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Abstract This essay deals with the notion and content of freedom of choice pro-
posing a new set up and a new family of measures for this concept which is, indeed, an
ethical value of paramount importance in a well ordered and open society. Following
some ideas of John StuartMill, we propose that freedomof choice has to be understood
not in a single stage of choice, but in the ordered collection of choices that a person can
make in her life.We then suggest to represent a life in a tree structure, where each node
represents a state of life and the edges between nodes will represent possible decisions
in life. In this new framework, we propose a set of axioms that imply the following
family of measures of lifetime’s freedom of choice: the lifetime’s freedom of choice
has to be evaluated by a weighted sum of all possible states of life an individual might
visit, with weights representing the number of decisions the individual took to reach
that state.
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1 Introduction

This essay deals with the notion and content of freedom of choice which is, indeed, an
ethical value of paramount importance in a well ordered and open society. The rapidly
growing modern literature on this issue includes, among its pioneers, names as out-
standing as Friedman and Friedman (1980), Sen (1988), Pattanaik and Xu (1990), and
many others. See Barbera et al. (2004) for an extensive survey and a formal descrip-
tion that connects the problem to other relevant economic questions. However, the
question of freedom of choice and its relevance for Economics was already present
in Smith (1776), whose most famous book was a close defense of individual freedom
as a key instrument for the Wealth of Nations. However, in the long list of classical
normative writers the real champion on this subject is Mill (1859), who wrote a short
but extraordinary piece entitled On Liberty, and published in 1859. Most of modern
writers on freedom of choice explicitly acknowledge their debt to the intuitions and
conclusions contained in Mill’s book. Mill (1859) set forth this basic principle in the
following words:

This, then, is the appropriate region of human liberty. It comprises, first, the
inward domain of consciousness […]. Secondly, the principle requires liberty
of tastes and pursuits; of framing the plan of our life to suit our own character;
of doing as we like, subject to such consequences as may follow […]. The only
freedom which deserves the name, is that of pursuing our own good in our own
way, so long as we do not attempt to deprive others of theirs, or impede their
efforts to obtain it (pp. 15–16).

In some seminal papers, Sen (1988, 1991) established that freedom of choice has
two distinct values: intrinsic and instrumental. The lattermeans that, freedomof choice
enables individuals and nations to manage their own capabilities in such a way as to
achieve a better outcome, and thus, higher well-being. Freedom of choice, therefore,
has an instrumental value in that, given more opportunities, a person has a better
chance of achieving states of life that are closer to her preferences. This instrumental
value has been widely recognized and is, in fact, the underlying value in Adam Smith’s
Wealth of Nations (Smith 1776), in Milton Friedman’s Free to Choose (Friedman and
Friedman 1980) and also in John Roemer’s Free to lose (Roemer 1988). It is also the
only value that classic microeconomics assigns to the consumer choosing a basket of
goods from a budget set.When the consumer compares two budget sets, she looks only
at the basket providing the highest utility in each of the sets. This is the idea behind the
notion of indirect utility function. Hence, she is indifferent between the whole budget
set and the best of its alternatives, even when this best alternative is presented with no
other possible choice.1

The intrinsic value of freedom of choice means that, by having freedom to choose
from a set of possibilities and by the mere act of choosing, individuals are better-off.
John Stuart Mill put it in this way:

1 For an axiomatic treatment of this idea, see Nehring and Puppe (1996) or Ballester et al. (2004).
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If it were felt that the free development of individuality is one of the leading
essentials of well-being […] there would be no danger that liberty should be
undervalued […]. But the evil is, that individual spontaneity is hardly recogni-
sed by the commonmodes of thinking as having any intrinsic worth, or deserving
any regard on its own account. (p. 53)

A seminal paper that deals with the intrinsic value of freedom is Pattanaik and Xu
(1990). To isolate the intrinsic value from the instrumental one, it is assumed that there
are no individual preferences on the alternatives of choice (they are either unknown
or irrelevant). Their axiom Indifference between no-choice situations establishes that
all singletons (sets of only one alternative) have the same null value, because they all
offer no choice, independently of the alternative included in each singleton. Combined
with other properties, this axiom excludes from the analysis of the intrinsic value of
freedom all information regarding the preferences of the individuals or the quality
of the alternatives. As a consequence, their proposal is to measure the intrinsic value
of freedom of choice by counting the number of alternatives available in each choice
set.2

This paper adopts the line taken by Pattanaik and Xu (1990), which is to study the
intrinsic value of freedom of choice. Hence, freedom of choice of an individual has to
be judged by looking at the choices that this individual may face throughout her adult
states (or, at least, a significant part of it). However, we extend their line of reasoning
by suggesting that freedom of choice has to be understood not at a single stage of
choice, but in the ordered sequence of choices that may arise over a lifetime. Indeed,
human life is merely a sequential or progressive entity, as John Stuart Mill writes:

I regard utility as the ultimate appeal on all ethical questions; but it must be
utility in the largest sense, grounded on the permanent interests of a man as a
progressive being (p. 14).

Freedom of choice must be therefore measured by looking at the whole structure
of choice. In other words, the choices we make today determine the choices available
to us tomorrow, so that a decision maker’s freedom of choice has to be measured by
looking at the structure of decisions throughout an entire lifetime. In the following
quote, Mill himself defends the act of choice as a way to improve the autonomy of an
individual. We therefore need to contemplate choices in a comprehensive way.

The human faculties of perception, judgment, discriminative feeling, mental
activity, and even moral preference, are exercised only in making a choice. He
who does anything because it is the custommakes no choice.He gains no practice
either in discerning or in desiring what is best. The mental and moral, like the
muscular powers, are improved only by being used. (p. 55).

Our proposal, therefore, is to represent a life as a tree structure, where each
node represents a state of life and the edges between nodes will represent possible

2 There are also intermediate perspectives that try to combine intrinsic and instrumental values in a unique
criterion to compare opportunity sets (see for instanceBossert et al. 1994;Dutta andSen 1996;Alcalde-Unzu
and Ballester 2005).
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evolutions or transitions in life. In this new set up, we propose a set of axioms that
imply the following family of measures of lifetime’s freedom of choice: a lifetime’s
freedom of choice has to be evaluated by a weighted sum of all the possible states of
life an individual might visit, with weights representing the number of decisions the
individual took to reach that state.

The remainder of the paper, in which we give a formal structure to these ideas and
present our main result, is organized as follows: Sect. 2 describes the notation, defi-
nitions, axioms and results. Section 3 contains some concluding remarks. The proofs
of all the results are given in the Appendix.

2 Trees of life and freedom of choice

The possible states of life are represented by an infinite set X . We describe a life
as a graph-tree structure (T, ET ). The nodes of the graph are a non-empty finite set
of states of life, T ⊂ X . The edges of the graph, ET ⊂ T × T , represent possible
evolutions or transitions in life. That is, y is an evolution from x whenever xET y.3

The graph (T, ET ) representing life has the structure of a tree, i.e., there exists a state
o(T, ET ) ∈ T which is the origin of life and for every other state in life, there is a
unique path from the origin to that state.

Consider the following example of a life (T, ET ), with nodes T = {x, y, a, b, c, d,

e, f, g, h, i, j, k, l, m} and edges ET = {(x, y), (y, a), (y, b), (a, c), (c, g), (c, h),

(b, d), (b, e), (b, f ), ( f, i), ( f, j), ( j, k), ( j, l), ( j, m)}. The following graph is a rep-
resentation of this tree, where evolutions should be read from top to bottom. Observe
that the origin of (T, ET ) is o(T, ET ) = x.

Our objective is to measure the freedom of choice a life offers. Formally, we
discuss how to construct a complete and transitive binary relation � on the set
of all lives. We consider that any tree formed by states of life of the set X is

3 We will also use notation (x, y) ∈ ET when useful.
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a possible life and, therefore, our objective is to construct a criterion � defined
over the set of all possible trees that we can formally construct with the set X .
The interpretation of (T, ET ) � (S, ES) is that life (T, ET ) offers at least the
same freedom of choice than life (S, ES). Binary relations � and ∼ are defined as
usual.

We have assumed that any tree formed by states of life of the set X is a possible
life. This is an important assumption in the model. It can be argued that if the descrip-
tion of the states of life is done with great detail, some states of life, by definition,
should not appear in any tree before other states of life. However, we believe that
our assumption is the most natural one when states of life are described in terms of
the basic components of well-being (as for instance, in the capabilities approach or a
similar model). Under that view, a tree would describe all the possible paths lived by
the agent in terms of achieved functionings/capabilities. By considering all possible
hypothetical societies and life patterns in these societies, one may argue that no tree
should be discarded a priori.4

We now discuss our axioms. Our first axiom aims to capture the idea that freedom
of choice should measure the part of life remaining after the individual has exercised
some autonomy. In particular, suppose that two lives start with possibly different
sequences of compulsory states of life but all states and possible evolutions after the
first choice in life are the same. In this case, we consider that both lives offer the same
amount of freedom of choice.5 In order to formally define the property we need to
describe the first state of life that offers freedom of choice (if any), and the part of life
that comes after that first state.

Given a life (T, ET ), a state x ∈ T is irrelevant if there is a unique evolution
from x. Otherwise, we say that x is relevant. We also say that a relevant state x offers
freedom of choice if there are at least two possible evolutions from x, and that it
is final if there are none. If a life (T, ET ) possesses at least one state offering free-
dom of choice, we call the first of these states the effective origin of life, denoted by
eo(T, ET ).

Given a life (T, ET ) and a state of life x ∈ T , we call the collection of lives that
span from x the future of x in (T, ET ).6 We say that the collection of states different
from x in the path connecting the origin of life to state x is the set of past states of
x in (T, ET ).

Indifference of No-choice Origins For every pair of lives (T, ET ), (S, ES) where
the futures of eo(T, ET ) and eo(S, ES) are the same or eo(T, ET ) and eo(S, ES) do
not exist: (T, ET ) ∼ (S, ES).

4 If the model is used for one particular application where this assumption is restrictive, the reader may
want to know that some reformulation of the axioms and results should be executed. Stronger assumptions
would be needed to reproduce our initial propositions in this paper.
5 To some extent, this axiom builds upon the classical idea that freedom of choice can only be exercised if
there exists more than one alternative. Thus, we should not consider that part of life before any choice can
be made.
6 Notice that if x has k evolutions, there are exactly k lives spanning from x with their origins in those
k evolutions. In particular, if x is a final state, its future is empty.
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The following example describes Indifference of No-choice Origins. Imagine that,
in our initial example, wemaintain the entire portion of life beyond the effective origin
(which was state y). For instance, we replace the evolution from x to y with a different
origin and effective origin, which is now state z. That is, consider life (S, ES) given
by:

Indifference ofNo-choiceOrigins claims that both lives (T, ET ) and (S, ES) should
both be judged as having the same freedom of choice.

Our second axiom aims to capture the idea that two lives differing only in some
portions that are themselves lives should be judged by how much freedom the sub-
lives offer. Alternatively, the property can be interpreted as follows. Suppose that, on
reaching a certain stage of life, an individual discovers that the expected evolution
beyond that state no longer holds; that it has been replaced with a new evolution and
a different future. Our axiom claims that we do not need to recompute freedom of
choice for the entire life; it is sufficient to evaluate the changes in our new future.
Freedom of choice in life increases (decreases) if the newly opened future offers more
(less) freedom than expected from the original future.

Separability of the Future Let (S, ES), (U, EU ), (V, EV ) be lives such that S ∩
U = S ∩ V = o(U, EU ) = o(V, EV ). If o(U, EU ) �= eo(U, EU ) and o(V, EV ) �=
eo(V, EV ), then (U, EU ) � (V, EV ) ⇐⇒ (S ∪U, ES ∪ EU ) � (S ∪ V, ES ∪ EV ).7

Lives (S ∪ U, ES ∪ EU ) and (S ∪ V, ES ∪ EV ) coincide everywhere except in the
futures associated with state o(U, EU ) = o(V, EV ). Once these lives reach this state,
the two lives differ in only one possible evolution (since o(U, EU ) �= eo(U, EU ) and
o(V, EV ) �= eo(V, EV )). Separability of the Future requires us to rank these two lives
by means of lives (U, EU ) and (V, EV ).

The following example describes Separability of the Future. The union of lives
(S, ES) and (U, EU ) defines the life in our initial example, (T, ET ). Now suppose
that the future beyond f is no longer as predicted in (T, ET ), but as given by (V, EV ).
Separability of the Future tells us to rank (T, ET ) and the union of (S, ES) and (V, EV )

in the same way that we would rank (U, EU ) and (V, EV ).

7 To simplify notation, we often omit brackets when describing singleton sets.
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Indifference of No-choice Origins and Separability of the Future impose basic con-
ditions on how we should measure freedom of choice. However, the following prop-
ositions show that the combination of the two axioms has a powerful effect. Under
these two axioms: (1) we should measure freedom of choice in a neutral way, since we
only need to consider the volume and distribution of states in life, and not the specific
labeling of these states, and (2) we can suppress any irrelevant state from life without
compromising freedom of choice.

Given a bijective self-map μ over the set of states X , let μ[(T, ET )] =
(μ(T ), μ(ET )) where naturally μ(x)μ(ET )μ(y) ⇔ xET y.

Proposition 1 Let � satisfy Indifference of No-choice Origins and Separability of
the Future. For every bijective self-map μ over the set of states X and for every life
(T, ET ) : (T, ET ) ∼ μ[(T, ET )].

The intuition behind Proposition 1 is as follows. Take one state x in life (T, ET ) and
suppose that we wish to replace it with a new one y. Indifference of No-choice Origins
guarantees that this change leaves freedom unaltered if x is in the past of (or coincides
with) the effective origin of (T, ET ). If x is in the future of the effective origin, Separa-
bility of the Future plays a substantial role in proving the claim. In particular, consider
the state a for which x is an evolution, and construct the life consisting of the evolution
from a to x and the entire future of x. In this life, x is in the past of (or coincides
with) the effective origin, and we can apply Indifference of No-choice Origins and
replace x with y with no alteration to the freedom of this sub-life. Separability of the
Future therefore allows replacement of the sub-life without compromising freedom of
choice. Repeated application of this trick allows us to replace any state as desired.

Given a life (T, ET ), we denote by (T̂ , ET̂ ) the life obtained by eliminating all
irrelevant states. That is, let {i1, . . . , ik} be the irrelevant states, which are evo-
lutions from states {[a1], a2, . . . , ak} and evolve into states {e1, e2, . . . , ek}. Then,
T̂ = T \ {i1, . . . , ik}, and ET̂ is obtained by eliminating from ET the evolu-
tions {([a1], i1), (i1, e1), (a2, i2), (i2, e2), . . . , (ak, ik), (ik, ek)} and inserting the evo-
lutions {([a1], e1)(a2, e2), . . . , (ak, ek)}.8

8 If o(T, ET ) is an irrelevant state, it would not be an evolution from any other state. To simplify the
notation, we have represented this idea through [a1], which can be read as a1 if x1 is not the origin and
ignored if x1 is the origin.
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Proposition 2 Let � satisfy Indifference of No-choice Origins and Separability of the
Future. For every life (T, ET ) : (T, ET ) ∼ (T̂ , ET̂ ).

The intuition behind Proposition 2 is as follows. Choose one irrelevant state i in
life (T, ET ) and suppose that we wish to remove it. Indifference of No-choice Origins
guarantees that this removal leaves freedom unaltered if i is in the past of eo(T, ET ).
If i is in the future of eo(T, ET ), Separability of the Future can be applied in a similar
trick to the one in Proposition 1.9 Let us reconsider the state a from which i evolves,
and again, the life composed by the evolution from a to i and all the future of i . In this
life, i is in the past of the effective origin and thus, can be removed. Separability of the
Future therefore allows replacement of the sub-life without compromising freedom of
choice. Repeated application of this trick allows us to conclude the proof.

Propositions 1 and 2 can be illustrated bymeans of the following example. It merely
consists of the elimination of irrelevant states in our initial example (T, ET ), together
with a bijection μ that is mapping the initial states to different states. That is, with
Propositions 1 and 2 we have that life (T, ET ) provides the same freedom of choice as
life μ[(T̂ , ET̂ )], with μ(y) = a, μ(b) = h, μ(c) = w, μ(d) = n, μ(e) = d, μ( f ) =
z, μ(g) = r, μ(h) = c, μ(i) = j , μ( j) = u, μ(k) = f, μ(l) = t and μ(m) = g.

Our third axiom describes the idea that equivalent changes over two lives should be
considered an expansion or reduction of freedom for both of them. The condition for
changes to be considered equivalent is that those sub-lives removed from or added to
lives had or will have exactly the same past. Formally, let lives (T, ET ), (S, ES) and
transformed lives f (T, ET ), f (S, ES) be such that all are without irrelevant states.
The transformation f is equivalent for lives (T, ET ) and (S, ES) if it involves: (l) The
removal of the same pieces of the future of nodes x1,x2, . . . ,xk ∈ T ∩ S that share
the same past in (T, ET ) and (S, ES), and (2) the addition of the same new pieces of
the future to nodes y1, y2, . . . , yl ∈ T ∩ S that share the same past in (T, ET ) and
(S, ES).

9 Note that if i is irrelevant in (T, ET ), i �= eo(T, ET ).
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Independence of Equivalent Transformations For every pair of lives (T, ET ) and
(S, ES) and for every equivalent transformation f for these lives: f (T, ET ) �
(T, ET ) ⇔ f (S, ES) � (S, ES).

The next axiom is a classical Archimedean property adapted to our context. It basi-
cally states that the quality of different states/decisions is comparable, and thus, the
freedom of choice measure will not be lexicographic.

Archimedean Difference Let (V, EV ), (W, EW ) be two lives and let {(Ti , ETi ),

(Si , ESi )}i∈N be sequences of lives such that (Ti , ETi ) � (Si , ESi ), and Ti ∩ Tj =
Si ∩ S j = Ti ∩ V = Si ∩ W = {o∗} for all i, j ∈ N, where o∗ is the origin of all these
lives. Then, there exists k ∈ N such that

(
V ∪

k⋃
i=1

Ti , EV ∪
k⋃

i=1

ETi

)
�

(
W ∪

k⋃
i=1

Si , EW ∪
k⋃

i=1

ESi

)
.

In essence, the property says that the fact that (W, EW ) might offer more freedom
of choice than (V, EV ) can be reversed at some point by the addition of a sufficient
number of better states or decisions to (V, EV ) than to (W, EW ). Our final axiom
establishes a minimal condition of monotonicity. It reflects the idea that the addi-
tion of one extra choice to any non-final state of life should be always judged as an
increment of freedom of choice.

Monotonicity For every life (T, ET ), for every non-final state x ∈ T and for every
z ∈ X \ T : (T ∪ {z}, ET ∪ {(x, z)}) � (T, ET ).

Propositions 1 and 2 provide specific instructions on how to rank lives in terms of
freedom of choice if we accept Indifference of No-choice Origins and Separability
of the Future. In what follows, we refine these results by adding Independence of
Equivalent Transformations, Archimedean Difference and Monotonicity to our set of
axioms. We show in Proposition 3 that Independence of Equivalent Transformations,
together with the two initial axioms, links any life (T, ET ) to a highly structured life.

Given a life (T, ET ) denote by [dm(T, ET )] the sequence of non-negative inte-
gers that describes the number of relevant states in life (T, ET ) with exactly m past
states offering freedom of choice. Let M be the last positive integer (if any) such
that dm(T, ET ) > 0 (indeed, if dm(T, ET ) > 0, it must be that dm(T, ET ) ≥ 2).
A canonical life associated with (T, ET ) is a life (C, EC ) where: (1) C =
(c01, c11, . . . , c1d1(T,ET ), . . . , cM

1 , . . . , cM
dM (T,ET )) is a set of

∑M
m=0dm(T, ET ) states

and (2) evolutions are of the form ci
1EC ci+1

j for every 0≤ i < M and for every
1≤ j ≤ di+1(T, ET ). Proposition 3 shows that a ranking satisfying Indifference of
No-choice Origins, Separability of the Future and Independence of Equivalent Trans-
formations allows us to write every tree in any of its canonical forms.

Proposition 3 Let � satisfy Indifference of No-choice Origins, Separability of the
Future and Independence of Equivalent Transformations. For every life (T, ET ) and
for every canonical life (C, EC ) associated with (T, ET ) : (T, ET ) ∼ (C, EC ).

The intuition behind Proposition 3 is as follows. Given Proposition 2, we can con-
sider (T̂ , ET̂ ). Let us take two states x, y with the same past and imagine that we
wish to move all the future of x to y. If this transformation generates an increase
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(respectively, a reduction) of freedom, equivalent transformations in other trees will
also generate an increase (resp. a reduction) of freedom. Think about the hypothetical
life completely equal to (T̂ , ET̂ ) except that x has the entire future of both x and y, and
y is final. Moving a piece of the future from x to y will be a transformation equivalent
to the one above, since all the pasts of involved states are the same. Hence, the life
where y has the future of x and x has the future of y generates an increase (resp. a
reduction) of freedom. However, these two increases (resp. reductions) are incompat-
ible with Proposition 1. Repeated application of this trick allows us to conclude the
proof.

Proposition 3 can be illustrated using the life (T, ET ) of our initial example. In
precise terms, it states that (T, ET ) provides the same freedom of choice as any of its
canonical lives, such as the following:

We are now ready to describe the main result of the paper. Proposition 3 links our
ranking of freedom of choice to the description of how many states of life have level
m (meaning there are m states offering freedom in its past). The set of axioms used
there together with Archimedean Difference andMonotonicity guarantee that we have
to additively consider each of these states, possibly with a different weight for states
having different level. These weights cannot have any real value, however. In partic-
ular: (1) weights have to be strictly positive for any m > 0 and zero for m = 0, and
(2) the ratio of the weights of two consecutive levels (with m > 0) has to be constant.

Theorem 1 A criterion � satisfies Indifference of No-choice Origins, Separability
of the Future, Independence of Equivalent Transformations, Archimedean Difference
and Monotonicity if and only if there exists � ∈ R++ such that for every pair of lives
(T, ET ), (S, ES):

(T, ET ) � (S, ES) ⇔
∞∑

m=1

�mdm(T, ET ) ≥
∞∑

m=1

�mdm(S, ES).

The intuition behind Theorem 1 is as follows. We use the classical result reported
by Krantz et al. (1971) to construct a scale over the set of sequences with integer
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values and only a finite number of components different from zero. We can interpret
one of these sequences as a transformation from one life to another, and each element
αm of a sequence as the number of states of dimension m added to (if αm is positive)
or removed from (if αm is negative) the original life. To prove the existence of a scale
representation, we work with canonical lives and prove the classical invariance and
Archimedean properties by means of our axioms. We then only need to describe the
structure of the weights in the scale representation.Monotonicity guarantees that these
weights are strictly positive form > 0 and Proposition 2 guarantees that the weight for
m = 0 is 0. Finally, Separability of the Future plays another key role in determining
the weights. Notice that two lives must be judged equally if we insert them into another
tree (and thus shift all the states towards higher levels). This implies that the ratio of
weights must be constant.

We also show that the axioms used in Theorem 1 are independent.

Proposition 4 Indifference of No-choice Origins, Separability of the Future, Inde-
pendence of Equivalent Transformations, Archimedean Difference and Monotonicity
are independent.

3 Extensions

In this paper we have proposed a family of measures to compare the degree of freedom
of choice that individuals have in a society where a life is described by the sequential
accessibility to different states of life. The idea of accessibility has been defined in
this paper as a binary concept, i.e., either an agent has access to state y from state
x or not. Clearly, a more general model would describe accessibility as a continuous
variable, where access to y from x is maybe open for everybody but with different
degrees/probabilities of access. To take this into account, our model should be adapted
by introducing degree levels at each of the edges of the tree defining a life. In this case,
the axioms introduced in this paper should also be adapted. We consider this point an
interesting line for further research.

As the main result of our analysis, we have characterized a family of measures to
evaluate the freedom of choice over a lifetime. Each of the measures evaluates free-
dom of choice in an additive form, weighting every feasible state of life according to
the number of decisions the individual needs to take to reach that state. As noted in
the main section, these weights are not completely free, and are in fact determined by
only one parameter, � ∈ R++. We can interpret this parameter as the importance we
attach to the moment at which the agent takes the decision.

Determination of the appropriate value for parameter� is an interesting but difficult
problem. On the one hand, it can be argued that initial decisions have consequences
over longer periods or more stages of life, which strengthens the case for values of �

smaller than 1, which would assign greater value to the possibility of having freedom
in the early stages of life. On the other hand, it can also be argued that the auton-
omy of the individual grows with the effective decisions already taken, which would
strengthen the case of values of � greater than 1, which would assign greater value to
the possibility of having freedom in more advanced stages of life.
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The first measure of freedom of choice in a static framework in the literature is the
cardinality-based criterion of Pattanaik and Xu (1990). One may argue that a natural
translation of such idea to our dynamic framework would be to count the number
of possible sequences of states available to the individual. That would correspond to
counting the number of paths in the tree starting in the origin and finishing in any final
node, or equivalently, to counting the number of final nodes of the tree. This measure
is not included in the family characterized in Theorem 1 because it fails to satisfy the
property of Independence of Equivalent Transformations. To see why, consider the
following trees:

By the cardinality-based criterion �C , we have that (U, EU ) ∼C (V, EV ) �C

(T, ET ) ∼C (W, EW ). However, it is easy to see that the transformation from (T, ET )

to (U, EU ) is equivalent to the transformation from (V, EV ) to (W, EW ) and in the
former case the transformation increases freedom (according to �C ), although in the
later, it decreases freedom.

We may consider the following alternative definition of an equivalent transforma-
tion. Let lives (T, ET ), (S, ES) and transformed lives f (T, ET ), f (S, ES) be such
that all are without irrelevant states. The transformation f is equivalent-2 for lives
(T, ET ) and (S, ES) if it involves: (1) The removal of nodes x1,x2, . . . ,xk ∈ T ∩ S
(and their future, which is also the same in both lives) that share the same past in
(T, ET ) and (S, ES) and (2) the addition of the same new pieces of the future to nodes
y1, y2, . . . , yl ∈ T ∩ S that share the same past in (T, ET ) and (S, ES).

Replacing Independence of Equivalent Transformations by Independence of Equiv-
alent Transformations-2 results into the characterization of a slightly different set of
rankings. Given a life (T, ET ) denote by [gn(T, ET )] the sequence of non-negative
integers that describes the number of final states in (T, ET ) with exactly n past states
offering freedom of choice.

Theorem 2 A criterion � satisfies Indifference of No-choice Origins, Separability of
the Future, Independence of Equivalent Transformations-2, Archimedean Difference
and Monotonicity if and only if there exists � ∈ R++ such that for every pair of lives
(T, ET ), (S, ES):
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(T, ET ) � (S, ES) ⇔
∞∑

n=1

�ngn(T, ET ) ≥
∞∑

n=1

�ngn(S, ES).

Theorem 2 establishes a new family of rankings that weigh the number of final
states depending on the number of decisions that the individual has to take in each
of the possible paths. The weights have the same structure to those of Theorem 1: all
weights have to be strictly positive (except for those possible final states without a
decision, for which it is 0), and (2) the ratio of the weights of two consecutive levels
(with n > 0) has to be constant.10

The different rankings of the family differ in the value of the parameter �. Deter-
mination of the appropriate value for � is probably easier than the determination of
� in the family characterized in Theorem 1 because probably values of � < 1 do not
seem appropriate. To see why, consider the following trees:

It seems intuitive that (T, ET ) offers more freedom of choice than (U, EU )

because the four possible sequences in (T, ET ) are richer (in terms of free-
dom of choice) than the four possible sequences in (U, EU ). However, if we
select a parameter of � < 1, we would obtain a criterion that judges (U, EU )

as providing more freedom of choice than (T, ET ). On the other hand, values
of � > 1 evaluates (T, ET ) as having more freedom of choice than (U, EU ),
and the adaptation of the cardinality-based criterion to this dynamic context
defined above (that coincides with the criterion of the family for a value of the
parameter � = 1) evaluates these two trees as indifferent in terms of freedom of
choice.11
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Appendix

Proposition 1 Let � satisfy Indifference of No-choice Origins and Separability of
the Future. For every bijective self-map μ over the set of states X and for every life
(T, ET ) : (T, ET ) ∼ μ[(T, ET )].
Proof Let � satisfy Indifference of No-choice Origins and Separability of the Future.
We first prove that for every life (T, ET ), for every x ∈ T and for every y ∈ X \ T ,
(T, ET ) ∼ (Tx,y, ETx,y ), where Tx,y denotes the set of states where we just replaced
node x with node y and ETx,y denotes the set of edges where we replaced edges
including x with similar edges including y.

To see this, consider a life (T, ET ),x ∈ T and y ∈ X \T . If (T, ET ) has no effective
origin, Indifference of No-choice Origins proves the claim. Suppose that eo(T, ET )

exists. If x is a past state of eo(T, ET ) (respectively, x = eo(T, ET )) then y is a past
state of eo(Tx,y, ETx,y ) (respectively, y = eo(Tx,y, ETx,y ). Clearly, the futures of the
effective origins of these two lives will coincide. The application of Indifference of
No-choice Origins guarantees that (T, ET ) ∼ (Tx,y, ETx,y ).

If x is in the future of eo(T, ET ), consider the state a such that x is an evolution
from a. Consider the lives (Z , TZ ) = (T (x) ∪ {a}, ET (x) ∪ {a,x}) and (Zx,y, EZx,y ),
where (T (x), ET (x)) denotes the life composed by x and all the future of x in life
(T, ET ). Since eo(Z , EZ ) is either x or belongs to the future of x, Indifference of
No-choice Origins guarantees that (Z , EZ ) ∼ (Zx,y, EZx,y ).

Now consider the life (T \T (x), ET \ET (x)), which is non-empty becausex is in the
future of eo(T, ET ). Clearly, (T \T (x))∩ Z = (T \T (x))∩ Zx,y = a = o(Z , EZ ) =
o(Zx,y, EZx,y ) and a is an irrelevant origin in the latter two lives. Hence, we can apply
Separability of the Future obtaining (T, ET ) ∼ (Tx,y, ETx,y ). This proves our initial
claim.

Now, simply notice that lives are finite graphs and hence, we can apply our claim by
replacing, one by one, every state and its associated evolutions with the corresponding
state and its associated evolutions, and the proposition is proved. ��
Proposition 2 Let � satisfy Indifference of No-choice Origins and Separability of the
Future. For every life (T, ET ) : (T, ET ) ∼ (T̂ , ET̂ ).

Proof Let � satisfy Indifference of No-choice Origins and Separability of the Future.
We first claim that for every life (T, ET ) and for every irrelevant state i in (T, ET )

(evolution from [a] and evolving into e), (T, ET ) ∼ (T \ {i}, ET \ {([a], i), (i, e)} ∪
{([a], e)}).

Consider life (T, ET ) and the irrelevant state i . If i is a past state of eo(T, ET ), the
application of Indifference of No-choice Origins proves our claim.

If i belongs to the future of eo(T, ET ), then consider the lives (T (i) ∪ {a}, ET (i) ∪
{(a, i)}) and (T (e) ∪ {a}, ET (e) ∪ {(a, e)}). Clearly, since a and i are irrelevant in
the former life and a is irrelevant in the latter life, the futures of the effective origins
of these two lives coincide. Hence, Indifference of No-choice Origins guarantees that
(T (i) ∪ {a}, ET (i) ∪ {(a, i)}) ∼ (T (e) ∪ {a}, ET (e) ∪ {(a, e)}).

Now consider the life (T \T (i), ET \ ET (i)), which is non-empty because i is in the
future of eo(T, ET ). Clearly, (T \ T (i))∩ (T (i)∪{a}) = (T \ T (i))∩ (T (e)∪{a}) =
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a = o(T (i) ∪ {a}, ET (i) ∪ {(a, i)}) = o(T (e) ∪ {a}, ET (e) ∪ {(a, e)}) and a is an
irrelevant origin in the latter two lives. Hence, we can apply Separability of the Future
and we obtain (T, ET ) ∼ (T \ {i}, ET \ {(a, i), (i, e)} ∪ {(a, e)}. This proves our
initial claim.

The end of the proof is immediate from the fact that lives are finite graphs, and
hence we can apply the previous claim repeatedly, removing the irrelevant states one
by one and modifying the set of evolutions accordingly. ��

Proposition 3 Let � satisfy Indifference of No-choice Origins, Separability of the
Future and Independence of Equivalent Transformations. For every life (T, ET ) and
for every canonical life (C, EC ) associated with (T, ET ) : (T, ET ) ∼ (C, EC ).

Proof Let � satisfy Indifference of No-choice Origins, Separability of the Future and
Independence of Equivalent Transformations.We first claim that for every life without
irrelevant states (T, ET ) and for every two states, x and y, in (T, ET ) sharing the same
past, we have (T, ET ) ∼ (T, ES), where (T, ES) is the life where the only changes
in evolutions are such that the future of x in (T, ES) is empty and the future of y in
(T, ES) is the union of futures of x and y in (T, ET ).

To see this, consider the auxiliary lives (T, EU ), (T, EV ) where the only changes
in evolutions are as follows: (1) the future of y in (T, EU ) is empty and the future of x
in (T, EU ) is the union of the futures of both x and y in (T, ET ) and (2) the future of
x in (T, EV ) is the future of y in (T, ET ) and the future of x in (T, EV ) is the future
of y in (T, ET ).

Now suppose by contradiction that (T, ET ) � (T, ES). The transformation from
(T, ET ) to (T, ES) only involves cancelling the future of x in (T, ET ) and adding
this future to y. Notice, however, that this is exactly the same transformation from
(T, EU ) to (T, EV ), and states x and y have exactly the same past in both (T, ET )

and (T, EU ). Since all these lives are composed by relevant states, Independence of
Equivalent Transformations guarantees that (T, EU ) � (T, EV ).

However, Proposition 1 implies that (T, ES) ∼ (T, EU ) and (T, EV ) ∼ (T, ET )

and by transitivity, (T, ES) � (T, ET ). This is obviously a contradiction. By analo-
gous reasoning we must reject (T, ES) � (T, ET ) and thus it must be that (T, ET ) ∼
(T, ES) as we initially claimed.

The end of the proof is now immediate. Proposition 2 guarantees the conversion of
any life (T, ET ) into a sub-life without irrelevant states (T̂ , ET̂ ) respecting freedom
of choice. Since lives are finite graphs, we can apply our previous claim by modifying
the futures in (T̂ , ET̂ ) one by one, respecting freedom of choice, until we reach a

canonical life with states in T̂ is reached. Proposition 1 and transitivity thus guaran-
tee that any other canonical life associated with (T, ET ) will also provide the same
freedom of choice as (T, ET ). ��

Theorem 1 A criterion � satisfy Indifference of No-choice Origins, Separability of
the Future, Independence of Equivalent Transformations, Archimedean Difference
and Monotonicity if and only if there exists � ∈ R++ such that for every pair of lives
(T, ET ), (S, ES):
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(T, ET ) � (S, ES) ⇔
∞∑

m=1

�mdm(T, ET ) ≥
∞∑

m=1

�mdm(S, ES).

Proof First, it is easy to see that all the criteria of the family satisfies the axioms. To
see the other implication, consider a criterion � satisfying Indifference of No-choice
Origins, Separability of the Future, Independence of Equivalent Transformations,
Archimedean Difference and Monotonicity. Then, we are going to denote by � the
set of sequences [λm] with integer values and only a finite number of components
different from zero. Consider the following binary relation R defined over �: for
any [αm], [βm] ∈ �, [αm]R[βm] if and only if there exist lives (U, EU ) and (V, EV )

without irrelevant states such that [dm(U, EU ) − dm(V, EV )] = [αm − βm] and
(U, EU ) � (V, EV ).

We first claim that R is a complete and transitive binary relation over �. To see
this, let [αm], [βm] ∈ � and consider lives (T, ET ), (S, ES), (U, EU ) and (V, EV )

such that [dm(T, ET ) − dm(S, ES)] = [dm(U, EU ) − dm(V, EV )] = [αm − βm]. We
show that (T, ET ) and (S, ES) are compared in the same vein as (U, EU ) and (V, EV )

and hence R is well-defined. By Proposition 3, we can assume that both (T, ET ) and
(U, EU ) are in canonical form, and also, that they share all the non-final states of one
of the two lives. By Proposition 1, we can also assume that we will remove and add the
same futures to these two lives. Notice that, under these conditions, the transformations
performed in both (T, ET ) and (U, EU ) are equivalent, and thus, by Independence
of Equivalent Transformations, (T, ET ) and (S, ES) are ranked exactly as (U, EU )

and (V, EV ). This shows that R is well-defined. Clearly, from the completeness and
transitivity of � and the fact that X is infinite, we have completeness and transitivity
of R.

Second, we claim that (�, R,+), where + is the usual addition operator on
sequences, is a closed extensive structure.12 On top of the completeness and transitivity
of R, we obviously have associativity of+. Moreover, for every [αm], [βm], [γm] ∈ �

with [αm] R [βm], there exist lives (T, ET ) and (U, EU ) with (U, EU ) � (T, ET )

such that [dm(U, EU ) − dm(T, ET )] = [αm − βm] = [(αm + γm) − (βm + γm)] and
thus, [αm] + [γm] R [βm] + [γm] and [γm] + [αm] R [γm] + [βm]. Finally, consider
[αm], [βm], [γm], [δm] ∈ � such that [αm] P [βm]. Then, by definition of R, there exist
lives (V, EV ), (W, EW ) such that [dm(V, EV ) − dm(W, EW )] = [γm − δm]. Given
that X is infinite, we can define sequences of lives {(Ti , ETi )}i∈N, {(Si , ESi )}i∈N
such that: (1) [dm(Ti , ETi ) − dm(Si , ESi )] = [αm − βm] for all i ∈ N, and (2)
Ti ∩ Tj = Si ∩ S j = Ti ∩ V = Si ∩ W = {o∗} for all i, j ∈ N, where o∗ is the
origin of all these lives. Then, by Archimedean Difference, we know that there exists

k ∈ N such that (V ∪
k⋃

i=1
Ti , EV ∪

k⋃
i=1

ETi ) � (W ∪
k⋃

i=1
Si , EW ∪

k⋃
i=1

ESi ). It is

easy to see that [dm(V ∪
k⋃

i=1
Ti , EV ∪

k⋃
i=1

ETi ) − dm(W ∪
k⋃

i=1
Si , EW ∪

k⋃
i=1

ESi )] =
k · [αm] + [γm] − (k · [βm] + [δm]) and hence, (k · [αm] + [γm])R(k · [βm] + [δm]),
as desired. Thus, (�, R,+) is a closed extensive structure.

12 See Krantz et al. (1971) for a proper treatment of closed extensive structures.

123



SERIEs (2012) 3:209–226 225

Now, Theorem 1 in Krantz et al. (1971, p. 74), guarantees that there exists a
real-valued function f over � such that for all [αm], [βm] ∈ �: (1) [αm]R[βm] ⇔
f ([αm]) ≥ f ([βm]), and (2) f ([αm] + [βm]) = f ([αm]) + f ([βm]). Additionally,
another function g satisfies conditions (a) and (b) if and only if there exists a strictly
positive real value t such that g = t · f .

By definition of R, we have obviously that (T, ET ) � (S, ES)⇔[dm(T, ET )]R[dm

(S, ES)] ⇔ f ([dm(T, ET )]) ≥ f ([dm(S, ES)] ⇔ ∑∞
m=1 wmdm(T, ET ) ≥∑∞

m=1 wmdm(S, ES) where wm is the value of f in the sequence with all values
equal to zero except component m with value 1.

We finish by describing the structure of weights wm . Clearly, we can deduce from
Monotonicity that wm > 0 for all m > 0. Similarly, by Proposition 2 we have that
w0 = 0. Now consider the life (S, ES) = ({x, y, z}, {(x, y), (x, z)}) and two lives
(U, EU ), (V, EV ) such that U ∩ {x, y, z} = V ∩ {x, y, z} = {y} = o(U, EU ) =
o(V, EV ). By Separability of the Future, (S ∪ U, ES ∪ EU ) � (S ∪ V, ES ∪ EV ) ⇔
(U, EU ) � (V, EV ). This is equivalent to 2w1 + ∑∞

m=1 wm+1dm(U, EU ) ≥ 2w1 +∑∞
m=1 wm+1dm(V, EV ) ⇔ ∑∞

m=1 wmdm(U, EU ) ≥ ∑∞
m=1 wmdm(V, EV ). Since

this is true for every pair of lives (U, EU ), (V, EV ), it must be that wm+1
wm

= � for all
m > 0. Thus, we have proved the result. ��
Proposition 4 Indifference of No-choice Origins, Separability of the Future, Inde-
pendence of Equivalent Transformations, Archimedean Difference and Monotonicity
are independent.

Proof We need some additional notation. Given a tree (T, ET ), we will denote by
z(T, ET ) the number of final nodes in (T, ET ). Consider the following rankings that
compare any two trees (T, ET̂ ), (S, EŜ):

(T, ET ) �A (S, ES) ⇔
∞∑

m=0

dm(T, ET ) ≥
∞∑

m=0

dm(S, ES).

(T, ET ) �B (S, ES) ⇔
∞∑

m=1

m · dm(T, ET ) ≥
∞∑

m=1

m · dm(S, ES).

(T, ET ) �C (S, ES) ⇔ z(T, ET ) ≥ z(S, ES).

(T, ET ) �D (S, ES) ⇔ There does not exist k ∈N such that

dl(S, EŜ)=dl(T, ET̂ ) for all l > k and dk(S, EŜ) > dk(T, ET̂ )

(T, ET ) ∼E (S, ES) for all (T, ET ), (S, ES).

Rankings �A,�B ,�C ,�D and �E satisfy all the axioms except Indifference of
No-choice Origins, Separability of the Future, Independence of Equivalent Transfor-
mations, Archimedean Difference and Monotonicity, respectively. ��
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