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BOUNDEDNESS VERSUS PERIODICITY OVER

COMMUTATIVE LOCAL RINGS

VESSELIN N. GASHAROV AND IRENA V. PEEVA

Abstract. Over commutative graded local artinian rings, examples are con-

structed of periodic modules of arbitrary minimal period and modules with

bounded Betti numbers, which are not eventually periodic. They provide coun-

terexamples to a conjecture of D. Eisenbud, that every module with bounded

Betti numbers over a commutative local ring is eventually periodic of period

2 . It is proved however, that the conjecture holds over rings of small length.

1. Introduction

This paper considers the relations between the structure of finitely generated

modules over local noetherian rings and the asymptotic behavior of their se-

quences of Betti numbers, along the lines suggested by the work of Eisenbud

[5] and of Avramov [2]. Particular attention is given to modules whose Betti

numbers are bounded. In order to make precise statements, we introduce some

notation that will be in force for the rest of the paper.

Let R be a commutative noetherian local ring with maximal ideal m and

residue field k = R/m . As usual, we denote by edimiv the embedding dimen-

sion of R, that is, the minimal number of generators of m , and by depth R

the longest length of a regular sequence contained in m. If M is a finitely

generated Ä-module we denote by v(M) its minimal number of generators.

Let
d, d2

F:Ff^Fx^F2<-...

be a minimal free resolution of M over R . The «th Betti number of M over

R is bn = b*(M) = rankF„ , and SyzJ(M) = Coker^, : Fn+X - Fn) is called
the «th syzygy of M over R. Following [1,2] we say M has complexity c,

and write cxR M = c, if c > 0 is the least integer for which there exists a real

number A > 0 such that bn (M) < An holds for n > 1 ; if no such c exists,

set c\R M = co.

From a homological point of view, the simplest modules are those with

bn (M) = 0 for sufficiently large n ; thus the projective dimension, pd^ M,
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570 V. N. GASHAROV AND I. V. PEEVA

is finite exactly when cxÄ M = 0. The next natural question is what does

c\R M < 1 mean? A simple reason for this to happen is the presence of peri-

odicity. A module M is said to be eventually periodic of period q > 0 if there
R R

is a nonnegative integer 5 such that Syz$ (M) = Syz (M). If s = 0, M is

called periodic of period q . Modules of complexity one seem to occur rarely,

and in [5] Eisenbud stated the following:

Conjecture. If M is an jR-module with bounded Betti numbers, then M is

eventually periodic; a periodic A-module has period 2 .

The main cases in which the conjecture has been proved are summarized as

follows:

(1.0) Theorem. Let M be a finitely generated R-module such that the sequence

{bn (M)}n>f is bounded. Then M is eventually periodic of period 2 when one

of the following assumptions holds:

(i) (Eisenbud [5, Theorem 4.1]) R is a complete intersection;

(ii)  (Avramov [2, Theorem 1.6]),   edimi? - depth R < 3, or edimi?-

depth R = 4 and R is Gorenstein.

In §2 a proof of the following result is given:

(1.1) Theorem. Let R be a Cohen-Macaulay local ring of multiplicity < 1

and edimR - depth/? > 4, or a Gorenstein local ring of multiplicity < 11 and

edim R - depth R > 5 . Then for every finitely generated R-module M either

pdÄA/"<oo or the sequence {b^(M)}n^[/(M)+depihR+x is strictly increasing.

An immediate consequence of (1.0) and (1.1) is the validity of Eisenbud's

conjecture over rings of small multiplicity:

(1.2) Theorem. Let R be a Cohen-Macaulay local ring of multiplicity <1 or

a Gorenstein local ring of multiplicity < 11. If M is a finitely generated R-

module with bounded Betti numbers, then M is eventually periodic of period

2.

The main results of this paper are the constructions of counterexamples to

Eisenbud's conjecture. They establish the following:

(1.3) Theorem. There are local graded artinian rings of embedding dimension

4 and length 8, and local graded Gorenstein rings of embedding dimension 5

and length 12, over which both claims of the conjecture fail.

The examples are given in §3, where their "minimality" is also discussed.

Thus the problem "What is the reason for the Betti numbers of M to be

bounded?" remains open. In particular, it is not known whether the bound-

edness of the Betti numbers implies that they become constant for large n , a

question asked by Ramras.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDENESS VERSUS PERIODICITY 571

The final §4 contains some remarks on the restrictions on k imposed by our

constructions. In particular, it is shown that the first statement of Eisenbud's

conjecture holds when R is artinian with k algebraic over a finite field, but the

second statement fails with any k .

We are grateful to Luchezar Avramov for his guidance during this research

and for help in writing the paper.

2. Modules over artinian rings

For a finitely generated .R-module M, l (M) denotes its length. Throughout

this section, we use the following notation:

e¡ = dim^ mfmi+x   (i > 0),

HiIbÄ(i) = l+ ££,*/,
e = v(m) = edim-R = ex,

h = min{/|w'+  = 0} ,

l = l(R).

Over an artinian ring R, there is an obvious relation between the number

of generators of a submodule M of mnR    and the length of m", namely:

v(M) < l(M) < l(m")b . Our first lemma shows that this can be improved in a

useful way.

(2.1) Lemma. Let R be an artinian ring and let M be a finitely generated

R-module, such that M ç mnR , b > 1, n > 0. Then

u(M) < (l(m") + n-h)b.

Proof. By descending induction on n . When n = h , the claim coincides with

the remark made above. Now let n < h and suppose that the assertion has

already been proved for n + 1 . Let vx, ... , vs be a generating set of M. We

may assume that v{, ... ,v    (p < s) are contained in a minimal generating

set of m"R    and v    x, ... , vs are in mn+ R  .

Consider first the case when p < (en - l)b. Writing M' for (v x, ... , vfR,

we have that v(M) < p + v(M'). Using the induction hypothesis for M' Ç

mn+ R   we obtain

v(M) <P + v(M') <(en-l)b + (l(mn+x) + n+l-h)b

= (l(m") + n-h)b.

Suppose now (en - l)b < p, set q = enb - p, and note that 0 < q < b.

Let vx, ... , vp, wx, ... ,wq be a minimal generating set for mnR . We may

take the w¡ 's of the form (0, ... , 0, yt■, 0, ... , 0) with the nonzero element

yi e m" in r(th place. Furthermore, permuting the summands of R if nec-

essary, we assume that  r¡ > b - q  for  1 < / < q, i.e.,  wj e m"Rq , where

the decomposition R = R ~q @ Rq is taken with respect to the standard basis.

Thus for p + 1 < j < s we have v   = ^fPi=x z¡]v¡ + v.  with  z.. e m  and
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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v'j e mn+xRq . In particular, M = (vx, ... ,v , v'p+x, ... , v'fR . Applying the

induction hypothesis to M" = (v'p+x, ... , v'fR ç mn+1 Rq we obtain

u(M) <p + v(M") <efb-q + (l(m"+X) + n + 1 - h)q

< efb + (l(m"+X) + n-h)b = (l(m") + n - h)b.   D

(2.2) Proposition. Let R be an artinian ring and let M be a finitely generated

R-module. Then b*+x(M) > (2e - I + h - l)b*(M) for n > v(M).

Proof. We may suppose M is not free and 2e - I + h - I > 1 (otherwise the

assertion is trivial). There is then an n < v(M) such that bn > bnX = b. In

order to establish the required inequality, we construct a sufficiently large set of

elements in Kerúfn and show that it can be extended to a minimal system of

generators of Ker^ .

Let xx, ... , xe be a minimal generating set of m . Consider the elements

{ws\l<s<ebn} = {(0,...,0,xj,0,...,0)eRK

where x; is in the jth place 11 < / < e, 1 < j < bn}.

Since dn(wf) e m R we know by (2.1) that q < (l(m ) + 2 - h)b among

them generate (dn(wf), ... , dn(web ))R . Renumbering, if necessary, we have

that dfwA) = Y^j^y^fWj), q < i < ebn, ytj e R. Hence w( - w¡ -

Y?j=\ y¡jwj are m Keri/n . Note that the images of ui are linearly independent

in mR n/m2R ", hence in Kerdn/mKerdn . Thus the ufs are contained in

a minimal generating set of Ker^ . Their number, ebn - q, does not exceed

bn+x , hence

(+)      bn+x >ebn-q> ebn - (l(m2) + 2 - h)bn_x > ebn - (l(m2) + 2- h)bn

= (2e-l + h- l)bn

In particular, bn+x > bn and the argument can be iterated.    D

(2.3) Corollary. Let R and M be as in (2.2).

(i) If 2e - I + h - 1 = 1, then there exists a t with v(M) - 1 < t < oo such

that b*(M) = b*+x(M) for max(v(M) - 1, 1) < n < t and b*(M) < b*+x(M)

for n > t.

(ii) If 2e-l+h-l >2 then the sequence {b*(M)}n>v(M) is strictly increasing

and has strong exponential growth; i.e., there exist real numbers B > A > 1 such

that An < b*(M) < B" holds for all sufficiently large n .

Proof, (i) It only remains to remark that under the hypothesis of (i), if bn >

bn_x, then the third inequality in (*) is strict, hence bn+x > bn .

(ii) The upper bound is well known to hold for arbitrary modules; e.g., see

[2, (2.5)]. For the lower bound apply (2.2).   D

(2.4) Corollary. Eisenbud's conjecture holds over artinian rings with m = 0

and over Gorenstein rings with m   = 0.

Proof. If edimR < 3, apply (l.O.ii). If edimR > 3 , apply (2.3.Ü).   D
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It should be noted that (2.4) easily follows from the results of Eisenbud [5,

Theorem 4.1] and of Lescot [7, Theorem B and Proposition 3.9].

(2.5) Lemma. Let R be an artinian Gorenstein ring with l(m ) > 3. If M is

an R-submodule of the R-module m ~XR , b > 1 and v(M) = (l(m ~x)-l)b,

then M = m ~ R .

Proof. Choose elements vx, ... , v e soc M, whose images form a k -basis

of the image of soc M <-* M —> M/mM. Complete vx, ... , v to a minimal

generating set of M, say vx, ... , vs. Set M' = (vx, ... , vp)R ÇsocM, M" =

(v +x, ... , vJR. Obviously, mM" = mM ç soc i? and M'dmM = 0, hence

there is a k -vector space N with basis nx, ... , nc such that socR D N D M1

and N®mM = soc R . Since R is a zero-dimensional Gorenstein ring, R is

an injective .R-module. Therefore R = P ® Q for some .R-module Q, where

P = Rc is the injective envelope of N.

We are going to prove that P n M" = 0. Since P is an essential extension

of N, it suffices to show that N n M" = 0. This is obvious from the relations

N n M" ç socR n M = soc M = M ' © mM". Thus, the canonical map

R —> R /P = R ~c is injective on M" . Since the image of M" is contained in

m ~XR ~c, it follows by Lemma (2.1) that v(M") < eh_x(b - c). This implies

eh_fb = v(M) < v(M')+v(M") < v(N)+v(M") < c+eh_x(b-c), hence c = 0,

i.e., N = 0. We have shown that mM = socR = m R , so that M/mM <-*

mh~xRh/mhRb . But dimk M/mM = v(M) = eh_xb = dimk mh~xRb/mhRb ;

therefore M/mM = m ~XR ¡m R , which yields M = m ~XR  .   D

(2.6) Proposition. Let R be a Gorenstein ring with h = 3 . Then I < 2(e+ 1). If

I ^ 2(e + 1), then either M is free or the sequence {b^(M)}n>v(M)+x is strictly

increasing.

Proof. Since R is self-injective, one has

1(0: m2) = l(R) - l(m2) = 1 + c, + e2 + 1 - (e2 + 1) = ex + 1.

Now m = 0 gives the inclusion m ç (0 : m ) ; hence 1 + e2 < 1 + c, , i.e.,

e2 < ex.

We have shown / < 2(e + 1). if / < 2e + 1 , our claim follows from (2.3.Ü).

Hence we assume / = 2c+1, i.e., HilbÄ(i) = 1 +et + (e- l)t2 + t3. By (2.3.i) it

suffices to show that bn < bn+x for some n < v(M) + 1. Suppose the contrary.

By the same corollary we then have b = b¡_x = bi = b¡+¡ = bl+2 < bi+3 for

/ = v(M). Set In_x = dfmR "). The exact sequences

Rb^JjnUmRb"-^In_x-^0

yield for n = i, i + 1, i + 2:

HI„-i) > vimRK) - v(Rb"+') > ebn - bn+x >eb-b = (e- \)b.
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Therefore, it follows from Lemma (2.5) that / , = m2Rb"-x forn = i, i+l,

i + 2. From the exact sequences

0 —► Ker¿n — mRb" -^-» In_x — 0

we now get ¡(Kerdf = l(mRb")-l(In_x) = 2eb-eb = eb = 1(1 f) for the same

values of n . However, since In ç Imí/n+1 = Keröfn , this implies In = Ker6?n

for n = i, i + 1.

Thus, we have the exact sequence

0-»//+l -+Rb,+' -laUlt-+0,

which gives (2c + l)b = l(Rbi+>) = l(Ii+i) + 1(f) = 2eb , a contradiction.   D

Proof of (I.I). Replacing R by R' = R[X]mR[X] and M by M1 = M ®RR'

if necessary, we may assume k is infinite. Then there exists (by [8, Theo-

rems 14.13 and 14.14]) an R-regular sequence ax, ... ,ad (d = dimi?) such

that the multiplicity of R is equal to the length of R = R/(ax, ... ,af),

and ax, ... , ad form part of a minimal system of generators of m . Then

Tor¿ (M, R) = 0 for every i > d , hence the complex F>d <8>R R is exact. Thus

F>d <giR R is the minimal free resolution of Syz¿ (M) ®R R over R. Therefore

b*+d(M) = b*(Syzd(M)®RR) for n > 0. Thus replacing R by R and M by

Syz^(Af) ®RR,v/e have to establish the following claim:

Let R be artinian with e > 4 and / < 7, or let R be artinian Gorenstein

with e > 5 and / < 11 . If M is a nonfree .R-module, then the sequence

ibn iM)}n>v(M)+\ is strictly increasing.

In the first case the claim follows directly from (2.3.Ü). In the Gorenstein

case (2.3.Ü) applies when h > 4 or when h < 2. Assuming the claim fails

for the remaining value h = 3, we obtain from our assumptions and (2.6) that

12 < 2(e + I) = I < 11 , a contradiction.    □

3. The examples

We denote by grm.R the associated graded ring ©/>0w'/m'+ and say R

is graded if the rings R and grm R are isomorphic; note that this implies R

is artinian. If S = ©( S¡ is a graded ring and M = ©( M¡, N = 0( N¡ are

graded S-modules, a homomorphism cp: M —> N is an S-linear map, such that

for all i: cp(MA) ç JV;. As usual, we write M (a) to denote the graded S-module

with M (a) i = M¡+a .

(3.1) Proposition. Let k be a field and let a be a nonzero element of k.

Denote by o (a) the order of a in the group of units of k. Set R = Ra =

k[Xx, ... , X5]/Ia, where the X¡ 's are indeterminates and I = Ia is the ideal
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generated by the following quadratic forms:

aJ,X, + X2X3 ,     XXX4 + X2X4 ,     X3 — X2X^ + aXxX^,

X4 — X2X^ + XXX$,     Xx ,     X2 ,     X3X4,     A\3X^,     X4X^,     X5.

Denote by xi the image of X¡ in R. Then:

(i) (R,m,k) is a graded local Gorenstein ring with HilbR(t) = 1 + 5t + 5t +

t3.

(ii) The sequence of homomorphisms of graded R-modules

G = G(a): ■■■*- R2(-n + 1) «-^- R2(-n) <-^- R2(-n - 1) <-,

where n e Z,

is an exact complex (the ith column of the matrix of dn is the image of the ith

vector of the standard basis).

(iii) Set M = Ma = lmdf. If o (a) divides t - s, then

Syzf(M) = Syz?(M)(t-s)

R R
as graded modules. Conversely, if Syz5 (M) = Syz( (M) as (not necessarily

graded) R-modules, then t - s = 0  mod(o(a)).

The following examples are immediate consequences:

(3.2) Example, if o(a) = co, then M is not eventually periodic over R.

(3.3) Example. If o(a) = q, then M is periodic of minimal period q over

R.

Proof of (3.1). (i) Obviously, R is a local ring graded by setting degx; = 1 .

Choose in Rx the basis {x¡\l < i < 5}. Clearly y5 = xxx2, y3 = xxx3,

y4 = xxx4, y2 = xxx5, yx = x2x$ form a basis of R2 . Set z = xxx2x5. A

direct computation shows that x¡y. = S¡ z for I < i, j < 5, and m  = 0.

In order to establish (i) we have only to prove that xxx2x5 ^ 0. Denote by

<?i > ¿?2 ' • • • ' #io me generators of /, in their order of appearance in the state-

ment of the proposition. If xxx2x5 = 0, then XXX2XS = S/-i(S/=i ßijXj)8i

for some ßtj € k . The following relations are provided by equating the coeffi-

cients of XXX2X5, XXX3 , X2X3 , XXX4 , and X2X4 , respectively:

A = -ß3X+aß32-ß4]+ß42=l,

B = ß3x+aßx3 = 0, C = ß32 + ßx3 = 0,

D = ß24 + ß4X=0, E = ß24 + ß42=0.

Now 0 = E-D + aC-B = -ß3x + aß32 - ß4X + ß42 = A = 1 gives the desired

contradiction.
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(ii) It is immediate from the defining equations of R that dndn+x = 0.

Denote by dn i the restriction of dn on R2(-n)r The images by dn     x  of

(x2,0), (x3,0), (x4,0), (x5,0), (0,xx), (0,x3), (0,x4),and (0,x5) are

linearly independent in R (-n + l)n+x .  Also dn n+2(x2x5, 0) = (z, 0) and

dn,n+2Í°>X\Xs) = iQ> Z)- ThuS'

n+2

rankfc dn > J2 rank^. dnj> 2 + 8 + 2= 12.
i=n

On the other hand,

rank^. dn = dimk(R (-« + 1)) - dimmer dn_x)

<dimí.(JR2(-n-r-l))-rank¿í3'n < 24- 12= 12.

Thus, for any n , dim^KerdJ = dim^Imt/J = 12, which proves exactness.

(hi) Since the first assertion is obvious, assume Syz^(Af) = Syzf (M) as R-

modules with, say, s < t. This lifts to an isomorphism of degree j-( of

complexes u: G>( —► G>s, where G>r denotes the complex •• • <— 0 <— 0 <—

dr+\

Gr <- Gr+] <— • • • .   Let ut  and ul+x  be given in the standard basis by

matrices:

(c   d)     and      (c'    d')

respectively. Then by comparing the (1,2) entry in the matrix equality ds+xut+x

= (-1) ~sutdl+x , one has

,/ 5+1    ,/ ,/ /       .J-S,     /+1 ,     , ,
bxx+a     d x3 + d x4 = (-1)     (a    ax3 + ax4 + bxf .

Let v be the image of v e R in k = R/m . Since / is generated by quadratic

forms,

b xx + a+ d x3 + d x4 = (-1) ~s(a'+ ax3 + ax4 + bxf)

holds. Hence b' = 0, b = 0, a+xd' = (-l)'~sa+xä, and d' = (-l)'~sa. If

we assume that t - s ^ 0 mod(o(a)), then d = a = 0, so ut and ul+x are

not isomorphisms, contradicting our assumption.   D

(3.4) Proposition. Let k, a, Rn, Ma, o(a), and G(a) be as in (3.1). Then:

(i) (P = Pa = Ra/(xf), m , k) is a local graded artinian ring with m =0.

(ii) The complex H(q) = G(q) ®r Pn is exact.

(Hi) Let L = La = Ma »^ R .   Then Syzf (Lf) = Syzf(LJ  if and only if
t-s = 0  mod(o(a)).

The proof of (3.4) is omitted because it is similar to that of (3.1).
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In particular, we have the following examples:

(3.5) Example. If o (a) = oo, then L is not eventually periodic over P.

(3.6) Example. If o(a) = q , then L is periodic of minimal period q over P.

(3.7) Remark. From (l.O.ii) it follows that the rings in our examples have the

minimal possible embedding dimension. It is easily seen, by taking tensor prod-

ucts over k of P and R with appropriate fc-algebras, that counterexamples

to Eisenbud's conjecture exist over rings P', respectively Gorenstein rings R',

with arbitrary values of the embedding dimension and depth, subject only to the

conditions edim P' - depth P' > 4 and, respectively, edim R' - depth R' > 5 .

It should be noted that in the counterexamples constructed above, the rings

are graded /c-algebras and have minimal length (by (1.2)) and minimal nilpo-

tency degree of the maximal ideal (by (2.4)). The corresponding modules are

graded, have linear resolutions, and are infinite syzygies (which is a strong nec-

essary condition for periodicity). They have constant Betti numbers equal to 2 ,

which is the minimal possible value of lim sup bn , as seen from the following:

(3.8) Proposition. // M is an R-module such that bn (M) = 1 for « » 0, then

M is eventually periodic of period 2.

Proof. By assumption, for n > 0, the differential of the minimal resolution

of M is R —ï-» R, for some xn e R. Since xi_xxi = 0, one has x(_x e

(0 : xA) = xl+xR for sufficiently large i. Thus we have xiXR ç x¡+xR. As R

is noetherian, the conclusion follows.   □

(3.9) Remark. In the examples, m M = 0, and this certainly is "minimal"

in the following sense. If m M = 0, i.e., M is a direct sum of copies of

the residue field, and M has bounded Betti numbers, then it is well known

that R is a hypersurface ring; hence by [5, (6.1)], M is eventually periodic of

period 2. In particular, for any counterexample to Eisenbud's conjecture one

has length M > 1 , but we do not know what the minimal possible length is.

(3.10) Remark. In [1] a generalization of the notion of projective dimension

of a module, called virtual projective dimension and noted vpdÄ M, is intro-

duced. By [1, (4.4)], a module which has finite virtual projective dimension and

bounded Betti numbers is eventually periodic of period 2. Thus, for a -f ± 1,

one has vpd^ Ma = oo and vpdp La = oo. In fact, for a f ±1 the ring Pa

has no embedded deformation: this can be checked by the same argument as

used in [3].

However, for a = ±1 (3.4) does not provide modules with bounded Betti

numbers and infinite virtual projective dimension. To show this, we exhibit an

embedded codimension  1 deformation Q   of P   such that pdn L   = 1 : by

[1] this means vpd^ La = 1. Set Q'a = k[Xx ,X2,X3, X4]/T where the X¡ 's

are indeterminates and  T is the ideal generated by the following quadratic
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forms:

aXxX3 + X2X3,     XXX4 + X2X4,     X3 ,     X4 ,     AC3X4,     Xx — X2 .

Denote by xj the image of Xi in Q'a and by Qa the localization at (xx, x2, x3,
f 1 7

x4) of Qa . Then x,   is a nonzero divisor of Qa , and Pa = Qa/(xx ), hence

Q    is an embedded deformation of P .  The minimal free resolution of L

over Q   is then

fxx    ax3 + x4\

(3.11) Remark. Note that for a = -1 (respectively a = 1 ) the module LQ is

periodic of minimal period 2 (respectively 1 ). Thus, the questions may arise

whether a module of minimal period 2 (respectively 1 ) necessarily has finite

virtual projective dimension. Once more, the answers are negative. For period

2 the relevant example is constructed in [3]. For period 1, take in (3.4) a ^ ±1

and set Na = PJ(xx). The complex

P ^-P ^- P <-
a a a

is then the minimal P -free resolution of N .
a a

4.  ARTINIAN RINGS WITH SMALL RESIDUE FIELD

The examples (3.2) and (3.5) of nonperiodic modules with bounded Betti

numbers require that k contain an element of infinite multiplicative order, i.e.,

that k be not algebraic over a finite field. That this condition is essential is

shown by (4.2) below.

In (3.3) and (3.6) the assumption that k contains a qth root of unity can be

avoided at the expense of increasing the embedding dimension. This is shown

in (4.3).

(4.1 ) Proposition. Let R be artinian, such that k is an algebraic extension of

the prime field F (p > 0). For any finitely generated R-module M there are

a finite artinian ring R' andan R'-module M' such that R is a faithfully flat

R'-module, and M = M' ®r, R.

Remark. In the case when R contains a field, the proposition is an immediate

consequence of the proof of [6, (2.2)].

Proof. From Cohen's structure theorem [4, §2, Théorème 3] it follows that R =

S/I, where S = V[XX, ... , XJ , V is a complete discrete valuation ring with

maximal ideal pV, V/pV = k, and I = (/,.fir)S D (p, Xx,..., Xn)u for
some u > 1 . Since k is perfect there is [4, §2, Proposition 7] a multiplicative

system A = {ax, X e A} = k*  such that every v e V is expressed uniquely

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDENESS VERSUS PERIODICITY 579

in the form v = T,T=oav,hPh , av h e An {0} . For v e V set Av = {av h e

A\h < u} and for f e S let Aj- denote the union of all Av , taken over the

coefficients of /. Note that \AA < oo. Let

/   (g-A     d
0 <— M <— S i-S

be a presentation of M and let B be the multiplicative subgroup of A gener-

ated by the finite set (Ui<,<r ^/)u(Ui<,<, \<j<d Ag. ) • Since k is an algebraic

extension of F , every element of k* is torsion, hence so is every element of

A , hence B is finite. It follows that there exists a b e B such that B = (b).

With the p-adic numbers Z , canonically embedded in V, set V1 = Z [b].

Since V' is integral over Zp and V'/pV' is the field F (b) (where b is the

image of b in k = V/pV ), one sees that V' is a complete discrete valuation

ring with maximal ideal p V'. The domain F is a torsion-free F'-module and

the inclusion V' —> V is flat. Note now that fih, 1 < h < r, and gi}, I < i <d,

1 < j < t, are contained in S' = V,[Xl, ... ,Xn]. Setting R' = S'/(fix,... ,fir)
and

M' = Coker(S'd -Ä s")

we have M = M1 <g>R, R and R = R' gy V. Obviously, R' is a finite local

artinian ring and R' —» R is flat.    D

(4.2) Corollary. Let R be as in (4.1) and let M bean R-modulewith cxRM =

1. Then M is eventually periodic.

Proof. With the R' and M' given by (4.1), let F' be a minimal free resolution

of M' over R'. Since R' is .R-flat, F = F' <g>Ä R1 is a minimal free resolution

of M over /?, so it is enough to show that M' is eventually periodic.  But
R' I R I

bn (M ) = bn (M) are bounded and R is a finite ring, hence there is only

a finite number of possibilities for the matrices d'n . Thus M' is eventually

periodic.   D

(4.3) Example. Let k be an arbitrary field. Set

Sn=k[Xx,X2,X3,Yx,...,YJ/In,

where the X¡ 's and Y¡ 's are indeterminates and In is the ideal generated by

the following quadratic forms:

Xx Yx +X2Yn, Xx Yi + X2Yt_x     for 2 < i < n ;

X2X3 - Y2 ; X2X3 - YiYn+2_i     for 2 < i < 1 + n/2 ;

xiX3 + YtYH+i-i     for I <i<(n+ l)/2;

X\, X22, X] ;  Y¡X3     for 1 < / < n ;

Y¡Yj    for 1 < i < j < n , i + j ± n + 1, n + 2 and (i, j) ¿ (1, 1).
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Denote by x( and y., respectively, the images of X¡ and F   in Sn ; then:

(i) S = (Sn, mn, k) is a local graded Gorenstein ring with Hilb5(/) = 1 +

(n + 3)t + (n + 3)t2 + t3.

(ii) The sequence of homomorphisms of graded Ä-modules

C„: ■■■+-S2(-i+l)^S2(-i)+-    ■ , where i eZ,

d.= (xi    y'
1     V0    x2,

for yi = y. if i = j  mod(«), is an exact complex.

(hi) Let N = Nn = lmdf ; then N is a periodic module over S of minimal

period n.

Setting S' = S/(xf), we obtain as in §3 an example over a non-Gorenstein

ring.
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