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Abstract The neuroteratogenic nature of Zika Virus (ZIKV)
infection has converted what would have been a tropical dis-
ease into a global threat. Zika is transmitted vertically via
infected placental cells especially in the first and second tri-
mesters. In the developing central nervous system (CNS),
ZIKV can infect and induce apoptosis of neural progenitor
cells subsequently causing microcephaly as well as other neu-
ronal complications in infants. Its ability to infect multiple cell
types (placental, dermal, and neural) and increased environ-
mental stability as compared to other flaviviruses (FVs) has
broadened the transmission routes for ZIKV infection from
vector-mediated to transmitted via body fluids. To further
complicate the matters, it is genetically similar (about 40%)
with the four serotypes of dengue virus (DENV), so much so
that it can almost be called a fifth DENV serotype. This ho-
mology poses the risk of causing cross-reactive immune re-
sponses and subsequent antibody-dependent enhancement
(ADE) of infection in case of secondary infections or for im-
munized individuals. All of these factors complicate the de-
velopment of a single preventive vaccine candidate or a phar-
macological intervention that will completely eliminate or
cure ZIKV infection. We discuss all of these factors in detail
in this review and conclude that a combinatorial approach
including immunization and treatment might prove to be the
winning strategy.
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Background

Multiple reports have now confirmed that Zika virus (ZIKV)
is a neuroteratogenic pathogen and is the causative agent of
microcephaly and other developmental anomalies of the cen-
tral nervous system (CNS) in children born to infected
mothers (Cugola et al. 2016; Franca et al. 2016; Li et al.
2016a; Miner et al. 2016; Pacheco et al. 2016; Roberts and
Frosch 2016). Not only that, but it is also associated with
Guillain-Barre syndrome (GBS) (Araujo et al. 2016; Cao-
Lormeau et al. 2016; Roze et al. 2016), thrombocytopenia
(Karimi et al. 2016; Sharp et al. 2016), and ocular complica-
tions (Moshfeghi et al. 2016; Parke et al. 2016; Valentine et al.
2016; Ventura et al. 2016) in infected individuals. It is a
mosquito-borne flavivirus (FV) that was isolated in 1947 from
a rhesus monkey in the Zika forest of Uganda (Dick 1952;
Dick et al. 1952) and has caused major epidemics in
Micronesia, French Polynesia, and South and Central
America since 2007 (Weaver et al. 2016; White et al. 2016).
The severity of the current epidemic has prompted massive
research effort to understand and eradicate this global health
concern.

Lot of meaningful data has been generated in a very short
time covering different aspects of the infection, from its asso-
ciation with microcephaly to mechanistic insights into
neuropathogenesis as well as placental transmission; however,
we are yet to come up with an efficient strategy to tackle this
eminent threat. The purpose of this review is to examine the
factors that, we deem, play a very decisive role in designing
preventive and therapeutic measures to combat ZIKV
infection.
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Environmental stability and cellular tropism
of ZIKV

While most of the FVs are mainly transmitted through vector
bite (except for hepatitis C virus, which is a non-arboviral FV)
(Blitvich and Firth 2015), ZIKV has been shown to be trans-
mitted sexually as well as vertically. It can persist in semen for
longer time (Harrower et al. 2016; Mansuy et al. 2016;
Matheron et al. 2016; Reusken et al. 2016; Turmel et al.
2016) and was also detected in breast milk (Dupont-
Rouzeyrol et al. 2016), saliva, and urine (Bonaldo et al.
2016; Fourcade et al. 2016; Liuzzi et al. 2016; Wiwanitkit
2016). Further, it was found to retain most of its infectivity
during a pH range of 5–11 (Muller et al. 2016), is much more
stable at higher temperatures as compared to other FVs, and
can remain infectious for up to 3 days in the form of dried
spots (Kostyuchenko et al. 2016; Muller et al. 2016).
Investigators led by Kostuchenko speculated that ZIKV ex-
pands into smooth-surfaced particles when incubated in
harsher conditions making the lipid envelope more fluid and
then allowing it to revert back to its normal state. They attrib-
uted this to a one-residue insertion (Ala340) in the DIII do-
main of E protein, which helps in forming an extra hydrogen
bond with other interacting DIII domains of nearby E proteins
(Kostyuchenko et al. 2016). These are important factors to be
kept in consideration while developing preventive/therapeutic
approaches against ZIKV.

Further, ZIKValso has a very broad tropism and is known
to use Axl, Tim1, Tyro3, and DC-SIGN as entry receptors in
different cell types. ZIKVwas shown to infect and replicate in
human dermal fibroblasts, epidermal keratinocytes, and im-
mature dendritic cells in vitro (Hamel et al. 2015). Miner
and colleagues found virus in the placental trophoblasts of
mice infected with Zika (Miner et al. 2016). Additionally,
Zika virus has been found to replicate in several human tro-
phoblast cell lines, but not trophoblast cells from full term
placentas that release type II IFN (Bayer et al. 2016; El
Costa et al. 2016; Miner et al. 2016). Tabata et al. infected
different primary cell types from mid- and late-gestation pla-
centas and explants from first-trimester chorionic villi.
They found that ZIKV-infected cytotrophoblasts, endothelial
cells, fibroblasts, and Hofbauer cells in chorionic villi and
amniotic epithelial cells and trophoblast progenitors in
amniochorionic membranes. Furthermore, it infected these
cells with higher viral titers in mid gestation versus late ges-
tation (Tabata et al. 2016). Further, multiple studies have in-
dicated that ZIKV infects neural stem cell progenitors, radial
glia, as well as astrocytes (Brault et al. 2016; Cugola et al.
2016; Dang et al. 2016; Garcez et al. 2016; Hughes et al. 2016;
Li et al. 2016b; Nowakowski et al. 2016; Tang et al. 2016).
This data suggests that ZIKV can infect the fetus through
placental transmission early in gestation by infecting multiple
placental cell types in the first or second trimesters. Once

inside the developing fetus, ZIKV targets neural progenitor
cells and hinders their differentiation and subsequently causes
microcephaly (Cugola et al. 2016; Dang et al. 2016; Garcez
et al. 2016; Hughes et al. 2016; Li et al. 2016a; Tang et al.
2016).

Zika-associated microcephaly and other cortical
malformations

FVs can be broadly categorized into two types based on their
pathogenic effects as hemorrhagic viruses, such as dengue
virus (DENV), yellow fever virus (YFV), and encephalitic
viruses, like West Nile virus (WNV), Japanese encephalitis
virus (JEV), and now ZIKV. Other than prenatal death (van
der Eijk et al. 2016), microcephaly is by far the most severe
and irreversible complication associated with ZIKV infection.
It results in a cerebral cortex that is reduced in size, whereas
overall organization of the brain is mostly unaffected.
However, some cases are also known to be associated with
abnormal gyral pattern (microlissencephaly, i.e., smooth
agyrus brain) and other brain malformations (Gilmore and
Walsh 2013; Mlakar et al. 2016; Strafela et al. 2016).

A recent ZIKVoutbreak in northeast Brazil was associated
with a rise in infants born with microcephaly (Schuler-Faccini
et al. 2016). Another study examining the physiology of neo-
nates and fetuses from ZIKV positive pregnant women found
incedences of microcephaly, cerebral calcifications, and intra-
uterine growth restriction (Brasil et al. 2016). In some cases,
ZIKV infection was also linked to early fetal death (Brasil et al.
2016; Franca et al. 2016; Meaney-Delman et al. 2016). In yet
another report, close examination of 1501 suspected cases of
congenital Zika virus syndrome found that 83% of definite or
probable cases could be identified by microcephaly (Franca
et al. 2016). More recently, data from the epidemiological re-
ports of Health Surveillance (Brazilian Ministry of Health) in-
dicates that of the 1656 confirmed cases of microcephaly or
other neurological abnormalities, 15.4% were associated with
ZIKV infection (Magalhaes-Barbosa et al. 2016). This causal
link between the increase of microcephaly along with other
fetal impairments and ZIKV infection in pregnant women has
been strengthened by virologic evidence. Researchers in
French Polynesia reviewed stored samples of amniotic fluid
from cases with fetal cerebral anomaly and microcephaly to
discover that four out of five specimens were found positive
for ZIKV (Besnard et al. 2016). Similarly, amniotic fluid from
two pregnant women in Brazil whose fetuses hadmicrocephaly
tested positive for ZIKV (Calvet et al. 2016). Additional studies
have found the presence of ZIKV directly in the microcephalic
fetal brain tissues (Driggers et al. 2016; Mlakar et al. 2016;
Sarno et al. 2016; Schuler-Faccini et al. 2016). Several murine
models have provided crucial evidence confirming the relation-
ship between ZIKV and fetal microcephaly. Studies in which
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pregnant SJL mice were given a ZIKV strain isolated from
northeast Brazil resulted in progeny’s brain tissue containing
viral RNA and microcephaly-associated malformations, such
as reduced cell numbers and cortical layer thickness (Cugola et
al. 2016). Similar defects were observed in pups following
ZIKV infection of pregnant mice that lacks type I interferon
signaling (A129 mice) (Li et al. 2016a; Miner et al. 2016). All
of these reports conclusively establish ZIKV as a causative
agent for microcephaly.

Due to the lack of systematic documentation or scarcity of
longitudinally collected clinical specimen, it remains unclear
if ZIKV infection during specific trimester serves as a risk
factor. However, a strong association between fetal micro-
cephaly and infection in the first trimester or early in the sec-
ond trimester has been determined based on data collected
from both Brazil and French Polynesia (Cauchemez et al.
2016; Franca et al. 2016; Johansson et al. 2016; Reefhuis
et al. 2016; Schuler-Faccini et al. 2016). Additional data re-
cently collected from a study in Colombia suggests that infec-
tion in the third trimester is not closely linked with any defects
in the fetus (Pacheco et al. 2016). This trend in infection
timing and outcome is similar to other pathogens that infect
the fetus such as, Rubella, cytomegalovirus (CMV), and
Toxoplasma gondii (Jenum et al. 1998; Mathur et al. 1982;
Miller et al. 1982; Pass et al. 2006). However, there is still a
concern that ZIKV could be dangerous for fetuses even in the
third trimester. Reports have shown that abnormal fetus out-
comes with infections up to 36weeks of gestation (Brasil et al.
2016; Soares de Souza et al. 2016).

Despite the strong evidence that shows association of fetal
neuronal defects with ZIKVinfection, the molecular pathways
involved in ZIKV-associated microcephaly are largely un-
known except for two recent reports. First, an excellent study
by Liang et al. showed that ZIKV NS4A and NS4B proteins
induce autophagy in human fetal NSCs by deregulating Akt-
mTOR signaling (Liang et al. 2016b), whereas Dang et al.
showed that ZIKV depletes neural progenitors through activa-
tion of Toll-like receptor 3 (TLR3) (Dang et al. 2016). In
addition, much can be learned from what is known about
microcephaly vera (true microcephaly), an autosomal reces-
sive neurodevelopmental defect. There are multiple genes as-
sociated with microcephaly vera, including MCPH1, ASPM,
CDK5RAP2, CENPJ, STIL, WDR62, CEP135, CEP152,
CEP63, and CEP152, all of which encode for proteins associ-
ated with centrosome, mitotic spindles, or centrioles (David
et al. 2014; Gilmore and Walsh 2013). During neurogenesis,
the fate of dividing neuronal precursors is very critical in de-
fining the ultimate size of the cortex. Nearly all neurons in the
cerebral cortex complete proliferation by mid-gestation, and
none are generated after birth (Spalding et al. 2005). Further in
more complex vertebrate CNS, the newly specified neurons
migrate to a specific location before they differentiate and
form synapses (Cooper 2013). Hence, it has been proposed

that microcephaly is caused by reduced number of neurons
owing to defective mitoses of fetal neuronal precursor cells
as well as impaired migration of the neurons to designated
areas of the brain.

Li and coworkers found decreased expression of most of
the above-mentioned genes in microcephalic progeny of
IFNRI/II knockout mice infected with ZIKV (Li et al.
2016a). Further, in vitro studies have demonstrated that
ZIKV induces cell death in human induced pluripotent stem
cell (iPS)-derived neural stem cells and disrupts the formation
of neurospheres and reduces the growth of brain organoids
(Cugola et al. 2016; Dang et al. 2016; Garcez et al. 2016).
Hughes et al. infected various neuroblastoma cell lines at dif-
ferent stages of differentiation with PRVABC strain of ZIKV
and showed that only the undifferentiated cells were permis-
sive to infection (Hughes et al. 2016). Brault et al. demonstrat-
ed that ZIKVand WNV both showed neurotropism in in vitro
infection experiments; however, only ZIKV impaired cell cy-
cle progression of neural stem cells (Brault et al. 2016). All of
these findings together indicate that ZIKV infection has a ter-
atogenic window, mostly occurring in the first trimester, while
the neuronal stem cells are still differentiating. During this
time period, maternal infection can lead to microcephaly by
targeting cortical progenitor cells, inducing cell death as well
as impaired neuronal migration.

Other ZIKV-associated health sequelae

Another negative neurological association of ZIKV infection
is the occurrence of GBS (Araujo et al. 2016; Cao-Lormeau
et al. 2016; Dos Santos et al. 2016; Roze et al. 2016). It is an
acute, immune-mediated polyradiculoneuropathy typically oc-
curring after a range of infections including upper respiratory
infections, like influenza, and digestive tract infections, nota-
bly Campylobacter jejuni and CMVor Epstein-Barr virus in-
fections (Araujo et al. 2016; Cao-Lormeau et al. 2016; Roze
et al. 2016). It is not clear what causes the onset of GBS;
however, different mechanisms including molecular mimicry,
epitope spreading, bystander activation, and production of
superantigens have been proposed (Anaya et al. 2016). In
axonal variants of GBS, the presence of a broad range of
anti-glycolipid IgG antibodies directed to gangliosides has
been described (Rinaldi and Willison 2008; Willison 2007).
Interestingly, Cao-Lormeau and colleagues found that 41 of
the 42 individuals diagnosed with GBS during the ZIKVepi-
demic in 2013–2014 in French Polynesia had anti-ZIKV virus
IgM or IgG and had experienced a transient illness in a median
of 6 days before the onset of neurological symptoms, suggest-
ing a recent ZIKV infection (Cao-Lormeau et al. 2016). All of
these individuals were seronegative for any other infections
known to be associated with GBS. However, they found a less
than 50% occurrence of the anti-glycolipid antibodies in these
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individuals suggesting that ZIKV-associated GBS pathogene-
sis might involve other mechanisms in addition to autoim-
mune response against glycolipids/gangliosides.

In addition to neurologic complications, ZIKV infection
might be associated with hematologic abnormalities as well.
So far, there have been three reported cases (in two independent
studies) of ZIKV-associated severe thrombocytopenia and sub-
cutaneous hematomas (Karimi et al. 2016; Sharp et al. 2016).
Thrombocytopenia is also associated with DENV infection (de
Azeredo et al. 2015). Studies have reported increased
thrombopoietin (TPO) levels in the blood of DENV-infected
individuals (Matondang et al. 2004), and that DENV inhibits
TPO-inducible megakaryocyte differentiation from CD34+
cord blood cells in vitro (Basu et al. 2008; Murgue et al.
1997; Nakao et al. 1989). Some reports also indicate increased
clearance of circulating platelets either by platelet consumption
due to coagulopathy or via activation of the complement system
or by formation of anti-platelet antibodies by molecular mimic-
ry (Alonzo et al. 2012; Honda et al. 2009; Lin et al. 2001; Lin
et al. 2011; Srichaikul et al. 1989). It is probable that DENV-
associated thromobocytopenia occurs due to both decreased
production of cells from bone marrow and an increased periph-
eral destruction of platelets. Further research is warranted to
assess if ZIKV uses mechanisms similar to DENV to induce
thrombocytopenia.

In addition, there aremultiple reports of ocular complications
such as unilateral acute maculopathy, pigmentory retinopathy,
and atrophy in infants with ZIKV infection (Parke et al. 2016).
Macular and chorioretinal disease can significantly impact vi-
sual development in infant (Moshfeghi et al. 2016; Valentine
et al. 2016; Ventura et al. 2016). Lastly, reports suggest an
association between ZIKV infection and hearing loss. Leal et
al. reported that prevalence of ZIKV-associated sensorineural
hearing loss was 5.8%, similar to hearing loss associated with
other congenital viral infections (Leal et al. 2016). Interestingly,
Vinhaes et al. identified three cases of transient hearing loss in
ZIKV-infected (Vinhaes et al, 2016). However, it is not yet clear
if these complications are directly caused by ZIKVor are sec-
ondary to microcephaly. Nonetheless, in addition to brain
malformations, all of these probable ZIKV-related health com-
plications pose a serious concern and will affect the prognosis
for ZIKV infection.

Immune response against ZIKV infection

While there is a definite association between ZIKV infection
and microcephaly, not all infants born to infected mothers have
these complications, indicating that robust maternal immune
responses might be able to protect the fetus from detrimental
effects of ZIKV infection in some cases. Insights into ZIKV
pathogenesis and immune correlates of protection can be
gleaned from the prevailing mouse models as well as lessons

learned from studies with other FVs. In vitro infection of fibro-
blasts causes an increase of antiviral pattern recognition recep-
tors, such as TLR3 at an early stage and later RIG-I and MDA-
5, leading to an induction of interferon alpha and interferon beta
(Hamel et al. 2015). Mouse models have also been utilized to
show the important immune cell types in ZIKV defense.
Immunocompetent C57/BL6 and CD1 mice show no illness
upon infection with ZIKV, whereas A129 mice and AG129
(IFN type I and II receptor knock out) mice developed signs
of illness like hunched posture and ruffled fur, and the fetuses
from infectedmothers showedmicrocephaly (Rossi et al. 2016).
It is worth noting that the mortality due to ZIKV infection in
these experimental groups was not uniform, as few A129 mice
with ZIKV died within 6 days, while other A129 infected mice
survived the infection. Similar findings have also been reported
with respect to DENV infection, where the innate immune re-
sponse, especially type I and type II IFNs are postulated to
orchestrate the disease outcome (Clyde et al. 2006;
Rodenhuis-Zybert et al. 2010). Inoculation with the yellow fe-
ver YF-17D vaccine can delay the onset of dengue fever upon
subsequent infection with DENV within a short window of
vaccination (Liang et al. 2016a), further emphasizing the crucial
role of innate immune response in defense against ZIKV.

SJLmice have also been used as amodel for ZIKVinfection.
These mice exhibit normal IFN responses however show de-
layed B cell responses and lack natural killer cells (Hutchings
et al. 1986; Sellers et al. 2012). Even though the fetuses from
ZIKV-infected SJL dams did not develop microcephaly, they
had cortical malformations, indicative of microcephaly (Cugola
et al. 2016). This data points towards the requirement of NK
cell-mediated immunity and neutralizing antibody response to
combat ZIKV infection. A study with YF vaccine, YF17D,
further confirms the importance of NK cell-mediated immune
responses in anti-FV immunity wherein the authors showed that
IFN-γ + NK cells and IL-4 + NK cells were significantly in-
creased along with multiple NK-associated genes after the ad-
ministration of this vaccine to healthy individuals (Gaucher
et al. 2008; Silva et al. 2011). Another recent paper showed that
T lymphocytes were not as important as neutralizing antibody
response in ZIKV immunity (Larocca et al. 2016). In this study,
the investigators produced a DNA vaccine expressing full-
length ZIKV pre-membrane and envelope proteins and reported
that a single injection with this vaccine provided complete pro-
tection against ZIKV infection in Balb/C and SJL mice upon
viral challenge. Adoptive transfer of purified IgG from immu-
nized mice conferred passive protection, while depletion of
CD4 and CD8 T lymphocytes in vaccinated mice did not affect
protective efficacy of the vaccine, indicating that ZIKV
envelope-specific antibody response might be the correlate of
immune protection. This finding was further supported by one
more report, in which the researchers developed a panel of anti-
ZIKV monoclonal antibodies by inoculating irf−/− mice with
live virus followed by boost with either the virus or E proteins.
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They found that the antibodies against the DIII domain of E
protein not only possessed neutralizing activity but also
protected IFN-deficient mice from lethal infection (Zhao et al.
2016). Overall, these studies highlight the role for innate and
antibody-mediated immune responses in anti-ZIKV immunity,
and a candidate vaccine that will stimulate these types of im-
mune responses might be highly desirable.

Current anti-ZIKV vaccine efforts and comparison
with other FV vaccines

The use of vaccines to prevent viral infections is the most cost-
effective public healthy strategy, and vaccines are currently in use
for other FVs, including YF, JEV, and tick-borne encephalitis
viruses (TBEV) (Ishikawa et al. 2014). The YF-17D vaccine
for yellow fever is one of the most successful anti-FV vaccines
and an excellent roadmap for generalization of immune correlates
of protection against FVs (Pulendran 2009; Pulendran et al.
2013). The rubella pandemic from 1962 to 1965 caused congen-
ital rubella syndrome, including fetal impairments like deafness
and developmental delays, in 20,000 infants in the USA. Since
the development and implementation of the rubella vaccine, these
numbers have fallen to less than ten cases per year (Martinez-
Palomo 2016). Preliminary work using a guinea pig model for
CMV, which causes mental retardation and deafness in infants,
showed that vaccination was able to reduce transmission and
mortality in pups caused by CMV infection (Choi et al. 2016).
In 2015, the first vaccine for prevention of DENV, Dengvaxia,
was licensed for persons aged 9–45 years living in DENV en-
demic regions. It is a chimeric yellow fever-DENV tetravalent
live-attenuated vaccine and is estimated to reduce disease burden
by 10–30% over a period of 30 years. It is also associated with
high risk of hospitalization for children under 9 years of age.
Further, Dengvaxia seems more effective against secondary
DENV infection and has lower efficacy when given to dengue-
naïve people (WHO 2016b). A successful vaccine candidate
might be expected to provide similar relief from negative con-
genital effects associated with ZIKV infection during pregnancy.

Current anti-ZIKV vaccine strategies utilize diverse range of
molecular approaches. In March 2016, the World Health
Organization compiled a list of 18 active programs (including
5 academic and 15 commercial groups) pursuing different strat-
egies in parallel. Approaches used include live-attenuated virus,
nucleic acid based, live vectors, subunit vaccines, and nanopar-
ticles (WHO 2016a). In June 2016, Inovio Pharmaceuticals an-
nounced that they have received approval to initiate phase I
human trial to evaluate the DNAvaccine (GLS-5700) produced
by Larocca et al. (Larocca et al. 2016; Morrison 2016). Further,
Sapparapu et al. isolated broadly neutralizing anti-ZIKVantibod-
ies from infected individuals and showed that preimmunization
with these antibodies, significantly reduced placental transmis-
sion of ZIKV in mouse models (Sapparapu et al. 2016).

However, while animal and small sample trials for these and
other candidate vaccines might be completed very soon, long-
term efficacy trials and approval are likely to take years. At the
same time, the possibility of causing antibody-dependent en-
hancement (ADE) ofDENVinfection by ZIKVvaccine and vice
versa will also impact the development of a successful vaccine.

Antibody-dependent enhancement of infection:
potential roadblock in development of ZIKV
prophylaxis

The recently licensed DENV vaccine is partially successful and
can be used only in a certain population (aged 9–45 years) living
in highly endemic areas (WHO 2016b). Unlike YF and JEV
vaccines, the development of a successful DENV vaccine has
proven challenging due to the existence of four divergent sero-
types of DENV. Epidemiological evidence suggests that primary
infection confers protection against reinfection with the same
serotype but can cause severe disease upon reinfection with a
different serotype, owing to ADE. ADE occurs when antibodies
generated during primary infection fail to neutralize the virus of
a different serotype during secondary infection, instead causing
enhanced infectivity of target cells through virus opsonization
and Fc-receptor-mediated endocytosis (Halstead 2014).
Phylogenetic analyses of human pathogenic FVs using RNA
polymerase NS5 indicate that ZIKV clusters with the encepha-
litic viruses; however, when the E protein sequence is consid-
ered, it branches with DENV group (Barba-Spaeth et al. 2016).
The four DENV serotypes differ from each other by 30–35%,
and this serocomplex in turn is different from ZIKV by 41–46%
(Dejnirattisai et al. 2016; Screaton et al. 2015). This difference
indicates that vaccine design against ZIKV infection might not
be as straight forward as with YF or JEV.Multiple recent reports
confirm that this divergence in structure is not just a theoretical
obstacle but is causing actual issues in vaccine development.

Barba-Spaeth and coworkers identified structural details of a
quaternary epitope in DENV known as envelope dimer epitope
(EDE) formed at the interface of two enveloped monomers, 90
of which are arranged in icosahedral symmetry into the DENV
glycoprotein shell. Antibodies targeting this region can be di-
vided into two categories: EDE1, which is not sensitive to gly-
cosylation at the Asn153 residue and EDE2, which requires the
N-linked glycan at Asn153. They found that antibodies
targeting EDE1, especially C8 and C10, efficiently neutralized
ZIKV, while other antibodies targeting the fusion loop epitope
were just cross-reactive (Barba-Spaeth et al. 2016). A study by
Dejnirattisai et al. showed that multiple anti-DENV antibodies
not only fail to neutralize the infection but also cause ADE
(Dejnirattisai et al. 2016). In this study, preincubation of
ZIKV with anti-dengue immune sera or well-characterized an-
ti-denguemonoclonal antibodies (including EDE1C8 and C10)
lead to increased infection of U937 monocytic cells with ZIKV.
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However, for unknown reasons, the combination of both these
immune components was able to neutralize ZIKV.

Swanstrom et al. confirmed the neutralizing potential of these
two antibodies in human monocytic cell line, U937-DC-SIGN,
and Vero cells (Swanstrom et al. 2016). In addition, IFN-type I/II
receptor knockout mice, when pretreated with C10 antibody, ex-
hibited no signs of illness upon infection with ZIKV. They also
found that antibodies, which are capable of neutralizing only one
or twoDENV serotypes, failed to neutralize ZIKV. Further, in the
same study, sera obtained from DENV-infected individuals (with
one ormore than one serotypes) several years postinfection, failed
to cross-neutralize ZIKV. Similar results were noted by
Priyamvada and her team in which they tested acute and
convalescent sera frompatientswithDENVinfection and showed
that while some anti-DENV antibodies confer neutralization of
ZIKV infection, most antibodies caused ADE (Priyamvada
et al. 2016). In yet another study by Stettler et al., 119 anti-
ZIKV monoclonal antibodies were isolated from two ZIKV-in-
fected, DENV-naïve individuals and two ZIKV-infected, DENV-
immune donors and compared with a panel of mAbs previously
isolated from ZIKV-naïve, DENV-infected donors. Of the 119
antibodies, 41 were against NS1 and the rest were against E
protein. Of the NS1 antibodies, only the ones from ZIKV-infect-
ed, DENV-immune individuals were cross-reactive, while anti-
bodies from ZIKV-infected, DENV-naïve, and DENV-infected,
ZIKV-naïve individuals were reactive only to antigens from spe-
cific viruses. Interestingly, the anti-E antibodies from ZIKV-in-
fected, DENV-naïve individuals cross-reacted with E protein of
the four DENV serotypes and vice versa. They also found that
cross-reactive antibodies elicited by either viruses and primarily
directed to EDI/II domains could mediate heterologous ADE,
while antibodies against EDIII and quaternary epitopes present
on infectious virus cause potent neutralization (Stettler et al.
2016). While contradictory in some aspects, all of these reports
elucidate that antibodies against different serotypes of DENVand
ZIKVare definitely cross-reactive. These studies reveal the com-
plexity of a potential antibody-based vaccine for ZIKV, especially
as both of these viruses are prevalent in the same geographical
areas. This also means that it might be necessary to explore the
potential of therapeutic drugs for treatment of ZIKV infection.

Pharmacological interventions against ZIKV
infection

Prevention of mother to fetus transmission via the use of an
entry inhibitor would be the ideal solution to avoid cortical
complications in the infants. Recent reports suggest that Axl
is the primary entry receptor used by ZIKV in neuronal as well
as skin cells (Hamel et al. 2015; Nowakowski et al. 2016),
while placental cells exhibit consistently high levels of TIM1
receptor and that is utilized by ZIKV to infect these cells
(Tabata et al. 2016). Similar results were also obtained by

Sapparapu et al. via injection of broadly neutralizing anti-
ZIKV antibodies from infected humans into pregnant mice
(Sapparapu et al. 2016). Further, Tabata et al. were able to
significantly reduce the ZIKV infection of early and mid-
gestation placental explants by using Duramycin, an inhibitor
of TIM1 receptor, while the Axl inhibitor R428 had a modest
effect. Duramycin is also known to inhibit infection by DENV,
WNV, and Ebola virus (Richard et al. 2015), indicating that use
of entry inhibitors might prove be an effective strategy to pre-
vent transplacental transmission of ZIKV. Using a different ap-
proach, Barrows et al. screened a library of FDA-approved
drugs for their ability to block in vitro infection of HuH-7 cell
line by ZIKVand found 20 plausible candidates (Barrows et al.
2016). Some of these candidates were further validated for in-
hibition of ZIKV infection in human cervical, neural, and pla-
cental cells. The candidate compounds include few previously
known anti-flaviviral drugs like bortezomib, while some were
newly identified to have antiviral activity like daptomycin and
sertraline. On similar lines, Xu et al. designed a compound
screening approach using caspase-3 activity as the primary
screening assay and confirmed the neuroprotective nature of
the identified compounds by a secondary cell viability assay.
This lead to identification of two types of drugs, antiviral, and
neuroprotective. Emricasan, a pan-caspase inhibitor, was iden-
tified as the most efficient prosurvival compound, while
niclosamide and PHA-690509 were found to have potent anti-
viral activity. Interestingly, a combination of the two types of
drugs helped the infected neural progenitor cells recover by
preventing their apoptosis (Xu et al. 2016).

Repurposing of FDA-approved drugs to identify anti-ZIKV
compounds is an advantageous strategy that has proven suc-
cessful in case of other infections such as Ebola and hepatitis C
virus (He et al. 2015; Johansen et al. 2015) and especially
required in case of ZIKV infection because there are no ap-
proved anti-flavivirus treatments and development of an effica-
cious vaccine will take a long time. Combining antiviral com-
pounds with a neuroprotective drug might also prove extremely
beneficial, but with a caution, that use of a pan-caspase inhibitor
might have detrimental side effects on brain development.
Induction of apoptosis is necessary during neurodevelopment
to prevent brain overgrowth as well as establishment of appro-
priate neuronal connectivity and synapse formation
(Yamaguchi and Miura 2015). Instead, pharmacological agents
that activate signaling pathways involved in neurodevelopment
and survival of neuronal progenitors, such as sonic hedgehog
(Shh) signaling, might prove an interesting avenue of pursuit.
This signaling pathway is crucial for maintenance of neural
progenitor pool in fetal and adult brains (Machold et al.
2003). Further, our group has shown the neuroprotective effects
of Shh pathway augmentation via a small molecule, smooth-
ened agonist (SAG), against human immunodeficiency virus
(HIV)-associated neuropathology in humanized mice (Singh
et al. 2016). Not only that, but SAG was also shown to prevent
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neuropathology in a rat model of spinal cord injury as well as a
mouse model for Down’s syndrome(Bambakidis et al. 2010;
Bragina et al. 2010), indicating that this approach might lead to
timely identification of a neuroprotective drug in order to damp-
en ZIKV-associated neurological complications.

Concluding remarks

ZIKV infection is spreading across the globe at an alarming
pace not only in vector-prevalent areas but also to other coun-
tries like USA, because of a wider range of routes of transmis-
sion. What started as yet another tropical disease has ended up
being a much more serious threat because of its association
with neurologic complications. Based on our knowledge so
far, an ideal ZIKV prophylactic or therapeutic agent will be
required to satisfy various criteria such as,

1. Prevent ADE for ZIKV infection in DENV-immune indi-
viduals and vice versa.

2. Not increase the chances of developing/worsening GBS,
which means that the use of live-attenuated vaccines may
be ruled out until the cause of GBS is identified.

3. Safe for use in pregnant population and immune-
compromised individuals especially because persons with
immunosuppression or autoimmune disorders are at a
higher risk of developing severe disease (Azevedo et al.
2016).

4. Keep in consideration the broader tropism as well as in-
creased stability of the ZIKVand its effect on the different
modes of transmission.

While development of a preventive vaccine candidate is
extremely important, it is also necessary to focus attention
on identifying pharmacological agents that can either
prevent/reduce mother to infant transmission or confer neuro-
protection in the presence of viral burden. Considering these
multiple factors, it seems likely that a combination of these
two approaches will be the most successful in eradicating this
global threat.
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