defi-
nition Manifest is applied to define a contract between the
service provider and infrastructure provider for the correct
provisioning of the service.

Often applied cloud-service definitions have been spec-
ified by NIST [1]. Additionally, literature on dynamically
scaling applications in the cloud has been reviewed by

Vaquero et al. [5]. Models for the provisioning of cloud
services have been specified as Infrastructure-as-a-Service
(IaaS), Network-as-a-Service (NaaS), Platform-as-a-Service
(PaaS) and Software-as-a-Service (SaaS). Network scalabil-
ity (NaaS) techniques are typically performed with over-
lay networks (L2/L3) or TCP/IP virtualisation (VLAN) [5],
which enables virtualised access to network resources for the
user. Cloud systems offering virtual hardware infrastructure
and networks, while providing control over operating sys-
tems, tools and deployed applications, are referred to as IaaS
clouds [1]. PaaS refers to the development and deployment
of services to a cloud environment with tools and libraries
offered by the cloud provider [1]. Finally, SaaS is a model
for using applications running in the cloud environment via
thin clients (e.g. Web browsers) or via program interfaces,
but the user does not have control of the virtual environment,
or even the applications [1].

Load balancing is often needed when traffic is being
divided among different service containers, e.g. in a PaaS
type of cloud model [5]. Centralised load balancing for Web
servers has been proposed [6]. In the architecture, a master
server controls load-balancing decisions based on server sta-
tus. Another approach is to execute client-side load balancing
to the cloud [7]. The idea is that a client makes a decision for
the applied Web server based on the observed load, which
is propagated to the client from a proxy. Transmitted HTTP
requests are processed by a proxy and delivered to the cho-
sen Web server. Many tools have been productised for load
balancing [8], and functionality has also been integrated to
cloud systems (e.g. Amazon’s Elastic Load Balancing [9]).

In addition, application migration between enterprise and
cloud domains from a practical point of view has been stud-
ied. Examples include the migration of an IT system in the
oil and gas industry from in-house to Amazon EC2 [10], the
migration of an automatic collector of process and product
data to Amazon EC2 [11], and the development of Cloud-
Genius for the migration of Web servers to clouds [12].
Based on experience of application migration, a taxonomy
has been proposed [13]. Additionally, the costs and benefits
of cloud computing, when compared to desktop grids, have
been analysed [14].

QoS-aware infrastructure for monitoring and controlling
service performance with NoSQL-distributed storage sys-
tems has been developed for data-intensive applications [15].
Also, a service-oriented monitoring framework with REST
and Nagios has been developed [16].

Service migration, management and monitoring in the
cloud domain were also a point of focus. Most of the solu-
tions are based on the Open Virtualisation Format (OVF)
for representing applications and associated virtualmachines
(VM). A design for service management in clouds was pre-
sented by Rodero-Merino [17]. Their focus is on a new layer
for abstracting management of services executed in differ-

123



SOCA (2015) 9:193–209 195

ent clouds. Chapman et al. [4] follow a similar approach as
Rodero-Merino [17] for migration of services, based on elas-
ticity rules. Zhao and Huang [18] presented the live migra-
tion of virtual machines in a Red Hat Cluster environment
based on a cost function of I/O usage. Vaquero et al. [19]
present the most advanced work for migration of services
in the cloud domain. Further, they show how load can be
balanced between the private and public cloud domain. In
addition, commercial servicemigration is available. Notably,
Amazon’s Elastic LoadBalancing [9] enables automatic load
balancing based on user-defined rules. Finally, hybrid enter-
prise/cloud architectures were analysed by Hajjat et al. [20].
Particularly, a model was presented for evaluating the bene-
fits of a hybrid migration approach, which was analysed with
a real enterprise application.

When services are defined as part of a virtual machine
with OVF-model, several benefits are gained. Interoperabil-
ity between cloud vendors, extensibility and the descriptive
nature of the syntax is important qualities [19]. Also, it is pos-
sible to hide service-specific details when a service can be
migrated as part of the virtual machine. However, the encap-
sulation of services inside aVMmay not always be desirable.
The performance of virtual machine migration may be low.
It may take tens of seconds to migrate a Web server [19]
or a VM [17,18]. This may lead to further problems, espe-
cially when service migration should be a quick operation,
for example migration during traffic peaks.

Finally, Bicer et al. [21] proposed cloud bursting for data-
intensive workloads. The proposal performs load balancing
for MapReduce jobs between enterprise and cloud domains
instead of focusing on service migration.

Based on the literature review, it can be seen that there
are publications focusing on the full migration of services
from the enterprise domain to the cloud domain. In addition,
automatic service migration and load balancing for services
with a virtualised cloud domain model have been focused on
in many publications. However, service migration between
enterprise and cloud domains during traffic peaks has not
been focused on, when the migrated service is not specified
as part of a virtualised model (e.g. OFV), which is the main
contribution of this paper. Notably, service migration dur-
ing traffic peaks is focused on, and the performance of the
proposal has been evaluated as a proof-of-concept.

3 Research scope, problems and method

In this paper, we use the term ‘service’, when referring to a
functionality set that is enabled by a software implementa-
tion executed in a networked host. The related cloud service
model is IaaS [2], where virtual cloud resources are obtained
from Amazon EC2, and the service administrator has con-
trol over services, operating systems and environments. Also,
SaaS [1] may characterise usage, when the service adminis-

trator offers access to the service implementation via a pro-
grammable interface. We are not focusing on OVF-based
service modelling, which defines services as part of a virtual
machine(s). Instead, we focus on the migration of a service
implementation, for example encapsulated in a JAR/WAR-
file(s). This should enable improved performance for the ser-
vice migration process.

The scope of research covers services, which have already
been deployed in the enterprise domain, and continued
deployment in the enterprise domain, may be preferred. In
these cases, an investment has already been performed to
cover costs of database servers and network equipment in
the enterprise domain. When processing load requirements
increase, some of the load may be preferred to be moved
to the cloud domain to ensure QoS caused by an increasing
amount of end users or traffic peaks.

The following use cases can be considered as potential
applications of the proposed migration mechanism:

Service requires complex processing including reading
from a database (e.g. a personalised news website)—an
increasing amount of end users may lead to low QoS due
to a higher processing load at the server. If requests would
be balanced between hosts in different domains, QoS may
increase.

Service requires heavy writing into a database (e.g. net-
work monitoring equipment saves traces into a database)—
high-speed data collection may be limited by the database
at the server, if the amount of collected data is increased.
If writes could be distributed between hosts in different
domains, performance may improve.

Services and related data need to be transferred between
business organisations—in this case, a service is initially exe-
cuted in an enterprise domain, which is controlled by com-
panyA.Abusiness transaction between companyAand com-
pany B creates a need to transfer services and related data to
the enterprise or cloud domain, which is controlled by com-
pany B. An automated solution would significantly reduce
effort in service migration.

The initial goal of the work has been to develop a mech-
anism that would increase QoS for end users during traffic
peaks (e.g. in a news website use case) and automate man-
agement of services. Traffic peaks are encountered frequently
with network services, for example during a specific time of
the day [22], which may often lead to decreased QoS for end
users. The following motivating factors can be considered
for the research:

1. Increased QoS for end users, when the resources or com-
puting power of the existing servers in the enterprise
domain is not enough for handling the load.

2. Automation of service migration and load-balancing
tasks may reduce the effort for managing services on
multiple domains.

123



196 SOCA (2015) 9:193–209

3. The possibility to use cloud services based on real
demand. This may eventually lead to a lower overall cost
of service deployment when compared to the full migra-
tion of services to the cloud domain. Cost savings would
be achieved by avoiding investment in additional cloud
instances and network traffic, which could be handled by
the existing enterprise nodes.

Based on this rationale, the following research questions are
posed:

1. Can an automated service migration, monitoring and
load-balancingmechanism be implemented as a software
system and what kind of architecture would it have?

a. How fast is the developed mechanism?
b. What is the perceived performance improvement

from the end-user point of view?

A constructive researchmethod has been applied to answer to
the first research question; conceptual and concrete architec-
tures are presented and validated with a laboratory prototype
system. Quantitative research methods have been applied
for answering the subsequent questions regarding the per-
formance of the mechanism. Database services and database
synchronisation are out of the focus of this work, and an
item for future research. Also, aspects of possible cost sav-
ings were not part of the focus.

4 Conceptual architecture

The architecture of the concept has been described in Fig. 1.
The concept is illustrated from the point of view of a service
provider/administrator. The administrator is executing the
service initially in the enterprise domain and scales the ser-
vice to the cloud domain during traffic peaks. The services are
administrated via the developed admin interface of the Coor-
dinator, and aproprietary admin interfaceof the clouddomain
is applied for getting IaaS cloud instances based on demand.

The Coordinator contains the main logic and functional-
ity in the architecture. It is applied to deploy services, and
for the configuration of rules for service migration and load
balancing.Additionally, theCoordinator receivesmonitoring
data from a QoSmonitor. For example the CPU load, service
latency and disk usage can be monitored. The performance
data received from the QoS monitor is applied for making
decisions for service migration and load balancing.

The other main component of the architecture is the
Worker. It is applied for to execute service deployment and
load-balancing operations. The Worker communicates with
a Service container to execute deployment operations via the
admin interface of the Service container. The Worker also
controls load balancing and executes operations ordered by
the Coordinator.

One main issue of the architecture is the independency
of an algorithm for service migration and load balancing.
Thus, the service administrator is responsible defining the

Fig. 1 Conceptual architecture—conceptual architecture is comprised of the coordinator, worker, QoSmonitor, service container and load balancer

123



SOCA (2015) 9:193–209 197

Fig. 2 Architecture of the
proof-of-concept—conceptual
architecture was implemented as
a proof-of-concept laboratory
prototype on three nodes and
one Amazon EC2 instance

algorithms for service migration, which are specified with
migration rules, and configured via the Admin interface. The
migration rules are further translated into alerts received from
the QoS monitor to execute service migration.

5 Proof-of-concept

In this chapter, proof of the conceptual architecture is pre-
sented. First, the architecture of the implementation is pre-
sented in Sect. 5.1. Then, the main data flows of the sys-
tem have been described in Sect. 5.2. Subsequently, the
main class definitions of the Coordinator are presented in
Sect. 5.3. Finally, sequence diagrams illustrate the function-
ality of service deployment and the configuration of migra-
tion rules (Sect. 5.4), and service migration and load balanc-
ing (Sect. 5.5).

5.1 Architecture of implementation

The presented architecture was implemented and tested with
three nodes and one virtual Amazon EC2 instance (Client,

Coordinator-LoadBalancer, Enterprise node and Amazon
EC2 instance in Fig. 2).

The test client simulated a large number of end users
of a service. The Coordinator, QoS monitor, Worker and
Load Balancer were executed on one node (Coordinator-
LoadBalancer). A Nagios network monitoring tool was cho-
sen as the QoS monitor, which was integrated with the Coor-
dinator. A plug-in was developed for the Coordinator for
interacting with Nagios. A Web interface was developed as
a user interface for interacting with the Coordinator, e.g. for
the deployment of services and configuration of the rules for
servicemigration and load balancing.A simple database con-
tained the previously mentioned rules and state information
of the services. The Engine contained the main logic of the
Coordinator.

The Coordinator communicated with a Worker for load-
balancingoperations.HAproxywas chosen as the technology
for balancing the load, and the Worker was integrated with
it.

The EnterpriseNode andAmazonEC2 instance contained
aWorker to deploy services. Tomcat was applied as a service
container. Tomcat’s Manager API was used as an adminis-

123



198 SOCA (2015) 9:193–209

Fig. 3 Data flows of the
implementation—important
data flows between system
components

tration interface for deployment operations. NRPE Nagios
Plug-in [23] provided remote-monitoring information from
the Enterprise Node and Amazon EC2 instance to the QoS
Monitor at the Coordinator node.

Communication between theCoordinator andWorkerwas
implemented over HTTP. Notably, a message-oriented pro-
tocol was implemented on top of HTTP.

5.2 Data flows of implementation

Figure 3 presents main data flows of the implementation.
First, the data flow from clients is balanced at the HAproxy
towards service implementations, which are executed in dif-
ferent domains. Second, service-administration commands
and service-rule configurations executed by the administrator
are caught by the Coordinator. One Worker executes recon-
figuration commands with the HAproxy based on service-
rule configurations. Another Worker communicates service-
deployment commands to Tomcat. Additionally, the Coordi-
nator initialises Nagios based on configuration of the service-
migration rules. Third, Nagios NRPE Plug-ins communi-
cate monitoring data to Nagios. When an important event
is triggered, the Coordinator gets the event from Nagios
and reads the performance data from Nagios’s output per-

formance files for decision-making regarding the execution
of service migration.

5.3 Main class definitions of the coordinator

Themain definitions of theCoordinator implementation have
been described in Fig. 4. The main logic of the Coordinator
is in the Engine, which uses the presented class definitions.

The service package contains definitions regarding the
configuration of services. The service rules package con-
tains high-level definitions for service migration and load-
balancing rules. The Nagios package (part of the Nagios
plug-in) contains low-level definitions for monitoring events
received from the Nagios monitoring tool. In the following
explains the main classes of the packages.

Service class is a high-level concept of a service, which
may contain one-to-many ServiceComponents. A Service-
Component ismeant for encapsulating information of an exe-
cutable service, e.g. a Jar-/War-file in a service container. It
may contain one-to-many ServiceInstances, which refer to
the execution of a service component in a particular service
container (e.g. Tomcat/Glassfish). Additionally, ServiceDat-
aConfig is defined for encapsulating the load-balancing con-
figuration of a ServiceComponent.

123



SOCA (2015) 9:193–209 199

Fig. 4 Main classes of the coordinator implementation—the classes of the coordinator are divided to service, service rules and Nagios packages

Condition class refers to any condition that is applied for
decision- making regarding migration and load balancing of
services. It may contain one-to-many ConditionAttributes,
each associated with a value, with a minimum or maximum
level allowed. Currently, four conditions have been defined
(load, disk space, host status and Http). ServiceRule-class
may contain one-to-many Conditions, which have to be ful-
filled to trigger service migration or load balancing. Ser-
viceRule also contains the actions (association with a Ser-
vice) to be executed in case a rule is triggered.

ConditionChange-class refers to a change in a condition,
whichmay trigger a ServiceRule. NagiosAlert-class refers to
low-level alert received fromNagios and is related to an event
regarding status of a Nagios service or a host. NagiosAlerts
are converted to ConditionChanges for decision-making
regarding service migration.

5.4 Service deployment and configuration of migration
rules

Figure 5 presents the deployment of a service and the config-
uration of migration rules. In the use case, a user deploys a
service with the Coordinator on the Enterprise Node. Addi-
tionally, load balancing is configured via HAproxy. Finally,
migration rules are set, which leads to performance monitor-
ing with Nagios.

In step 1, the user provides a War-file of the service, the
name of the service and service component, path of deploy-
ment, address and port of the Worker, and configuration for
load balancing via the Web interface. In step 2, the Coor-
dinator sends the received information to the Worker at the
Enterprise Node. Subsequently, the Worker deploys the ser-
vice locally in Tomcat via the manager API (step 3).

After deployment of the service, the load-balancing con-
figuration is sent to the Worker at the Coordinator node (step
4). TheWorker performs the required changes to anHAproxy
configuration file (step 5) and restarts it using the hot config-
uration capability of HAproxy [24] (step 6). The Coordinator
saves the configuration of the service locally to a simple data-
base (step 7).

Finally, the user sets rules for service migration and load
balancing (step 8), which are saved to the database by the
Coordinator (step 9). Then, the received configuration is
saved to the Nagios configuration files (step 10), and Nagios
is reloaded (step 11). This causes Nagios to start balancing
the load towards the deployed service on the Enterprise node.
Thus, the definition of service rules leads to monitoring the
service state with Nagios.

5.5 Service migration and load balancing

Figure 6 presents the migration of a service from the Enter-
prise Node to the Amazon EC2 instance based on a change of

123



200 SOCA (2015) 9:193–209

Fig. 5 Sequence diagram for service deployment and configuration of migration rules—first, a service is deployed to the Enterprise Node (steps
1–6). Then, load balancing is configured based on user-defined rules (steps 8–11)

Fig. 6 Sequence diagram for
migration of a service—a
service is migrated from the
Enterprise Node to the Amazon
(steps 4–9) instance based on a
trigger received from Nagios
(steps 1–3)

123



SOCA (2015) 9:193–209 201

condition triggered by Nagios. Additionally, operations for
load balancing are presented.

First, Nagios detects an event based on the earlier config-
uration, and sends the event (NagiosAlert in Fig. 4) to the
Coordinator (step 1). For example, the load on the Enter-
prise Node may be monitored, which was started based on
the definition of service rules. If the load increases above the
configured threshold, an alert will be triggered by Nagios.
Next, the Coordinator reads the monitoring data from the
Nagios performance files (step 2). Subsequently, the event
(ConditionChange in Fig. 4) is processed and compared to
migration rules (ServiceRule in Fig. 4) (step 3). In addition,
the state of the condition is saved at the Coordinator. If the
migration rule is triggered, the associated action will be exe-
cuted. The action contains an end state for different services
and may also contain information about load balancing (Ser-
viceDataConfig in Fig. 4), as in this particular case.

Next, the service will be migrated to Amazon EC2 based
on a message exchanged between the Coordinator and the
Worker executed at theAmazon instance (steps 4–5). Finally,
load balancing towardsAmazonEC2will be configured (step
6). TheHAproxy configurationfilewill be updated, and anew
entry will be added for balancing traffic towards Amazon
(steps 7–8).

6 Performance testing

In this Chapter, test set-up and test procedures are presented
for performance analysis of the proof-of-concept.

6.1 Latency of service migration and load balancing

6.1.1 Purpose

The test was performed to measure latency regarding service
migration and load-balancing procedures (see Fig. 6). Both
procedures should be fast enough to enable quick migration
of services and configuration of load balancing.

6.1.2 Test procedure

In the test, an event received from Nagios was simulated,
and it was propagated to the Coordinator. The event was
processed, which triggered a service rule. The pre-configured
action was deployment of a service in Amazon EC2 and con-
figuration of load balancing at the HAproxy towards the ser-
vice. After service deployment and load balancing, the initial
set-up was established again by undeploying the service and
removal of the load-balancing configuration. Five thousand
test iterations were executed. The deployed service was a
small War-file (∼5kB).

6.1.3 Test metric

Latency was measured in each step of the process with a
latency-measurement tool [25]. The steps of the procedures
undermeasurement at the Coordinator are similar to the steps
in Fig. 6:

Step 1: Transmission of a test event from a simulated
Nagios instance to the Coordinator.

Step 2: Reading of performance data from the Nagios
performance file.

Step 3: Processing of the event in the Coordinator.
Steps 4–5: Deployment of the service to Amazon EC2.

Step 6: Transmission of the load-balancing configuration
for service deployed at Amazon EC2.

Step 7: Updating of the HAproxy configuration files.
Step 8: Hot reconfiguration of HAproxy.
Step 9: Response message from the Worker to the Coor-

dinator.

Additionally, latency in the deployment of a service instance
in Tomcat was measured at the Amazon EC2 instance as
follows:

Step 1: Send deploymessage (HTTPGET) via TomcatMan-
ager API.

Step 2: Receive response message (200 OK) from Tomcat
Manager API.

Delay components were calculated for each step as follows:

delayAvgk,k−1 =
∑tests

k=1 tstep(k) − tstep(k−1)

tests
(1)

6.2 Performance improvement during a traffic peak

6.2.1 Purpose

The test was performed to validate that service migration
during traffic peaks leads to increased performance for the
end users of a service.

6.2.2 Test procedure

In the test, a Test client executed a varying number of HTTP
requests towards the server (Fig. 3). Initially, load balancing
was configured to route traffic towards the Enterprise server.
At the Enterprise server, a service was deployed, which sim-
ulated the execution of a CPU-intensive process. For each
received message at the server, 100,000 bytes of text were
encrypted anddecryptedwith theAdvancedEncryptionStan-
dard (AES) algorithm. In addition, the CPU usage at the

123



202 SOCA (2015) 9:193–209

Table 1 HW/SW configuration of the test bed—HW/SW configurations in the different nodes of the prototype system are presented

Test client Coordinator Enterprise server Amazon EC2 instance

HW Dell Latitude D400 laptop,
Intel Pentium M, 1.6GHz,
Ubuntu Karmic, RAM = 1GB

Dell Latitude D400 laptop,
Intel Pentium M, 1.4GHz,
RAM=1GB

Dell Optiplex 990, 4 CPU*
3.1GHz, RAM=8GB

Reserved small instance in
Ireland (1 vCPU, 1.7GB,
low network perf)

SW Java v1.6.20 Java v1.6.24, HAproxy
v1.4.20, Nagios Core
v3.2.3

Java v1.6.24, Tomcat v7.0.26 Java v1.6.24, Tomcat v7.0.26

Enterprise server was limited to 25%with the cpulimit Unix-
tool [26]. It was applied for configuration of performance
between the Enterprise Node and the Amazon EC2 instance
closer to each other (see the configuration in Table 1).

The load at the Enterprise server and Amazon EC2
instance was monitored with Nagios and NRPE plug-ins.
Service migration rules were configured as follows:

Migration rule 1: If the load is above 60% of CPU time,
deploy the service to Amazon EC2, and balance the load
between the Enterprise Node and the Amazon EC2 instances
by using the round-robin algorithm of HAproxy.

Migration rule 2: If the load is lower than 30%, undeploy
the service in Amazon EC2, and balance the load back to the
Enterprise Node.

Migration rule 1 was aimed at balancing the load during a
traffic peak towards Amazon EC2 to increase QoS perceived
at the Test client. Migration rule 2 was aimed at balancing
the load back to the Enterprise Node, when the traffic peak
is over.

CPU load as a percentage (%) was converted to a Nagios
numerical load value by doubling the percentage value. Thus,
60% load on the application level translated into a 2*0.6=1.2
value on the Nagios load configuration [24].

The test client had 15 Java threads, which tried to send as
many HTTP GET messages as possible to reach the target
message rate. The target message rate was first increased
from 5 to 30msg/s, and then decreased back to 5msg/s. The
change of message rate was discrete (2msg/s) with a 30s
interval.

The test was executed three times, with and without (ref-
erence) the migration mechanism.

6.2.3 Test metric

Measurements were performed at the test client to analyse
QoS as follows:

latencyAvg =
∑tests

k=1 tresponse(k) − ttransmission(k)

tests
(2)

throughput =
20

t20th transmission−t1st transmission+latency20th transmission

(3)

Throughput is actually real-time application-level goodput,
which is calculated at every 20th completedmessage transac-
tion. Average, median, minimum and maximum values were
calculated for each test run. Additionally, the time at the trig-
gering of migration rules was captured, and sent to the test
client for latency measurement and throughput during the
detected traffic peak.

6.3 Set-up of the test bed

Table 1 presents the HW and SW configuration of the test
bed. The Test client, Coordinator and Enterprise Node were
connected to each other via a 100Mb bridge. An Internet
connection was established via a 1Gb test network in Oulu,
Finland. The Amazon EC2 instance was executed in Ireland.

7 Test results

7.1 Latency of service migration and load balancing

Figure 7 describes test results in service migration and load
balancing. Notably, the components of total latency have
been described.

7.2 Performance improvement during a traffic peak

Figure 8 presents latency at the Test client without service
migration during a traffic peak. Figure 9 presents latency at
the Test client with servicemigration and load balancing dur-
ing a traffic peak.Additionally, triggering events ofmigration
rules have been presented. Figure 10 presents throughput at
the Test client without service migration and load balancing.
Figure 11 presents throughput with service migration and
load balancing during a traffic peak.

Table 2 presents the minimum and maximum range (in
the three test cases) for latency and throughput regarding
different statistical measures.

8 Analysis

In Sect. 8.1, the architecture and design of the prototype sys-
tem is analysed. Section 8.2 analyses the results of perfor-

123



SOCA (2015) 9:193–209 203

Fig. 7 Components of latency
in service migration and load
balancing

Fig. 8 Latency during a traffic
peak without service migration
and load balancing

Fig. 9 Latency during a traffic
peak when service is migrated to
Amazon EC2 and the load is
balanced. Triggering events for
migration and load balancing
are also provided

123



204 SOCA (2015) 9:193–209

Fig. 10 Throughput during a traffic peak without service migration
and load balancing

Fig. 11 Throughput during a traffic peak, when service is migrated to
Amazon, EC2 and the load is balanced. Triggering events for migration
and load balancing are also provided

Table 2 Statistical distribution of latency and throughput with/without
servicemigration and load balancing—range (minimumandmaximum)
for the reference and the migration mechanism has been provided

Ref-min Ref-max Migr-min Migr-max

Connections 6933 7030 9043 10199

Avg. lat. (ms) 596.3 614.6 196.6 287.2

Median lat. (ms) 427.9 456.2 106.8 166.5

Min lat. (ms) 16.0 16.2 15.9 15.9

Max lat. (ms) 4804.4 5035.9 2670.3 4830.1

Avg. lat. in peak (ms) 244.3 400.9

Thr.put max (msg/s) 19.2 19.4 19.1 23.2

Thr.put avg. (msg/s) 8.7 9.1 12.4 13.6

Thr.put in peak (msg/s) 12.9 14.7

mance tests. Finally, the solution is compared to related work
in Sect. 8.3.

8.1 Architecture and design

8.1.1 Conceptual architecture

Weconcentrated on themigration of service implementation,
whichwouldbe executed inside aVM, insteadofmigrationof
VMs. The rationale is improved performance in terms of ser-
vice migration latency, when VM instantiation is performed
before the actual migration process. However, relaxing the
VMdependence has implications for the service architecture.

When services are defined with the OVF-model, many
details of the service implementation can be hidden, because
they can be migrated as part of a virtual machine. Our
approach exposed some of the details to be handled. For
example, the communication parameters of service com-
ponents have to be handled to enable load balancing at
HAproxy.

In our approach, the service administrator is responsible
for specifying the service migration rules. Currently, CPU
load, disk usage, HTTP and host condition can be specified
in themigration rules, which aremapped into events received
fromNagios. However, the list of monitored variables can be
extended.

The main components of the architecture are the Coor-
dinator and the Worker. The idea is that the Coordinator
manages all Workers, which are needed for managing ser-
vices in containers and load balancing traffic between service
instances.

8.1.2 Proof-of-concept

Implementation architecture We chose HAproxy as a load
balancer and Nagios as a network monitoring tool, because
they are production-level tools for their intended purpose.
Other alternative technologies could have been chosen.

The Worker and Coordinator communicated over HTTP
protocol.We chose a JettyHttp server [27], because it enables
building embedded HTTP servers to the Java implemen-
tation, instead of running a separate instance (e.g. Tomcat
server). We also implemented a message-oriented protocol
on top of HTTP to enable different application layer proto-
cols. For example, load-balancing and service-deployment
messages from the Coordinator to the Worker use differ-
ent messaging protocols, which were specified for the pur-
pose. In particular, application protocols were implemented
as a middleware layer between the HTTP-implementation
and application layer of the Worker. Each application layer
instance (engine) had a unique identifier, which was applied
for messaging with the Coordinator. The Worker applied

123



SOCA (2015) 9:193–209 205

one IP address and port for communication, and messages
were relayed to the registered application layer instances
(engines). This enabled many application layer instances to
be executed in theWorker (e.g. executed in different threads).
For example, engines at theWorker for Tomcat andHAproxy
(Fig. 2) could be reached at the same IP address and port-pair
of the Worker.

In the prototype system, a load balancer was executed on
the same node with the Coordinator. However, HAproxy and
the associated Worker need not be colocated with a node
where the Coordinator is executed. A change in the load-
balancing configuration was implemented by modifying the
HAproxy configuration files, and by executing hot reconfig-
uration [8]. This required the execution of a Unix-script from
the Java implementation, which restarted HAproxy.

Changes in QoS monitoring are executed by modifying
the Nagios configuration files and by reloading Nagios. In
practice, a UNIX system call is required from the Java imple-
mentation. The developed NRPS Plug-in at the Coordinator
read the performance data from the Nagios output files after
it received a Nagios event. This required the Coordinator and
Nagios to be colocated on the same node (Fig. 3). The NRPS
Nagios plug-in (Fig. 3) was applied for remotemonitoring on
enterprise and Amazon domains, but also any other Nagios
remote-monitoring plug-in could have been applied for the
same purpose.

Main class definitions The rationale for the Service-package
is to encapsulate information of an abstract Service, which
may contain a different number of ServiceComponents. An
example of a ServiceComponent could be a JAR-file. How-
ever, the JAR-file could be executed in multiple service con-
tainers. Thus, ServiceInstance corresponds to the actual JAR-
file, which is executed in a service container (e.g. Tom-
cat/Glassfish). Configuration for load balancing (Service-
DataConfig) has been associated with ServiceComponent,
because service components can be executed onmultiple ser-
vice containers, which need configuration for load balancing
(such as for HTTP proxying).

The ServiceRules-package is aimed at encapsulating a
high-level view for state of the service (based on different
Conditions), which is visible to the maintainer of the ser-
vice. Currently, the CPU load (LoadCondition), disk usage
(DiskspaceCondition), HTTP (HttpCondition) and host ser-
vices (HostStatusCondition) can be specified in themigration
rules (UI at the Coordinator), which are mapped into events
received from Nagios. Service may have multiple associated
Conditions, any of which may trigger an action. An action
corresponds to the end state of a Service, which is com-
pared to the earlier state of the Service (Fig. 3). Typically,
deployment of ServiceComponent(s) and configuration of
load-balancing rules (ServiceDataConfig) are compared, and
the required action is executed.

The Nagios-package contains a low-level view of the host
and services, according to the Nagios Core documentation
[24]. Notably, Nagios has different states (Ok,Warning, Crit-
ical, etc.) associated with a service or host, which should be
mapped to an understandable concept on a higher level. Cur-
rently, a mapping between the views has been specified to
the NagiosAlert-class, which converts a Nagios event to a
ConditionChange. An example is system load, which is a
numerical value, and depends on the amount of processors
available, and processor idle time. However, mapping to an
understandable measure at the high level requires effort (e.g.
0–100% system load would be less unambiguous).

8.2 Performance results

8.2.1 Latency of service migration and load balancing

When the results of processing latency in service migra-
tion and load balancing are analysed (Fig. 7), it can be seen
that total latency of the operations is less than 200ms. The
main components of latency (∼95%) are service migration
towards Amazon EC2 (steps 4–5) (83.5%) and reconfigura-
tion of load balancing at HAproxy (step 7) (11.3%).

The main latency components were analysed further.
Deployment of services over the Tomcat Manager API in
the Amazon EC2 instance was also measured. The average
delay in service deployment in Amazon was ∼91ms, which
comprises more than half of the service-migration latency.
The other half of the service-migration latency is caused by
large RRT from Finland to Ireland, where the Amazon EC2
instance is deployed.

Reconfiguration of the load-balancing process consists of
modification of HAproxy configuration files, and restarting
HAproxy. This process was studied further. New tests with
1,000 test iterations were performed, in which a simple load-
balancing configuration was added and removed at the Enter-
prise node. The results indicate that, when a new configura-
tion is added, ∼89% of the delay is caused by restarting the
HAproxy process. In practice, this is caused by a system call
from the Java implementation to the Linux operating system,
which restarts HAproxy.

8.2.2 Performance improvement during a traffic peak

When latency is analysed from client point of view (Figs. 8,
9), it can be seen that themigrationmechanism can be applied
to enhance QoS. When no migration mechanism is applied,
latency increases from tens of milliseconds up to 5 s during a
traffic peak.When amigrationmechanism is applied, latency
increases at first, but reduces after service migration and load
balancing has been executed. This can also be noticed when
migration events are compared to changes of latency (see
Fig. 9).

123



206 SOCA (2015) 9:193–209

Table 3 Comparison of architectural elements between our work and published literature

Paper Service definition Migration rules Migration condition/
trigger

Coordination Monitoring Load balancing

Rodero-Merino [17] SDF, OVF SDF, OVF Based on KPI Claudia and
virtual
infrastructure
manager

KPI (job queue) –

Katsaros [16] REST API to
data model

– – – Nagios –

Zhao and Huang [18] Red Hat Cluster
Conf. files

– Cost function DLBA algorithm Cost function
(CPU and I/O
load)

VLAN reconf.

Chapman [4] ADL, OVF Elasticity rules Based on KPI Service manager,
grid
management
service

KPI (job queue
in Condor
scheduler)

–

Amazon Elastic LB [9] Auto scaling
group of EC2
instances

Scaling policies
for auto-scaling
groups

Alarms, policies Amazon CloudWatch
metrics/alarms

Elastic LB

Vaquero [19] OVF RIF, Policy
language

Based on KPI Rule manager,
rule engine,
rule
enforcement

Custom
monitoring
module

App re-tiering
use case
(Tomcat, Jetty)

Bicer [21] Generalised
reduction API

– – Head node – Job stealing

Our contribution Service- package ServiceRules-
package

ServiceRules-
package

Coordinator-
module

Nagios HAproxy

When realised throughput is analysed, it can be seen that
the enterprise node is able to process ∼20mgs/s (Fig. 10).
However, when more messages are transmitted to the server,
throughput decreases significantly and latency increases.
With the migration mechanism throughput also decreases at
first until servicemigration and loadbalancinghavebeen exe-
cuted. After service migration and load balancing, through-
put is much higher and latency much lower when compared
to the reference.

When the detailed results are analysed (Table 2), it can be
seen that with the service migration mechanism up to 47%
more messages are served in total. It can also be seen that
average and median latency is significantly lower without
service migration and load balancing. Also, average latency
during a traffic peak is less than 500ms, which is a significant
improvement over the reference (Fig. 8).

The average throughput is 3.3–4.9msg/s higher, when
compared to the reference. The increase in throughput was
studied further by executing the reference test with Amazon
EC2 instance (without Enterprise node). The results indi-
cate that an average throughput of 5.0–5.3msg/s could be
achieved. Thus, load balancing between the Amazon EC2
instance and the Enterprise Node with the presented mech-
anism enables quite efficient usage of the extra capacity,
even though it has not been optimised for maximisation of
throughput/latency.

8.3 Comparison to literature

Themost closely related literature to our work has been com-
pared in Table 3 from the point of view of different architec-
tural elements. The main difference is that our work is the
only one that focuses on themigration of services during traf-
fic peaks between enterprise and cloud domains, which does
not associate the migrated service implementation as part of
a virtual machine based on an OVF-model. In the following,
the works are compared to our contribution in detail.

Rodero-Merino et al. [17] present a service abstraction
layer (Claudia) for service management and monitoring.
They propose a definition of service and migration rules
with Service Description Files (SDF), which is an exten-
sion of the OVF-format. In the architecture, Claudia and the
virtual infrastructure manager perform coordination, and the
migration of services is performed based on changes in Key
Performance Indicators (KPI). The biggest differences to our
work is that the detailed description of resource monitoring
based on KPIs is missing, and load balancing has not been
dealt with, nor do they focus on migration of services during
traffic peaks.

Katsaros et al. [16] present integration between Nagios
and REST for building a framework for monitoring services.
They developed the NEB2REST module for mapping infor-
mation received from Nagios to the database of the moni-

123



SOCA (2015) 9:193–209 207

toring service, which can be compared to the Nagios plug-in
we developed for the Coordinator (Fig. 2). Libvirt library
was used for monitoring the virtual infrastructure, whereas
we used NRPS for monitoring remote hosts. The main dif-
ference to our work is that we also present integration with
load balancing and user-defined rules for automatic service
migration during traffic peaks.

Zhao and Huang [18] have presented a load balancing
algorithm for the live migration of virtual machines in a Red
Hat cluster environment. Migration of VMs is based on a
cost function, which is comprised of CPU and I/O usage.
Live migration of VM took 162s in average. The difference
to our approach is that service migration rules are not specif-
ically defined. Further, their concept of load balancing is
focused on reconfiguration of VLAN across domains rather
than redirection of traffic (with HAproxy).

Chapman et al. [4] follow a similar approach as Rodero-
Merino [17]. Services are specifiedwithApplicationDescrip-
tion Language (ADL), which is based on the OVF-standard.
Elasticity rules specify migration of services based on the
status of KPIs. Condor Manager monitors the status of the
job queue and executes migration of services. The Service
Manager/Grid Management Service performs the migration
of services. Monitoring of services focuses on KPIs such as
job queue, which is different from our approach of using real
HW-related information provided byNagios. Also, they have
not focused on a load-balancing solution for handling traffic
peaks.

Elastic Load Balancing at Amazon EC2 enables the load-
balancing functionality in the cloud domain. The load can
be balanced based on health checks of instances, and auto-
scaling enables the automatic starting of instances on demand
based on user-defined policies [9]. Themain difference is that
our solution focuses on service migration and load balancing
between the enterprise domain and cloud domain.

Vaquero has presented similar work on the migration
of services in the cloud domain [19]. Service definition is
based on the OVF-standard, and a policy language is applied
to specify migration rules. A custom-monitoring module
detects a change inKPI status, and a Rule-Enforcementmod-
ule executes the actions specified in the Rule Engine. An
application re-tiering use case presents how load can be bal-
anced, when a Web service is migrated between public and
private cloud domains. Differences to our work are lack of
details about monitoring (in the Custom-monitoring mod-
ule), and their focus onvirtualised environments.On theother
hand, Vaquero et al. [19] have performed a detailed perfor-
mance evaluation for migration rules (e.g. Rule manager),
which is also important.

Finally, Bicer et al. [21] proposed a framework for the
cloud bursting of data-intensive computing. The solution
is able to distribute MapReduce jobs between enterprise
and cloud domains, which significantly reduces processing

latency. A newMapReduce type of API (a generalised reduc-
tion API) is used for specifying jobs. A head node in the
architecture coordinates the assignment of jobs between the
domains. Data to be processed is migrated between domains
instead of the migration of services. The main differences to
our proposal is a lack of monitoring functionality or migra-
tion rules, and their focus on themigration of data forMapRe-
duce processing, instead of our focus on the migration of
service implementations.

Practical reports [10–13] on cloud migration may also
be compared to our work. However, they are related to the
full migration of applications and services from the enter-
prise domain to the cloud domain, not on hybrid solutions
such as handling traffic peaks. The benefits of migration
between enterprise and cloud domains have been analysed
[20]. Notably, component placement and access control lists
were focused on during the migration process. This work
appears to be complementary to our work. Moreover, Hajjat
et al. [20] mention “handling of dynamic variations in work-
load” as a potential benefit of migration, which was covered
in our work.

9 Discussion

In the following research results, limitations and future work
are discussed.

The main difference between our work and other pro-
posals is that we did not associate the migration of ser-
vice implementation to the migration of a virtual machine.
When services are migrated, e.g. based on the OVF-model,
some details of the migrated service can be hidden inside the
migrated virtual machine. In our work, we assumed that a
virtual machine was instantiated beforehand, for example by
purchasing a reserved instance from Amazon. The biggest
benefit should be improved performance in the migration
process,when compared to themigration of virtualmachines.
The delay in the migration of a virtual machine is tens of sec-
onds [17–19], which is high when compared to the migration
of the service implementation (∼200ms). However, this has
some implications on the developed service architecture.

For example, many preliminary operations in the cur-
rent architecture have to be performed before automation is
achieved. First, an instance has to be acquired with the Ama-
zon account. Also, the required SW tools have to be installed
(Java, Tomcat etc.). Then, the Amazon firewall has to be
configured to enable traffic between enterprise and Amazon
domains. Finally, Nagios and the NRPS Plug-in, HAproxy,
Tomcat, the Controller and the Workers have to be started
in different domains. In addition, configuration information
from service deployment, load balancing andmigration rules
create complexity for the Web interface of the Coordina-
tor. However, the previously mentioned operations may be

123



208 SOCA (2015) 9:193–209

automated further, if more functionality was built inside the
Coordinator.

The performance tests focused on testing migration pro-
cedures between enterprise and cloud domains for a small
service (∼5 KB JAR-file). However, a realistic scenario may
consist of large files to be transferred between the domains,
which have to be taken into account. Also, multiple service
components may be defined as part of the migrated service.
If a component exposes a public interface for the client,
communication configuration (ServiceDataConfig in Fig. 4)
should be defined to enable load balancing.

Further, a slow network connection between the enterprise
and cloud domain may reduce the benefit of service migra-
tion during a traffic peak. Actually, a big factor in migration
latency (Fig. 3) was the connection between the enterprise
node (Finland) and the Amazon EC2 instance (Ireland). It
should also be noted that HAproxy may drop some incom-
ing packets, when it is restarted/reconfigured.

One limitation regarding the proposal may be applicable
use case scenarios. A main determinant is the sensitivity of
information, which is associated with the migrated service
and related data. There are risks involved in migrating sensi-
tive service data to the cloud domain, which has to be taken
into account. Thus, it is argued that the proposal may be
more suitable for the migration of services that deal with
non-sensitive information.

We experimented with one possible service, which simu-
latedCPU-intensive processing in the server. Another service
may include complex reading from a database server (e.g. a
personalised news website). Alternatively, DNS load balanc-
ing may be applied between the domains to solve the prob-
lem, but it does not handle monitoring the load or QoS for the
detection of traffic peaks. A servicemay also include increas-
ing the amount of databasewrites to be served (e.g. a network
monitoring use case), which may have similar related issues
without an automated migration mechanism. Finally, a ser-
vice and its related data may need to be transferred between
the enterprise/cloud domains of different companies. If ser-
vice migration was performed manually, the service would
need to be manually instantiated in the new domain, and
end-user client application may need to be modified to direct
traffic towards the server of the new domain. This may be
a laborious process, which may be eased with the proposed
approach for automated service migration. In this case, the
Coordinator and Load balancer may need to be executed in
a third-party domain, which would be controlled based on
agreements between the companies.

Themain items for futurework are related to improvement
of the existing components of the architecture, and exten-
sions with new components. The existing components need-
ing further development include development of a simpler
user interface for the Coordinator, increased level of automa-
tion in the Coordinator, implementation of a database for the

storage of service state and service rules, and enhanced map-
pingbetweenNagios-based event data anduser-defined rules.
New development items include the cost-saving aspects of
the solution, dynamic scaling of cloud instances, support for
database scalability and security aspects.

10 Conclusion

This paper focused on automated migration, monitoring and
load-balancing mechanisms for services between enterprise
and cloud domains during traffic peaks. The focus was on the
migrationof service implementation, as opposed tomigration
of service as part of a virtual machine. The rationale was bet-
ter expected performance in the migration process. The main
research question focused on architecture and the realisation
of the concept for servicemigration. First, a conceptual archi-
tecture was presented, which enabled automated migration
and load balancing of services based on user-defined migra-
tion rules. Second, a prototype system based on open-source
SW components was presented as a proof of the concep-
tual architecture. The answer to the research question is as
follows from an architectural point of view: In the imple-
mentation, HAproxy enabled load balancing between clients
and services. Nagios realised monitoring of services and
hosts and Tomcat acted as a service container. Additionally,
a Coordinator-entity encapsulated rules and logic for service
migration and load balancing and the Worker-entity facil-
itated load balancing and service-deployment operations.
Sequence diagrams illustrated the communication between
architecture components, when service migration and load
balancing was executed.

The sub-research questions were related to the perfor-
mance of the developed mechanism. The developed migra-
tion mechanism was quite fast as service migration and load
balancing between the enterprise domain and cloud domain
could be executed in less than 200 ms (sub-research question
1a). Themain sources of delay in the procedure were deploy-
ment of services at the service container (e.g. Tomcat), and
reconfiguration for load balancing. Finally, performance for
simulated end users was measured in a use case, where a
CPU-intensive process was executed in the server, and a traf-
fic peak was simulated. The average latency decreased from
∼600 to∼200–300ms, and the average throughput increased
from ∼9 to ∼13msg/s, when the results produced with the
proposed mechanism were compared to the reference case
(sub-research question 1b). This proves that the mechanism
can be used to increaseQoS for end users during traffic peaks.

Acknowledgments Jussi Liikka from VTT provided comments to
the initial idea of the prototype system and chosen technologies. This
work was partially funded by TEKES (the Finnish Funding Agency
for Technology and Innovation) in ITEA2 (Information Technology for
European Advancement) ACDC (Adaptive Content Delivery Cluster)
and ICARE (Innovative Cloud Architecture for Entertainment) projects

123



SOCA (2015) 9:193–209 209

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Mell P, Grance T (2011) The NIST definition of cloud com-
puting. NIST special publication 800–145. http://csrc.nist.gov/
publications/nistpubs/800-145/SP800-145.pdf. Accessed 21 Feb
2013

2. Jones S (2005) Towards an acceptable definition of service. IEEE
Softw 22:87–93. doi:10.1109/MS.2005.80

3. Yahia IGB et al. (2006) Service definition for next generation net-
works. In: Proceedings of the international conference on network-
ing, international conference on systems and international confer-
ence on mobile communications and learning technologies

4. Chapman C et al. (2010) Software architecture definition for on-
demand cloud provisioning. In: Proceedings of the ACM inter-
national symposium on high performance distributed computing
(HPDC’10), pp 87–93

5. Vaquero L, Rodero-Merino L, Buyya R (2011) Dynamically scal-
ing applications in the cloud. ACM SIGCOMMComput Commun
Rev 41:45–52. doi:10.1145/1925861.1925869

6. Bhadani A, Chaudhary S (2010) Performance evaluation of web
servers using central load balancing over virtualmachines on cloud.
In: Proceedings of the 3rd annual ACM bangalore conference

7. Wee S, Liu H (2010) Client-side load balancer using cloud. In:
Proceedings of the 25th symposiumon applied computing, pp 399–
405

8. HAproxy (2013) http://haproxy.1wt.eu/. Accessed 21 March 2013
9. Auto scaling Developer Guide (2013) http://docs.aws.amazon.

com/AutoScaling/latest/DeveloperGuide/Welcome.html.
Accessed 21 March 2013

10. Khajeh-Hosseini A, Greenwood D, Sommerville I (2010) Cloud
migration: a case study of migrating an enterprise IT system to
IaaS. In: Proceedings of the 3rd IEEE international conference on
cloud computing, pp 450–457

11. Babar MA, Chauhan MA (2011) A tale of migration to cloud com-
puting for sharing experiences and observations. In: Proceedings of
the 2nd international workshop on software engineering for cloud
computing, pp 50–56

12. MenzelM,RanjanR (2012)CloudGenius: decision support forweb
server cloud migration. In: Proceedings of the 21st international
conference on world wide web, pp 979–988

13. Tran V et al. (2011) Application migration to cloud: a taxonomy of
critical factors. In: Proceedings of the 2nd international workshop
on software engineering for cloud computing, pp 22–28

14. Kondo D et al. (2009) Cost-benefit analysis of cloud computing
versus desktop grids. In: Proceedings of the IEEE international
symposium on parallel and distributed processing, pp 1–12

15. ChalkiadakiM,Magoutis K (2012)Managing service performance
in NoSQL distributed storage systems. In: Proceedings of the 7th
workshop on middleware for next generation internet computing

16. KatsarosG,Kubert R,GallizoG (2011)Building a service-oriented
monitoring framework with REST and nagios. In: Proceedings of
the IEEE international conference on services computing, pp 426–
431

17. Rodero-Merino L et al (2010) From infrastructure delivery to ser-
vice management in clouds. Future Gener Comput Syst 26:1226–
1240. doi:10.1016/j.future.2010.02.013

18. ZhaoY, HuangW (2009) Adaptive distributed load balancing algo-
rithm based on live migration of virtual machines in cloud. In: Pro-
ceedings of the 5th international joint conference on INC, IMS and
IDC, pp 170–175

19. Vaquero LM, Daniel M, Galan F, Alcaraz-Calero JM (2012)
Towards runtime reconfiguration of application control policies in
the cloud. J Netw Syst Manag 20:489–512. doi:10.1007/s10922-
012-9251-3

20. Hajjat M et al. (2010) Cloudward bound: planning for beneficial
migration of enterprise applications to the cloud. In: Proceedings
of the ACM SIGCOMM conference, pp 243–254

21. Bicer T, Chiu D, Agrawal G (2011) A framework for data-intensive
computing with cloud bursting. In: Proceedings of the IEEE inter-
national conference on cluster computing, pp 169–177

22. Sen S, Wang J (2004) Analyzing peer-to-peer traffic across
large networks. IEEE/ACMTrans Netw 12:219–232. doi:10.1109/
TNET.2004.826277

23. Nagios Remote Plugin Executor (2013) http://exchange.nagios.
org/directory/Addons/Monitoring-Agents/NRPE-2D-Nagios-
Remote-Plugin-Executor/details. Accessed 21 March 2013

24. Nagios Core Documentation (2013) http://nagios.sourceforge.net/
docs/nagioscore/3/en/toc.html. Accessed 21 March 2013

25. PääkkönenP, Prokkola J, LattunenA (2011) Instrumentation-based
tool for latency measurements. In: Proceedings of the ICPE’11:
WOSP/SIPEW international conference on performance engineer-
ing, pp 403–412

26. CPU Usage Limiter for Linux (2013) http://cpulimit.sourceforge.
net/. Accessed 21 March 2013

27. Jetty Http server (2013) http://jetty.codehaus.org/jetty/. Accessed
21 March 2013

123

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://dx.doi.org/10.1109/MS.2005.80
http://dx.doi.org/10.1145/1925861.1925869
http://haproxy.1wt.eu/
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/Welcome.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/Welcome.html
http://dx.doi.org/10.1016/j.future.2010.02.013
http://dx.doi.org/10.1007/s10922-012-9251-3
http://dx.doi.org/10.1007/s10922-012-9251-3
http://dx.doi.org/10.1109/TNET.2004.826277
http://dx.doi.org/10.1109/TNET.2004.826277
http://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE-2D-Nagios-Remote-Plugin-Executor/details
http://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE-2D-Nagios-Remote-Plugin-Executor/details
http://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE-2D-Nagios-Remote-Plugin-Executor/details
http://nagios.sourceforge.net/docs/nagioscore/3/en/toc.html
http://nagios.sourceforge.net/docs/nagioscore/3/en/toc.html
http://cpulimit.sourceforge.net/
http://cpulimit.sourceforge.net/
http://jetty.codehaus.org/jetty/

	Mechanism and architecture for the migration of service implementation during traffic peaks
	Abstract 
	1 Introduction
	2 Literature review
	3 Research scope, problems and method
	4 Conceptual architecture
	5 Proof-of-concept
	5.1 Architecture of implementation
	5.2 Data flows of implementation
	5.3 Main class definitions of the coordinator
	5.4 Service deployment and configuration of migration rules
	5.5 Service migration and load balancing

	6 Performance testing
	6.1 Latency of service migration and load balancing
	6.1.1 Purpose
	6.1.2 Test procedure
	6.1.3 Test metric

	6.2 Performance improvement during a traffic peak
	6.2.1 Purpose
	6.2.2 Test procedure
	6.2.3 Test metric

	6.3 Set-up of the test bed

	7 Test results
	7.1 Latency of service migration and load balancing
	7.2 Performance improvement during a traffic peak

	8 Analysis
	8.1 Architecture and design
	8.1.1 Conceptual architecture
	8.1.2 Proof-of-concept

	8.2 Performance results
	8.2.1 Latency of service migration and load balancing
	8.2.2 Performance improvement during a traffic peak

	8.3 Comparison to literature

	9 Discussion
	10 Conclusion
	Acknowledgments
	References




