
MULTI-SCALE AND MULTI-PHYSICS MODELLING FOR COMPLEX MATERIALS

Theoretical modeling and analysis of thermal fracture
of semi-infinite functionally graded materials with edge
cracks

Vera Petrova • Tomasz Sadowski

Received: 13 August 2013 / Accepted: 26 March 2014 / Published online: 10 April 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract The present investigation is devoted to a

problem of the interaction of two edge cracks inclined

arbitrary to the boundary of a non-homogeneous half-

plane, which is a functionally graded layer on a

homogeneous substrate. The functionally graded

properties vary exponentially in thickness direction.

One cycle of cooling from sintering temperature is

considered. An approach based on integral equations

is used and a solution is obtained, then the stress

intensity factors are calculated and direction of the

initial crack propagation is evaluated by using the

maximum circumferential stress criterion. Influence of

geometrical and material (inhomogeneity) parameters

on the fracture characteristics is investigated. This

study can serve as a part of the modeling of the fracture

process in FGM coatings under cyclic heating–cooling

thermal loading.

Keywords Edge cracks � Singular integral

equations � Stress intensity factors � Thermal

fracture

1 Introduction

In different engineering applications, e.g., nuclear

energy, aerospace, energy conversions, thermal bar-

rier coating are used to protect metallic or composite

components from extremely high temperatures [1–3].

Last years for these purposes the so-called function-

ally graded materials (FGMs) are used. FGMs are

composite materials with continuously varying prop-

erties in one direction. The application of FGM

coatings can reduce bimaterial mismatch at interfaces

between the coating and the substrate and prevent

delamination and debonding along interfaces. How-

ever, cracks can initiate from initial defects or

microcracks appear during manufacturing or service.

Experimental results [4] showed that when function-

ally graded plates are subjected to thermal shock,

multiple cracks often occur on the ceramic surface

during cooling-heating cycles. This fracture process

begins from formation of a single crack from initial

defects and then a system of edge cracks is formed.

Therefore, the study of fracture of FGM coatings is

important for a better understanding of the fracture

processes in FGM structures and to improve their

fracture resistance.

Numerous papers are devoted to different problems

of modelling and analysis of fracture processes in

FGMs, references can be found in the review papers

[2, 5]. Different methods are widely used for modeling

of FGMs and structures under thermal and mechanical

loadings, among them FE methods [6–8], the
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boundary integral methods [9–14] and their modifica-

tions [15, 16]. In spite of many available solutions the

problems of interaction of arbitrary located cracks in

FGMs are still important.

An approximation method for determining stress

intensity factors for a periodic system of edge cracks in

an FGM coating in a semi-infinite medium was

introduced in [9]. The method is based on singular

integral equations. The validity of this approach is

discussed in [17] and good accuracy is demonstrated

for some gradient (inhomogeneity) parameters of

FGMs and crack lengths.

The present work is devoted to the theoretical

modeling of fracture of a FGM coating on a semi-

infinite homogeneous substrate under thermal and

mechanical loading. One cycle of cooling from

sintering temperature is considered. It is supposed

that two edge cracks arbitrary inclined to the boundary

are located in the FGM. The FGM properties are

presented by exponential functions. The method of

singular integral equations is used and approach

similar to the presented in [9] is applied. It is supposed

that the inhomogeneity of material is revealed in non-

homogeneous residual stresses on crack surfaces. An

example of accounting such residual forces can be

found in [9] where a semi-infinite functionally graded

material (FGM) with edge cracks is considered. In [18]

the influence of an additional loading, which varies

with a coordinate along the crack line (and can be

considered as a residual stress), on both stress intensity

factors Mode I and Mode II was considered in the

problem for two parallel cracks under shear loading

(pure Mode II) corresponding to the loading in a

Compact Shear specimen. In the present investigation

the interaction of two edge cracks is considered and

this study can serve as a part of the modeling of the

fracture process in FGM coatings and further forma-

tion of a system of cracks under cyclic thermal

loading.

2 Formulation of the problem

The present investigation is devoted to a problem of

the interaction of two edge cracks (with length 2an,

n = 1, 2) inclined arbitrary to the boundary of a non-

homogeneous half-plane (Fig. 1). Cartesian coordi-

nates (x,y) have x-axis along the boundary of the half-

plane, local coordinate systems (xn, yn) are attached to

each crack. The crack position is determined by the

crack midpoint coordinate z0
n ¼ x0

n þ iy0
n (i ¼

ffiffiffiffiffiffiffi

�1
p

is

the imaginary unity) and an inclination angle bn to the

boundary, i.e. to the x-axis (Fig. 1).

A functionally graded material (FGM) is located in

the region 0� y� � h with width h. The Poisson’s

ratio m is assumed to be a constant because the effect of

its variation on the crack-tip stress intensity factors is

negligible [19, 20]. The remaining thermo-mechanical

properties, i.e. the Young’s modulus E(y) and the

coefficient of thermal expansion at(y), depend on the

y-coordinate only and are modeled by the exponential

function [12–14, 19, 20].

For arbitrary located cracks in a half-plane the

system of singular integral equations is written as [21,

22].

Z

an

�an

g
0

nðtÞdt

t � x

þ
X

N

k¼1
k 6¼n

Z

ak

�ak

½g0kðtÞRnkðt; xÞ þ g
0
kðtÞSnkðt; xÞ�dt

¼ ppnðxÞ; jxj\an; n ¼ 1; 2 ð1Þ

and for two cracks we have two equations. N is the

number of cracks, i.e. N = 2 is in our case. The

unknown functions

g
0

nðxÞ ¼
2l

iðjþ 1Þ
o

ox
½un� þ i½vn�ð Þ ð2Þ

are the derivative of displacement jumps on the crack

faces; [un] and [vn] are shear and vertical displacement

jumps, respectively, on the n-th crack line,

l ¼ E=2ð1þ mÞis the shear modulus, E—the Young’s

modulus, m—the Poisson’s ratio, j ¼ 3� 4m—for the

plane strain state and j ¼ ð3� mÞ=ð1þ mÞ—for the

plane stress state.

Fig. 1 Two edge cracks in a non-homogeneous half-plane
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The functions pn are determined by the applied

load. The regular kernels Rnk(t,x) and Snk(t,x) contain

geometry of the problem and are cited in the

‘‘Appendix’’ in Eqs. (22)–(26).

Equations (1) and (2) are for common case of two

arbitrary cracks in a half plane. For edge cracks we

should put z0
n ¼ x0

n � ian sin bn.

The FGM is cooled from sintering temperature. The

FGMs inhomogeneity is accounted via continuously

varying residual stresses arising due to mismatch in

the coefficients of thermal expansion. The additional

stresses p* are the following [9]:

p� : rT
xxðyÞ ¼ ½atðyÞ � at0�DTEðyÞ; re

xxðyÞ
¼ ½EðyÞ=E0 � 1�r0

xx: ð3Þ

These functions will be added to the right side of

Eq. (1). at0 is the thermal expansion coefficient of a

homogeneous material (in the region y\� h) and E0

is the Young’s modulus of this material.

The thermal expansion coefficient of the FGM layer

is presented in the exponential form

at1 ¼ at0 expðeðyþ hÞÞ; �h� y� 0; ð4Þ

where e is the inhomogeneity parameter of this

coefficient. The Young’s modulus is

E ¼ E0 expðdðyþ hÞÞ; �h� y� 0 ð5Þ

with the inhomogeneity parameter d. This exponential

model describes the smooth variation of material

properties of the FGM in the y-axis direction. For

example, if at1 is decreased with increasing y-coordi-

nate (from y ¼ �h to y = 0), then the inhomogeneity

parameter e is negative, and this case can correspond

to a ceramic/metal FGM layer on a metal substrate

with gradual transition from a metal at y ¼ �h to a

ceramic at the upper part of the FGM layer

(aceramic
t1 \ametal

t1 ).

The relation between the global coordinates (x,y)

and the local coordinate systems (xk,yk) can be written

in the complex form as follows z ¼ z0
k þ zke�ibk ,

where zk ¼ xk þ iyk and i ¼
ffiffiffiffiffiffiffi

�1
p

. z0
k ¼ x0

k þ iy0
k is

the origin coordinate of the system (xk,yk) in the global

system. In the local coordinate system (xk,yk) con-

nected with each crack the coefficient at1 Eq. (4)

possesses the form

at1ðxk; ykÞ ¼ at0eeðhþy0
k
Þee1xkþe2yk ; e1

¼ e sinð�bkÞ; e2 ¼ e cos bk

and on the crack lines, where yk = 0, we will have

at ¼ at0 expðeðhþ y0
kÞÞ expð�exk sin bkÞ ð6Þ

Similar expressions can be written for the Young’s

modulus.

If we suppose that the Young’s moduli of materials

in the FGM have approximately same values, then in

this case—re
xxðyÞ ¼ 0 in Eq. (3). It means that the

material is elastically homogeneous. Examples of such

materials are the following: ceramic/ceramic TiC/SiC,

MoSi2/Al2O3 and MoSi2/SiC, and also ceramic/metal

FGMs, e.g., zirconia/nickel and zirconia/steel. For this

special case we will investigate the influence of the

inhomogeneity parameter e on the fracture character-

istics of the materials. For a fully non-homogeneous

material we will have two inhomogeneity parameters e
and d.

Equations (1) and (2) are rewritten in dimensionless

form with the non-dimension coordinates n ¼ t=a and

g ¼ x=a, where 2a is a length of the crack (here we

suppose that a1 ¼ a2 ¼ a). In the considered case of

the edge cracks functions g
0
nðgÞ are bounded in the

edge point, i.e. at the point g = -1. At the other tip of

the crack, for g = 1, the functions g
0
nðgÞ as well as the

stresses have the square root singularity. The stress

intensity factors (SIFs) at the internal tips of the edge

cracks are obtained as

KnI � iKnII ¼ � lim
g!þ1

ffiffiffi

a
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

g
0

nðgÞ ðn ¼ 1; 2Þ:

ð7Þ

3 Solution

3.1 Numerical solution

The system of Eq. (1) is solved by the method of

mechanical quadrature [21–23] which is based on the

Chebyshev polynomials. The solution for edge cracks

is presented in the following form

g
0

nðgÞ ¼ unðgÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

ð8Þ

Here unðgÞ are regular functions on the segment [-

1,1] and 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

is the weight function. Condition

that the functions g
0
nðgÞ are bounded at the edge point

g ¼ �1 (or have a singularity less than 1=
ffiffiffiffiffiffiffiffiffiffiffi

1þ g
p

) is

the following [22]

unð�1Þ ¼ 0: ð9Þ
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That is the exact singularity at the edge points is not

taking into account, but the result obtained with this

assumption has shown good accuracy [22].

Using Gauss’s quadrature formulae for the regular

and the singular integrals the integral equations are

reduced to the system of N 9 M (N = 2—number of

cracks, M—number of nodes) algebraic equations

1

M

X

M

m¼1

X

N

k¼1

ukðnmÞRnkðnm; grÞþ½ ukðnmÞSnkðnm; grÞ
i

¼ ppnðgrÞ;
ð10Þ

X

M

m¼1

ð�1ÞmunðnmÞ tan
2m� 1

4M
p

¼ 0 n ¼ 1; 2; r ¼ 1; 2; . . .;M � 1ð Þ ð11Þ

where

nm ¼ cos
2m� 1

2M
p m ¼ 1; 2; . . .;Mð Þ;

gr ¼ cos
p r

M
r ¼ 1; 2; . . .;M� 1ð Þ

ð12Þ

M is the total number of the discrete points of the

unknown functions unðgÞ on the interval (-1,1). After

solution of the algebraic system (10) and (11) the

functions unðgÞ are calculated by the interpolation

formula:

unðgÞ ¼
2

M

X

M

m¼1

unðnmÞ
X

M�1

r¼0

TrðnmÞTrðgÞ

� 1

M

X

M

m¼0

unðnmÞ: ð13Þ

Here Tr are the Chebyshev polynomials of the first

kind. Setting g ¼ 1 in Eq. (13), it is obtained

unðþ1Þ ¼ 1

M

X

M

m¼1

ð�1Þmþ1
unðnmÞ cot

2m� 1

4M
p ð14Þ

and for g ¼ �1 we have

unð�1Þ ¼ 1

M

X

M

m¼1

ð�1ÞMþm
unðnmÞ tan

2m� 1

4M
p

This equation and the condition (9) yield Eq. (11).

Applying the conjugate operation to the system (9)

additional N 9 M equations are obtained, i.e. 2N 9 M

equations should be solved, for two cracks we have

4 9 M equations.

Inserting Eq. (14) into the formula (8) and then into

Eq. (7) the SIFs are obtained

KIn � iKIIn ¼ �
ffiffiffiffiffi

an

p
unðþ1Þ ðn ¼ 1; 2Þ: ð15Þ

3.2 Validation

To validate this model and verify computational

results, we consider some numerical examples and

compare our results for SIFs with other available in the

literature. The validation of the approximation method

similar to the present method with respect to stress

intensity factors was discussed in [17]. It was shown

that the error depends on the gradient of the profile of

Young’s modulus of FGMs and crack lengths. For a

small crack length the error remains within acceptable

limits even for a large gradient (a large inhomogeneity

parameter) at the crack tip. However, for a large crack

length the gradient (inhomogeneity parameter) should

be small at the crack tip for the error to be small. In our

modeling the inhomogeneity parameters are used in

the range from -1 to 1.

For verification of the numerical results and

validation of the computer program a particular case

of two inclined edge cracks in a homogeneous half-

plane under uniform tension p (Fig. 1, p* = 0) is

considered. The cracks are assumed to have same

length 2ai = 2a and same slope angle b. Distance

between the cracks we denote by d̂ and the non-

dimensional distance by d ¼ d̂=a. The numerical

results with respect to the stress intensity factors are

obtained for different angles b in the range of 15� to

90� and for different non-dimensional distances d

between the cracks. The SIFs Mode I (KI) and Mode II

(KII) are presented in the non-dimensional form

kI;II ¼ KI;II=K0, they are normalized by K0 ¼ p
ffiffiffiffiffi

2a
p

.

The convergence of the numerical results is

checked by comparing the values for SIFs for different

number of collocation points M. In the case of the

angle b = 90� M = 40 is enough for good accuracy,

the results obtained for M = 40 and M = 80 are very

close, they differ only in forth sign in the decimal digit,

the relative error is about 10�2. At the same time for

15� similar good accuracy can be achieved for

M = 80. For the problem of a single oblique edge

crack under constant normal tractions applied to the

crack surfaces the results showed good accuracy for

M = 30 and good agreement with the results cited in

[21, 22] is demonstrated.
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Comparison with published in the literature solu-

tions for SIFs can be done for the homogeneous half-

plane. The values for SIF for oblique edge cracks can

be found in [10, 21–25]. Detailed analysis of these

problems was done for one crack in [10] and for

periodic edge cracks of unequal cracks in a semi-

infinite tensile sheet in [25] for b = 45�. Unfortu-

nately, the results for SIFs for two oblique edge

cracks by Nisitani 1977 cited in the handbook of

Murakami [24] are not clear for comparison with our

results (besides, the original paper by Nisitani 1977

is not available). The comparison have been done

with results for SIFs for a single inclined edge crack

cited in [10] and with SIFs for periodic edge cracks

cited in [25]. Table 1 shows that with increasing the

distance d between the cracks the SIF tends to the

value for a single edge crack cited in [10]. It should

be noted that for the small slope angles b = 15� and

30� and for the distance for d = 10 the values of

SIFs are close to the values of SIFs for a single edge

crack [10]. With increasing the angle b larger

distances d should be taken to achieve the same

Table 1 Non-dimensional SIFs (kI, kII) of the edge cracks in a semi-infinite homogeneous plane

d b

15� 30� 45� 60� 75� 90�

1 [25] 0.134; 0.157 0.263; 0.258 0.418; 0.323 0.582; 0.332 0.725; 0.275 0.817; 0.159

0.28; 0.18

10 [25] 0.229; 0.224 0.448; 0.328 0.667; 0.352

0.67; 0.35

0.855; 0.298 0.986; 0.179 1.037; 0.019

60 0.232; 0.227 0.462; 0.336 0.704; 0.364 0.918; 0.305 1.066; 0.173 1.118; 0.000

100 1.121; 0.000

[10] 0.232; 0.226 0.462; 0.336 0.705; 0.365 0.920; 0.306 1.069; 0.174 1.121; 0.000

Table 2 Thermal

properties of some FGMs

and the inhomogeneity

coefficient e

Thermal expansion coeff. (*10-6 K-1) Thermal conductivity (Wm-1K-1)

FGM/H (Al2O3/MoSi2)/MoSi2 (Ceramic/Ceramic)

Al2O3 a t1 5 a t1/a t2 = 1 k1 25

MoSi2 a t2 5 e = 0 k2 52

FGM/H (MoSi2/Al2O3)/Al2O3 e = 0

FGM/H (MoSi2/SiC)/SiC (Ceramic/Ceramic)

MoSi2 a t1 5 a t1/a t2 [ 1 k1 52

SiC a t2 4 e[ 0 k2 60

FGM/H (SiC/MoSi2)/MoSi2 e\ 0

FGM/H (TiC/SiC)/SiC (Ceramic/Ceramic)

TiC a t1 7 a t1/a t2 [ 1 k1 20

SiC a t2 4 e[ 0 k2 60

FGM/H (SiC/TiC)/TiC e\ 0

FGM/H (ZrO2/Ni)/Ni (Ceramic/Metal)

ZrO2 a t1 10 a t1/a t2 \ 1 k1 2

Ni a t2 18 e\ 0 k2 90

FGM/H (Ni/ZrO2)/ZrO2 e[ 0

FGM/H (ZrO2/Steel)/Steel (Ceramic/Metal)

ZrO2 a t1 10 a t1/a t2 \ 1 k1 2

Steel a t2 12 e\ 0 k2 20

FGM/H (Steel/ZrO2)/ZrO2 e[ 0
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result, e.g., for b = 90� good result is for the

distance d = 100. It means that for small inclination

angles (b = 15� and 30�) the interaction between a

half-plane boundary and cracks is stronger than the

interaction between the cracks.

Comparison of the values for SIFs for two inter-

acting edge cracks with the SIFs [25] for a crack in a

periodic system of edge cracks inclined on the angle

b = 45� shows that the values of SIFs are similar for

d = 10 and differ considerably for close located

cracks with d = 1, see Table 1.

For all angles b the SIF kI increases with increasing

the distance d between the cracks and tends to the

value for a single crack, while with decreasing d the

SIF kI decreases, i.e. the so-called shielding effect is

observed which is known for the parallel cracks under

tension normal to the crack lines. Behavior of kII is

more complicated than kI. For the angles b = 15�, 30�,

45� and 60� kII increases with increasing the distance

between the cracks, and for b = 75� and 90� kII

decreases.

4 Results

4.1 Material parameters

For analysis of the fracture development in an FGM/

homogeneous half plane with pre-existing two edge

cracks the parameters of the materials should be

chosen. Besides, a model for the functional gradation

has to be selected. In this study the exponential form

for FGMs is used, Eqs. (4)–(6). Then, on the basis of

this model and real material combinations of the

Fig. 2 Variation of the exponential function in Eq. (1) with

non-dimensional coordinate y/h: a for positive e, b for negative e

Fig. 3 SIFs kI and kII as function of the angle b (bn = b, n = 1,

2) for two edge cracks: a for crack 1, b for crack 2.

Homogeneous material
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structure the special inhomogeneity parameters should

be estimated.

Functionally graded materials are used in thermal

barrier coating to protect details from high tempera-

tures as well as from wear and corrosion. The

materials for protecting from high temperatures

should have a low thermal conductivity and at the

same time they are desired to have a thermal

expansion coefficient close to that of the material for

the protected substrate. Consider some actual material

combinations ceramic/ceramic and ceramic/metal

which can be used in the model. The parameters of

these materials, which are available in the literature,

are presented in the Table 2 [26]. The Young’s

modules of these materials are similar; it means that

these FGMs are elastically homogeneous, in this

case—re
xxðyÞ ¼ 0 in Eq. (3). For this special case we

can investigate the influence of the inhomogeneity

parameter e on the fracture characteristics of the

material, such as the stress intensity factors at crack

tips and the fracture angles which determine the

direction of further propagation of cracks.

From Eq. (4) at1=at0 ¼ expðeðyþ hÞÞ and the

inhomogeneity parameter e is written as

e ¼ lnðat1=at0Þ=ðyþ hÞ: ð16Þ

Equation (16) in combination with data in Table 2

shows that the values of e for a thick FGM layer are not

large and, accordingly, the actual variation of the

residual stresses with coordinate y is not very strong.

Figure 2 illustrates the variations of exponential

functions expðeðy=hþ 1ÞÞ with the non-dimensional

Fig. 4 Fracture angles as function of the angle b (bn = b,

n = 1, 2) for two edge cracks: a for crack 1, b for crack 2.

Homogeneous material

Fig. 5 SIFs kI and kII as function of the angle b (bn = b, n = 1,

2) for two edge cracks: a for crack 1, b for crack 2.

Homogeneous material
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coordinate y/h for different parameters e, positive at

Fig. 2a and negative at Fig. 2b. Here e denotes the

non-dimensional eh. The value of the exponential

function (and, hence, the other values, containing this

function, e.g., the thermal expansion coefficient and

residual stresses) increases by 35 % for e = 0.3 and

decreases by the same value for the negative e equals

to e = -1.

4.2 Stress intensity factors and fracture angles

To study the effects of inhomogeneity parameters of

FGMs on the SIFs at the tips of the edge cracks, as well

as on the other fracture characteristic, such as fracture

angles, some examples for the problem with respect to

loading, material parameters and geometry are

considered.

The direction of the initial crack propagation

(fracture angle) is evaluated by using the maximum

circumferential stress criterion (Cherepanov 1963;

Erdogan and Sih 1963; Panasyuk and Berezhnitskij

1964, see for the references [27] ) and is written as

/0 ¼ 2 arctg KI �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
I þ 8K2

II

q

� �

=4KII

� �

ð17Þ

For cracks in pure Mode II loading (KI = 0) the

fracture angle is calculated as j/0j � 70:5
�
. For

elastically homogeneous materials we can use this

criterion without any assumptions. In the case of an

elastically non-homogeneous material it is supposed

that the material is elastically homogeneous in a

vicinity of the crack tips.

We will suppose that the cracks have equal lengths

a1 = a2 = a and the same inclination angles

b1 = b2 = b to the boundary. These assumptions are

made for simplicity of the parametric analysis. Other

crack geometries will be studied in other future works.

4.2.1 Two edge cracks in a homogeneous half-plane

For this case we have only tensile loading p parallel to

the boundary of the half-plane, which corresponds to

the function

pn ¼ rn � isn ¼ pð1� expð�2ianÞÞ=2 n ¼ 1; 2ð Þ
ð18Þ

in the integral Eqs. (1) and (9), here an ¼ �bn. The

non-dimensional SIFs (kI;II ¼ KI;II=r
ffiffiffiffiffi

2a
p

) Mode I and

Mode II and the fracture angles Eq. (18) are presented

in Figs. 3, 4, 5, 6. Variation of these values with the

inclination angle 60� B b B 120� of the cracks to the

half-plane boundary is shown for different distances

between the cracks: Figs. 3 and 4 for d = 1, 1.5, 2.5,

and Figs. 5 and 6 for d = 1, 5, 10.

Small variation of the magnitude of kI with

changing b is observed in Fig. 3 and kI \ 1 for all b
and d, hence kI is smaller than kI for a solitary crack

and the shielding effect is observed. The SIF kII

decreases with increasing b from 60� to 120� and

changes the sign at b & 105� for the crack 1 and at

b & 75� for the crack 2. It means also that at these

angles we have pure mode conditions. Figure 4 shows

that the fracture angles increases with increasing b and

change orientation (sign) at b & 105� for the crack 1

Fig. 6 Fracture angles as function of the angle b (bn = b,

n = 1, 2) for two edge cracks: a for crack 1, b for crack 2.

Homogeneous material

2610 Meccanica (2014) 49:2603–2615

123



(Fig. 4a) and at b & 75� for the crack 2 (Fig. 4b) and

it corresponds to the change of the sign of kII, which

characterizes the fracture angles in mixed-mode

conditions.

For close located cracks (d = 1, 1.5, 2) the

influence of d on kI and kII is small (Fig. 3) but for

d = 1, 5, 10 this influence is stronger (Fig. 5). For

d = 10 and b & 90� kI [ 1, i.e. greater than kI for a

single crack in an infinite plane and close to the value

kI for a single edge crack.

4.2.2 Elastically homogeneous material

It was mentioned above that E = E0 and re
xxðyÞ ¼ 0

for this case and, hence, Eq. (3) is written as

p� ¼rT
xxðyÞ¼ ½atðyÞ�at0�DTEðyÞ

pþp� ¼Q½p=Qþ½expðeðhþy0
kÞÞexpð�exk sinbkÞ�1��

Q¼at0DTE0 ð19Þ

If we suppose that p = Q, i.e. mechanical and thermal

loadings are equal, then

pþ p� ¼ Q expðeðhþ y0
kÞÞ expð�exk sin bkÞ ð20Þ

Otherwise the new parameter p/Q should be consid-

ered. In the right side of Eqs. (1) and (10) the function

(18) with p determined by (20) should be used.

For elastically inhomogeneous materials under

tension (without thermal loading, i.e. for rT
xxðyÞ ¼ 0)

the load (3) will be determined by the same expres-

sions (19) and (20), where instead of the thermal load

Q will be the mechanical load p.

Fig. 7 SIFs kI and kII as function of the angle b (bn = b, n = 1,

2) for two edge cracks: a for crack 1, b for crack 2; for ea = -1.

Thermo-mechanical loading, E = E0

Fig. 8 Fracture angles as function of the angle b (bn = b,

n = 1, 2) for two edge cracks: a for crack 1, b for crack 2; for

ea = -1. Thermo-mechanical loading, E = E0
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In the numerical results the inhomogeneity param-

eter e is used in the non-dimensional form ea (here a is

half size of a crack).

Figures 7, 8, 9, 10 show the results of calculation of

SIFs and the fracture angles (the maximum circum-

ferential stress criterion was used) for two edge cracks.

For this case of thermally non-homogeneous materials

we have only one inhomogeneity parameter ea of the

thermal expansion coefficient. The SIFs are presented

in the non-dimensional form kI;II ¼ KI;II=Q
ffiffiffiffiffi

2a
p

. The

calculation were performed for the non-dimensional

distances d = 1, 1.5, 2.5 and the non-dimensional

h/a = 4. Two values of the inhomogeneity parameter

are used ea = -1 and 0.5. The result is obtained on the

basis of the solution of the system (10)–(11) for a

special case where at the right side of Eq. (1) and

accordingly in Eq. (9) is the function (18) with (20).

Figures 7 and 8 show kI, kII and the fracture angles

/ as functions of b for ea = -1, which corresponds to

smaller value of the thermal expansion coefficient in

the upper part of the FGM layer. Comparing this case

and the previous homogeneous case we see similar

trends in the results, but with some non-linearity and

with different magnitudes. The values of kI, kII and /
are small for this case.

Results for ea = 0.5 for the case, where the

thermal expansion coefficient is larger in the upper

part of the FGM layer, are presented in Fig. 9. The

values of kI are much larger than in the previous

case for ea = -1 and for the homogeneous case.

The variation of kI with b is small, the changes of

kII with b are larger and for both kI and kII are

almost linear. The variation of / (Fig. 9) is similar to

the previous cases.

Fig. 9 SIFs kI and kII as function of the angle b (bn = b, n = 1,

2) for two edge cracks: a for crack 1, b for crack 2; for ea = 0.5.

Thermo-mechanical loading, E = E0

Fig. 10 Fracture angles as function of the angle b (bn = b,

n = 1, 2) for two edge cracks: a for crack 1, b for crack 2; for

ea = 0.5. Thermo-mechanical loading, E = E0
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4.2.3 Inhomogeneous material, thermal

and mechanical loadings

For this case

pþ p� ¼ pþ re
xx þ rT

xx ¼ p expðdðhþ y0
kÞÞ

expð�dxk sin bkÞ
þ Q½expðeðhþ y0

kÞÞ expð�exk sin bkÞ � 1� �
¼ Q½p=Q expðdðhþ y0

kÞÞ expð�dxk sin bkÞ
þ expðeðhþ y0

kÞÞ expð�exk sin bkÞ � 1�:
ð21Þ

For simplicity of the parametric analysis we assume

that the inhomogeneity parameters e and d (of the

thermal expansion coefficient and the Young’s mod-

ulus, correspondingly) are equal and, besides,

p = Q as it was in the previous case for thermally

inhomogeneous materials.

Figures 11 and 12 show the results of calcula-

tion of the non-dimensional SIFs (kI;II ¼ KI;II=

Q
ffiffiffiffiffi

2a
p

) for this case of loading. Other parameters are

the same as in the previous cases, i.e. d = 1, 1.5, 2.5

and h/a = 4. The results for ea = -0.3, where the

thermal expansion coefficient is larger in the upper

FGM, are presented in Fig. 11 and they have similar

trends as in the thermally inhomogeneous case (Fig. 7,

ea = -1) with very small values of kI and kII.

Figure 12 shows the values of kI and kII for ea = 0.3

and these results are similar to the previous case shown

in Fig. 9 (for thermally inhomogeneous materials for

ea = 0.5) with slightly different magnitudes of kI and

kII.

Fig. 11 SIFs kI and kII as function of the angle b (bn = b,

n = 1, 2) for two edge cracks: a for crack 1, b for crack 2; for

ea = -0.3. Thermo-mechanical loading

Fig. 12 SIFs kI and kII as function of the angle b (bn = b,

n = 1, 2) for two edge cracks: a for crack 1, b for crack 2; for

ea = 0.3. Thermo-mechanical loading
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5 Conclusions

Theoretical modeling of thermal fracture of a semi-

infinite FGM is presented for the case of one cycle of

thermo-mechanical loading and can be used as a part

of a study of the fracture process in FGM coatings

under cyclic heating–cooling thermal loading.

Influence of geometrical and material (inhomo-

geneity) parameters on the fracture characteristics is

investigated. Strong influence of the inhomogeneity

parameter ea of the material on SIFs is observed. If

ea is negative, which corresponds to smaller values

of the thermal expansion coefficient in the upper

part of the FGM layer, the SIFs kI and kII at the

edge crack tips are small and have much smaller

values in comparison to the homogeneous material.

For positive ea, the case where magnitudes of the

thermal expansion coefficient have larger values in

the upper part of the FGM layer, the SIF kI is much

larger than the values for the negative ea and for a

homogeneous material. The magnitude of SIF kII is

also larger, but not so much as for kI. The fracture

angles have similar tendencies for all considered

cases and depend mainly on the inclination angle of

the cracks to the boundary. The maximum circum-

ferential stress criterion was applied and probably

other criteria should be used in order to take into

account the inhomogeneity material properties.

For example, the strain energy density criterion

[28] includes material parameters and can get

more results with respect to the fracture angle

prediction.
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Appendix

The regular kernels Rnk(t,x) and Snk(t,x) contain

geometry of the problem and are written as

Rnkðt; xÞ ¼ ð1� dnkÞKnkðt; xÞ þ
eiak

2

1

Xn � �Tk

þ e�2ian

�Xn � Tk

�

þ

þ ð�Tk � TkÞ
1þ e�2ian

ð �Xn � TkÞ2
� 2e�2ianðXn � TkÞ

ð �Xn � TkÞ3

" #)

;

ð22Þ

Snkðt; xÞ ¼ ð1� dnkÞLnkðt; xÞ

þ e�iak

2

Tk � �Tk

ðXn � �TkÞ2
þ 1

�Xn � Tk

� e�2ian
Xn � Tk

ð �Xn � TkÞ2

" #

;

ð23Þ

Tk¼ teiakþ z0
k ; Xn¼ xeianþ z0

n; n;k¼1;2: ð24Þ

and

dnk ¼
0 for n 6¼ k;

1 for n ¼ k:

(

The kernels Knk(t,x) and Lnk(t,x) are

Knkðt; xÞ ¼
eiak

2

1

Tk � Xn

þ e�2ian

Tk � Xn

� �

; ð25Þ

Lnkðt; xÞ ¼
e�iak

2

1

Tk � Xn

þ Tk � Xn

ðTk � XnÞ2
e�2ian

 !

:

ð26Þ

They are the same as for the system of cracks in an

infinite plane. The additional terms in Eqs. (22) and

(23) are taking into account the influence of the edge

of half plane. an is the inclination angle of n-th crack to

the x-axis coincide with the edge of the half plane and

an ¼ �bn, Fig. 1; z0
n is the coordinate of the center of

crack in the global coordinate system (x,y).
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