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Abstract Multi-trait indices (MTI) weigh traits

based on their importance to facilitate selection in

plant and animal improvement. In animal breeding,

economic values are used to develop MTIs. For

vegetables, economic data valuing traits are rarely

available. We posit that varieties with traits valued by

growers and processors achieve higher market share

and longer life span. Our objective was to develop

MTIs predicting success of tomato varieties. Histor-

ical data for the California processing tomato industry

from 1992 to 2013 provided measurements for yield,

soluble solids (Brix), color, pH, market share, and life

span for 258 varieties. We used random models to

estimate best linear unbiased predictors (BLUPs) for

phenotypic traits of each variety, and evaluated trends

over time. Yield has been increasing from 2006, while

Brix stayed constant. Because yield and Brix are

negatively correlated, this trend suggests that Brix

influenced selection. The average number of resis-

tances reported in varieties ranking in the top ten

increased from 2 to 4.5 between 1992 and 2013. MTIs

predicting success from phenotypic traits were

developed with general linear models and tested using

leave-one-out cross validation. MTIs weighing yield,

Brix, pH and color were significantly correlated to

success metrics and selected a significantly higher

proportion of successful varieties relative to random

sampling. The index multiplying yield and brix,

suggested in the literature, was not significantly

correlated with variety success. The MTIs suggested

that fruit quality had less of an influence on variety

success than yield. The MTIs developed could help

improve gain under selection for quality traits in

addition to yield.

Keywords Solanum lycopersicum � Multi-trait

index � Breeding � Market share � Market life-span �
General linear model

Introduction

The recent interest in selectionmodels that incorporate

marker data and kinship to estimate breeding values

(Meuwissen et al. 2001) is reviving interest in

approaches that allow data for phenotypic traits to be

combined and balanced. Multi-trait indices (MTIs) are

an approach to select for more than one characteristic.

MTIs are expected to be particularly valuable for crops

where quality traits are of importance for market

success. MTIs based on economic values have been

widely used and described in the animal breeding
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literature (Cottle and Coffey 2013; De Haas et al.

2013; Laske et al. 2012; Visscher et al. 1994). For

plants this approach is advocated (Eathington et al.

2007; Merk et al. 2012), but such MTIs are generally

not described in the literature. One exception are the

models based on net merit that were explored for

wheat in order to integrate grain yield, plant charac-

teristics and milling quality with economic weights

(Heffner et al. 2011). Trait valuation in the market is

lacking for many characteristics considered important

for vegetable crops. In the absence of economic data

for trait value, an alternative approach may be to

developMTIs based on the historical characteristics of

varieties that are proven to be successful in the market.

The performance of processing tomato varieties

needs to conform to growers’ and processors’ expec-

tations, the United States Department of Agriculture

grade standards (U.S. Department of Agriculture

1990), and consumer preferences. Growers prefer high

yield, uniform ripening, long field storage of fruit,

resistance to a variety of root and foliar pathogens, and

a plant habit suitable for mechanical harvest (Stevens

and Rick 1986). Processors require a pH no higher than

4.4 for food safety (Anthon et al. 2011) and prefer high

soluble solids content (Brix) to maximize the output of

processed product per input of raw product (Nichols

2006). They require paste viscosity and color that

meets industry standards (U.S. Department of Agri-

culture 1990), and the absence of physical damage

(Processing Tomato Advisory Board 2003). Con-

sumers purchase based on product appearance, taste

and perception of health benefits (Gould 1992). The

development of tomato varieties meeting all these

expectations is challenging. As many as 50 traits were

described as important for processing tomato breeding

(Monti 1979), though which of these many character-

istics should receive priority in crop improvement is

less clear. Many traits are highly affected by the

environment, and thus have a low heritability. Exam-

ples of such characteristics include the ease of peel

removal by steam or lye (‘‘peelability’’) (Garcia and

Barrett 2006), yield, fruit color, pH, and Brix (Merk

et al. 2012). Some traits are negatively correlated such

as Brix and yield, which complicates breeding for both

traits simultaneously (Grandillo et al. 1999;Merk et al.

2012; Stevens and Rudich 1978). To facilitate the

selection of genotypes combining desirable character-

istics, the use ofMTIwas developed early in the history

of plant breeding (Smith 1936). Although the use of

indices that combine selection criteria weighted by

importance has been proposed to classify processing

tomato varieties for selection (Merk et al. 2012; Monti

1979), few equations have been described. The product

of yield andBrix values (YxB)was introduced as away

to estimate the final quantity of processed tomato for

paste (Eshed et al. 1996; Tanksley et al. 1996), and as a

way to balance two traits that are strongly and

negatively correlated (Grandillo et al. 1999).

In this study, we analyzed historical data in order to

evaluate the best combination of phenotypic traits

associated with market share and life span of a variety.

To accomplish this, we assembled 22 years of quality

data from the Processing Tomato Advisory Board

(PTAB), and phenotypic measurements collected

during the same period by the University of California

Cooperative Extension (UCCE) statewide variety

evaluation trials. Using a random effect model to

combine, and analyze this large historical dataset, we

explored patterns of variety use and associated them

with specific traits. Our approach makes the assump-

tion that the varieties with the highest use and those

maintained in the market for the longest time are the

ones that fit growers’ and processors’ expectations.

We think that this assumption is consistent with the

objective of seed companies which seek to maximize

market-share and maintain varieties in the market for

as long as possible. Our objectives were: (1) to

evaluate the genetic contributions to yield and fruit

quality for processing tomato varieties grown in

California, (2) to define as a model the traits or

combination of traits that correlate with success of

tomato varieties in California, and (3) to test the

models developed as MTI.

Materials and methods

Data sources and datasets

Two sources of data were used in this analysis. The

first was the Processing Tomato Advisory Board

(PTAB) statewide reports from 1992 to 2013,

retrieved from the PTAB website (Processing Tomato

Advisory Board 2013). This dataset summarized

results of tests on each load of tomatoes, for each

California County, prior to delivery to processing

plants in California. The dataset represented 9,254,478

loads of 927 varieties, corresponding to the majority of
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tomato shipments processed in California during the

period considered. The data were collected in 24

different counties. Counties were separated into seven

groups based on a North–South gradient. There were

two to five counties per group. The groups were, from

North to South: (1) Glenn, and Butte, (2) Colusa,

Sutter, and Yuba, (3) Yolo, Solano, and Sacramento,

(4) Contra Costa, Alameda, and San Joaquin, (5) Santa

Clara, Stanislaus, Merced, and Madera, (6) Monterey,

San Benito, Fresno, Kings, and Tulare, and (7) Kern,

Santa Barbara, Ventura, and Imperial. These groups

were considered levels of the location factor for the

PTAB dataset. The measurements were collected on

two samples of 50 lb (22.7 kg) taken from various

parts of a load of approximately 25 tons (22.3 metric

tons). Measurements used in this analysis were the

number of loads delivered, the soluble sugar content

(Brix), fruit color, and pH. Brix was measured with a

handheld or digital bench type refractometer with

temperature compensation. From 1992 to 1995, color

was measured with the Agtron E-5M instrument on

homogenized samples. After 1995, a light emitting

device (LED) was used (Barrett and Anthon 2008). All

colors are expressed as PTAB color scores (Bane

2005). From 2001, pH was measured on raw fruits

(Processing Tomato Advisory Board 2003). Measure-

ments for pH were taken for 572 varieties, in 23

counties, representing 5,699,991 loads. The PTAB

data were summarized weekly per county, weekly

across California, yearly per county, and yearly across

California. For our objectives, the most balanced and

informative data were the data summarized yearly per

county. This dataset also included, for each year, the

rank of the varieties based on the tonnage accepted by

processing plants in California.

The second dataset was the UCCE statewide

processing tomato variety evaluation trial reports

from 1996 to 2013. Electronic files covering years

1997–2013 were made available by the California

Tomato Research Institute (CTRI). Missing data were

filled in using hard-copies of CTRI reports. We

transcribed data for each variety and trait by location

for observational and replicated trials. Over the

18 years of trials analyzed here, a total of 394 varieties

were tested. The data were collected in 13 different

locations. These individual field trials were considered

levels of the location factor in our random models.

Varieties were either tested in each location as a

Randomized Complete Block Design (RCBD) with

four blocks (replicated trials), or were not replicated

(observational trials). The trials were planted in

farmers’ fields and were managed with the same

practices as used for production. From 1996 to 2001,

all trials were directly seeded. From 2002 to 2008,

trials were directly seeded or transplanted, depending

on location. After 2008 all trials were transplanted.

Furrow irrigation was used in all fields from 1996 to

2005. From 2006 to 2008, fields were irrigated by

furrow irrigation or by drip irrigation. From 2009 all

trials were irrigated with a drip system. Brix, color and

pH were evaluated with the same methods as used for

the PTAB data. Yield was measured in tons per acre.

The data available for each year were Least Square

Means (LSMeans) per location for each variety. From

1996 to 1999 and from 2001 to 2003, some varieties

had two LSMeans reported for a single location,

corresponding to data evaluated from different harvest

dates. In the evaluations from 1992 to 1995 only

LSMeans for each variety across trials were reported.

Therefore, it was not possible to calculate best linear

unbiased predictors (BLUPs) adjusted for genotype by

environment interactions (described below). These

data were not used in our analysis.

Resistances claimed in each variety were extracted

from either the UCCE reports or seed catalogues. The

average number of disease resistances present was

calculated over time across the entire population, and

in the varieties ranking in the top 10.

Data were quality checked, with specific attention

paid to variety names. Company consolidations,

transition of variety status from experimental to

commercial, and changes in trial management resulted

in numerous varieties being reported with synony-

mous names. For example Halley, BOS3155, BOS

3155, Halley OS 3155 are variant names for a single

variety. Homogenization of names across datasets was

performed to insure a unique name for each genetic

variety. Entries with names suggesting that the loads

contained a mix of experimental varieties were

discarded (e.g.: ‘‘exp’’, ‘‘R&D’’, ‘‘trial’’).

Best linear unbiased predictors for the phenotypic

data, variance partitioning and heritability

Best linear unbiased predictors (BLUPs) per variety

across years and per year across varieties were

calculated for each trait for both datasets. The

following random model was used:
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Yijk ¼ lþ gi þ lj þ yrk þ g:lij þ g:yrikþ
l:yrjk þ g:l:yrijk þ eijk

with Yij the value of the phenotypic trait for the ith

genotype (gi) evaluated in the jth location (lj), during

the kth year (yrk). Interactions were denoted by a

column, l and eijk represented the grand mean and the

residual, respectively. Analysis was conducted using

the R software version 3.01 (R Core Team 2013). The

models were fitted with the function lmer of the

package lme4 (Bates et al. 2012). BLUPs were

extracted from the models using the function ranef

within lme4. The variance estimates for each factor

were retrieved from the summary table generated by

the lmer function. The percentage of total variance

explained by genotype, year, location, and their

interactions were calculated for each trait in each

dataset. The broad sense heritability was calculated

using the formula H2 ¼ r2g
r2gþr2

gl
þr2gyþr2

gly
þr2e

, with r2g, the

genetic variance, r2gl, r
2
gy and r2gly the variance of the

interactions between genotype and location, year, and

year by location, respectively. r2e represents the

variance of the error.

The BLUPs calculated for each year across vari-

eties were used to evaluate the trend for each trait

between 1992 and 2013 for the PTAB dataset and from

1996 to 2013 for the UCCE trials. The same calcu-

lation was done considering only varieties ranking in

the top 10 in a given year. Local Polynomial regres-

sion (Loess) and moving simple average over five

years were used to smooth the plots of the phenotypic

traits versus time in order to visualize trends in the

data. The same conclusions were derived from the two

methods, and Loess results are presented here. The

function loess implemented in the R software version

3.01 (R Core Team 2013) was used to estimate the

fitted curves and their standard errors. They were

visualized using the ggplot2 package (Wickham 2009)

in the R software.

Success metrics

Two different variables were used to evaluate success

in the market as an estimate of performance: life span

and market share. Market share was the percentage of

loads produced by a variety during the time it was

present in the PTAB data. Life span was the number of

years a variety was present in the PTAB data. These

values were calculated between 1992 and 2013 across

the entire PTAB dataset. Success metrics were trans-

formed with a logarithmic function (loge) in order to

evaluate their correlations with other traits and to use

them as dependent variable in general linear models.

Combining UCCE and PTAB datasets

We created datasets by combining data for only those

varieties with BLUPs for yield from UCCE trials,

success metrics from PTAB data, and BLUPs for Brix,

color, and pH either from UCCE trials or PTAB data.

Two datasets were created. The first one contained 198

varieties with BLUPs for yield, Brix, color and pH

from UCCE trials. These data will be referred to as the

UCCE set. The second dataset contained 258 varieties

with BLUPs for Brix, color, and pH calculated from

PTAB reports and yield data from UCCE trials. This

dataset will be referred to as the Combined set. There

were 196 varieties in common to both datasets.

Correlations between phenotypic traits

Correlations between traits were evaluated on two

different sets of data. The BLUPs of the 196 varieties

in common between both datasets were used to

evaluate correlations in the datasets used to develop

the MTIs. In order to test for correlations between

other traits considered important for processing, we

also used data gathered in 2013, 2014, and 2015 by

AgSeeds Unlimited in 38 locations in California

(AgSeeds 2016). This dataset included measurements

for fruit weight, Brix of raw juice, pH of raw juice, and

several viscosity measurement: Juice Bostwick, pre-

dicted paste Bostwick, Oswald capillary viscometer

measurements, and centistokes measurements. These

correlations were based on data available for 92

varieties. The data were summarized by AgSeeds in

three regions (North, Central, and South). BLUPs

were calculated with a model similar to the one

described for UCCE and PTAB datasets, with the

exception that the three-way interaction between

variety, location, and year was not included. Pearson

correlations were calculated using the cor.test function

within the R core package of R software version 3.01

(R Core Team 2013).
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Development and testing of MTI

The UCCE and the Combined sets, containing BLUPs

for Yield, Brix, color, pH, market share and life span

values were used to develop models predicting success

metrics based on phenotypic data. The equations

obtained were then used as MTIs.

The optimization of models was performed with the

R function glmulti from the glmulti package (Calcagno

and De Mazancourt 2010). Models were fit using each

dataset (UCCE or Combined) independently. Models

were fit by considering only themain effects, or by also

including the twoway interactions (option level = 1 or

2, respectively). The initial equation used as an input

for the glmulti function was of the form Y ¼
Pn

i¼1 Xi,

with Y the logarithmic transformation of the success

metric, Xi the ith independent variable (yield, Brix,

color, and pH, and their two way interactions), and n

the number of independent variables. For the models

with only main effects, n = 4. For models with main

effects and two-way interactions, n = 10.We used the

option method ‘‘h’’ to run exhaustive screening in

which all possible models were tested and fit with a

general linear model (option fitfunction = ‘‘glm’’).

The models with either the best Bayesian Information

Criterion (BIC) or the best Akaike Information

Criterion (AIC) were then selected (option crit = ‘‘-

bic’’, or ‘‘aic’’). The models obtained were of the form

Y ¼
Pm

i¼1 aiXi, with Y the logarithmic transformation

of the success metric, Xi the ith factor, ai the

coefficient weighting the ith factor, and m the number

of factors in the final model (m B n).

The MTIs were tested using two different

approaches: a leave-one-out cross validation method,

and by testing model estimates developed in one

dataset with observed values from the other dataset.

Models were developed and tested simultaneously

during the leave-one-out cross validation process.

One variety was taken out of the dataset, and a model

was developed using the function glmulti based on

the data from the other varieties (training set). The

coefficient for each factor was stored. The value of

the MTI was calculated for the variety excluded from

the training population (tested individual) using its

phenotypic data and the coefficients developed with

the training set. The process was repeated until each

variety was excluded from the training set.

Predictions for tested individuals from 198 runs for

the UCCE set and 258 runs for the Combined set

constituted the testing sets. The prediction abilities of

the MTIs were evaluated on the testing set, using the

MTI value calculated for each variety when it was

excluded from the training set.

The average and standard deviation for each

coefficient were calculated from the cross-validation

runs, for each dataset separately. The coefficient of

some independent variables had standard deviations

higher than their averages. This situation happened

when the independent variable had a null coefficient

for the models developed in most of the runs of the

cross validation. These coefficients were considered

not reliable and were set to zero for the calculation of

the MTIs. MTIs developed based on the UCCE set

were then tested on the Combined set, and vice versa.

Predictions based on single traits, on products of

pairs of traits, and on MTIs were compared. These

models were evaluated based on two criteria: the

correlation between phenotypic values and success

metrics (prediction accuracy) and the ability to select

varieties with proven success in the historical data

(percentage of co-selection). The Pearson correlation

coefficient between phenotypic values and success

metric was used to evaluate the prediction accuracy of

the models. We also evaluated the ability of the MTIs

to select varieties known to be successful in the

market. The upper 20% of varieties based on pheno-

typic values, and the upper 20% of varieties based on

success metrics were selected. The percentage of

varieties selected in both pools was calculated and

called percentage of co-selection:

No: of varieties selected based on phenotype and based on success

No. of varieties in 20% of the population
� 100:

In addition, percentages of co-selection were calcu-

lated based on a random sample of varieties. Twenty

percent of the population was randomly sampled, and

the upper 20% of the total population based on success

metrics were selected. The percentage of co-selection

between the random sample and the selection based on

the success metric was calculated. The random

sampling was repeated 10,000 times with replace-

ment, and the mean and standard deviation for the

percentage of co-selection of a random sample were

calculated across the repetitions.
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Results

Phenotypes of varieties

BLUPs for the traits recorded in PTAB or UCCE

datasets are summarized for each variety in the

supplementary file (Supplementary Table S1). Pro-

cessing tomatoes grown in California between 1992

and 2013 had an average Brix of 5.21 (standard

deviation (std) = 0.43), a color score of 24.7

(std = 2.0) and a pH of 4.41 (std = 0.08). The

varieties tested in the UCCE trials between 1996 and

2013 had an average yield of 42.1 tons per acre

(std = 11.9 tons per acre), a Brix of 5.15 (std = 0.52),

a color score of 24.0 (std = 2.3), and a pH of 4.40

(std = 0.10). Yield significantly increased from 2006

to 2013, going from 40 tons per acre to 49 tons per acre

(Fig. 1a). A similar trend was observed for the

varieties in the top 10. The most successful varieties

tended to have a higher yield between 1999 and 2007

compared to varieties not in the top 10, but this

difference was not significant, with an exception in

2007 (P value = 0.02). Over the years Brix stayed

relatively constant, with BLUPs ranging from 5.12 to

5.33, when considering the entire population (Fig. 1b).

Varieties ranking in the top 10 ranged from 5.07 to

Fig. 1 Trends of the value of yield (a), Brix (b), color (c) and
pH (d) over the years. Yield data are from the University of

California Cooperative extension (UCCE) trials. Brix, color and

pH data are from the Processing Tomato Advisory Board

(PTAB) dataset. Grey dots are best linear unbiased predictors

(BLUPs) calculated across all varieties evaluated a given year.

Black dots are BLUPs calculated for the 10 varieties with the

highest number of load produced a given year. Error bars

represent the standard errors. The curves are the local

polynomial regression (loess curve) and their standard devia-

tion. The BLUPs for each year were calculated with the random

model Yijk ¼ lþ gi þ lj þ yrk þ g:lij þ g:yrik þ l:yrjk þ g:l:
yrijk þ eijk , with Yijk the value of the phenotypic traits, gi the

ith genotype (variety), lj the jth location, yrk the kth year.

Components separated by columns represent interactions. l and

eijk denotes the grand mean and the residual respectively
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5.29, and tended to have lower Brix than the rest of the

population (Fig. 1b), but this difference was not

significant. BLUPs of color scores ranged from 24.1

to 25.8, with lower values before 1995 (Fig. 1c). A

similar trend was observed for varieties from the top

10 (Fig. 1c). BLUPs for pH calculated for each year

showed an increase from 4.38 (2001) to 4.47 (2009),

followed by a decrease, with values reaching 4.40 in

2012 (Fig. 1d). Varieties ranking in the top 10 showed

a BLUP for pH that was consistently lower by

0.02–0.03 units compared to the entire population.

Varieties ranking in the top 10 had a significantly

lower pH than the other varieties in 2007 and from

2010 to 2012 (P-value from 0.01 to 0.05) (Fig. 1d).

Data for disease resistances was found for 216

varieties out of the 927 varieties in the PTAB dataset.

The resistances reported the most frequently by seed

companies were for root knock nematode (Mi),

bacterial speck (Pto), Verticilium race I, Fusarium

wilt races I and II, tomato spotted wilt virus (TSWV),

and bacterial canker (partial resistance). More rarely,

resistances to bacterial spot (partial resistance), grey

leaf spot (partial resistance), tobacco mosaic virus

(Tm2a), Fusarium wilt race III, and dodder (partial

resistance) were reported. Varieties included from two

to six resistances. On average, over the entire popu-

lation, a variety had 3.8 resistances. The average

number of resistances claimed per variety in 1992 was

2.9 ± 0.9, and increased to 4.0 ± 0.8 in 2013 (Fig. 2).

The varieties in the top 10 averaged 2.0 ± 0.0

resistance genes in 1992 compared to 4.5 ± 0.5 in

2013 (Fig. 2). The number of claimed resistances in a

variety was significantly different between 1992 and

2013 when considering all varieties (P-value =

0.000052), and when considering only varieties from

the top 10 (P-value = 0.00025). The average number

of resistances in a variety across the entire population,

in a given year, reached four in 2012 (Fig. 2).

However, varieties in the top 10 averaged four claimed

resistances by 2001.

Variance partitioning and heritability

The proportion of variance explained by varieties was

interpreted as genetic variance. Brix had the highest

genetic variance, with 25.5% (H2 = 0.36) and 20.3%

(H2 = 0.28) of the variation in the UCCE and PTAB

data, respectively (Fig. 3; Table 1). The percentage of

genetic variance explained for yield was 6.8%, and its

broad sense heritability was 0.17 (Fig. 3; Table 1).

The percentage of variance explained by genetics for a

given trait was always higher in the PTAB dataset

compared to the UCCE data. Variance partitioning and

heritability for all traits are summarized in Fig. 3 and

in Table 1, respectively.

Correlation between phenotypic traits

Pearson coefficients for correlations between traits

were calculated with phenotypic BLUPs evaluated in

UCCE trials and in the PTAB dataset, using 196

varieties with no missing data. A significant negative

correlation was observed between yield and Brix from

UCCE trials (P-value = 2.1 9 10-4, q = -0.26)

(Table 2). This correlation was marginally non-sig-

nificant when Brix was estimated from the PTAB

dataset (P-value = 0.07, q = -0.13). Yield was also

negatively correlated with pH, but this association was

only detected with phenotypic data from UCCE trials

(P-value = 1.1 9 10-2, q = -0.18) (Table 2). Color

was also negatively correlated with pH (P-

value = 3.9 9 10-2, q = -0.15 with UCCE data,

and P-value = 2.1 9 10-3, q = -0.22 with PTAB

data) (Table 2). High correlations were observed

between the values for the same traits when compared

between UCCE and PTAB datasets (P-value

Fig. 2 Trend over time of the average number of reported

disease resistance. Data for disease resistance was recovered for

216 varieties. Grey dots are average number of disease

resistance calculated across all varieties evaluated a given year.

Black dots are average number of disease resistance calculated

for the 10 varieties with the highest number of load produced a

given year. Error bars represent the standard deviation. The

curves are the Local polynomial regression (loess curve) and

their standard deviation
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\1.0 9 10-20, q ranged between 0.61 and 0.72)

(Table 2).

The AgSeeds dataset (AgSeeds 2016) contained

fewer varieties and replications, but allowed us to

examine the correlation between a larger set of fruit

quality traits. Pearson coefficients for correlations

between these traits are reported in Table 3. A

significant correlation between pH and color was

again observed. In the AgSeed dataset color was

measured as a/b ratio, which has a negative correlation

with the PTAB color measurement (Barrett and

Anthon 2008). As expected, the a/b ratio showed a

positive correlation with pH (Table 3). Raw pH was

negatively correlated with Oswald capillary viscome-

ter measurements, and centistokes measurements.

Fruit weight was positively correlated with Brix, and

negatively correlated with pH, Ostwald viscosity and

centistokes viscosity.

Success metrics

Considering all PTAB data between 1992 and 2013, an

average of six varieties represented half of the

production each year (Fig. 4). Based on the percentage

of total loads, the top variety used in a single year

ranged from a low of 9.8% (in 2004) to a high of 26.1%

(in 1996). Over the twenty-two year period, market

share values for varieties represented in the UCCE and

Combined datasets ranged from 2.0 9 10-4 to 11.8%.

Fourteen varieties had a market share value higher

than 2% in the UCCE set and 18 varieties had a market

share value higher than 2% in the Combined set. The

927 varieties represented between 1992 and 2013

spent an average of 4.7 years in the market. The most

popular varieties, based on loads, tended to stay in the

market longer, with those appearing in the top 50

lasting for an average of 8.0 years, and those appear-

ing among the top 10 lasting for an average of

12 years. Among the 258 varieties with complete

phenotypic data, BOS Halley 3155 remained in the

market during the entire 22 years considered for this

study. Twenty-nine varieties in the UCCE set and 53

in the Combined set had a life span longer than

Fig. 3 Proportion of variance explained by the effect of

genotype, year, location, their interactions, and error. For a
the University of California Cooperative Extension (UCCE)

trials between 1996 and 2013, and b the Processing Tomato

Advisory Board (PTAB) data between 1992 and 2013. Bar

graphs are scaled to percentage of total variance. The variances

were calculated from the random model Yijk ¼ lþ gi þ ljþ
yrk þ g:lij þ g:yrik þ l:yrjk þ g:l:yrijk þ eijk , with Yijk the value

of the phenotypic traits, gi the ith genotype (variety), lj the jth

location, yrk the kth year. Components separated by columns

represent interactions. l and eijk denotes the grand mean and the

error, respectively

Table 1 Total variance, genetic variance, and heritability for

yield, fruit brix, color, and pH

Trait UCCEa PTABb

r2c r2g
d H2e r2c r2g

d H2e

Yield 162.5 11.0 0.17

Brix 0.30 0.06 0.36 0.20 0.05 0.28

Color 5.71 0.76 0.23 4.87 1.00 0.26

pH 0.01 0.00 0.37 0.01 0.00 0.35

a Calculated with data from University of California

Cooperative Extension (UCCE) trials between 1996 and 2013
b Calculated with data from the Processing Tomato Advisory

Board (PTAB) data between 1992 and 2013
c Total variance
d Genetic variance
e Broad sense heritability calculated on an entry mean basis

with the formula: H2 ¼ r2g
r2gþr2

gl
þr2gyþr2

gly
þr2e

with r2g, the genetic

variance, r2gl, r2gy and r2gly the variance of the interactions

between genotype and location, year, and year by location,

respectively. r2e represent the variance of the error
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10 years. The histograms for market share, life span

and their logarithmic transformation are displayed for

the Combined data (Fig. 5).

Ability of MTIs and phenotypic traits to predict

life span and market share

The models developed are summarized in Table 4.

Yield was necessary to predict success in all the MTIs.

Yield alone lead to the best main effect model

predicting market share developed with the UCCE

set using either AIC or BIC criterion (models M1 and

M3). All other main effect and interaction models had

at least one other independent variable (Table 4). The

models based only onmain effects always had a higher

correlation with success metrics compared to the

models based on both main effects and interactions

(Tables 5, 6).

The selected MTIs and Yield showed significant

positive correlation with both market share and life

span, in UCCE and Combined datasets (Table 5). The

variable pH showed a significant negative correlation

for both success metrics in both datasets. Brix was

significantly negatively correlated with life span when

evaluated in the Combined dataset. Yield alone and

MTI13 (0.12*Yield - 8.23*pH) had the highest cor-

relation with market share (Table 5). MTI4 (0.31*

Yield - 13.13*pH ? 1.04*Brix*Yield ? 4.51*Yield

*pH ? 102.21*Brix*pH), MTI13 (0.12*Yield -

8.23*pH), and MTI15 (0.11*Yield - 0.25*

Color - 8.87*pH) had higher or equal correlation

with life span, compared to yield (Table 5).

The ability of single phenotypic traits or their

combinations to be used to select successful varieties

was evaluated based on percentage of co-selection.

Yield alone and MTI9 (0.14*Yield ? 1.21*Brix) had

the highest percentage of co-selection for market share

with both the UCCE and Combined datasets (Table 6).

MTI13 (0.12*Yield - 8.23*pH) and MTI15

(0.11*Yield - 0.25*Color - 8.87*pH) had higher

or equal percentages of co-selection for life span,

compared to yield with both datasets (Table 6).

Discussion

With the recent development of high-throughput

genotyping tools (Sim et al. 2012a), their use on a

large number of accessions (Blanca et al. 2015; Sim

et al. 2012b), and the release of sequence data for

nearly 440 tomato genomes (Lin et al. 2014; The 100

Tomato Genome Sequencing Consortium et al. 2014),

there is an abundance of information to facilitate

selection. These resources have generated interest in

developing models predicting breeding values for

tomato improvement (Duangjit et al. 2016; Hernán-

dez-Bautista et al. 2016; Yamamoto et al. 2016a, b).

The potential for genomic selection has been inves-

tigated in a number of grain crops (Barabaschi et al.

2016; Bassi et al. 2016). Adoption of these approaches

Table 2 Pearson correlation coefficients for phenotypic traits

Yield 
UCCE

Brix  
UCCE

Color 
UCCE

pH     
UCCE

Brix  
PTAB

Color 
PTAB

Brix UCCE -0.26 ***
Color UCCE -0.04 NS -0.07 NS

pH UCCE -0.18 * -0.11 NS -0.15 *
Brix PTAB -0.13 . 0.61 *** 0.07 NS -0.19 **
Color PTAB -0.11 NS 0.06 NS 0.66 *** -0.12 . -0.11 NS

pH PTAB -0.06 NS -0.19 ** -0.12 . 0.72 *** -0.21 ** -0.22 **

NS Non significant or �, *, **, *** significant at P B 0.1, 0.05, 0.01, or 0.001, respectively

Light gray highlights correlations among traits evaluated from the UCCE trial. Medium gray highlights correlations among traits

evaluated from the PTAB dataset. Dark gray highlights correlation among traits evaluated in different datasets. White cells contain

values for the correlation of a same trait from the two different datasets

Traits are evaluated within and between data from University of California Cooperative Extension (UCCE) trials between 1996 and

2013 and from the Processing Tomato Advisory Board (PTAB) between 1992 and 2013. Observations based on 196 varieties

common to the two datasets
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for vegetable crops has lagged for a number of reasons

including small population sizes dictated by working

with perishable crops, the lack of a tradition for

collecting objective data, and the need to balance

selection for a number of traits. Vegetable breeders

have begun to emphasize the collection of quantitative

data for an increasing number of production and

quality characteristics. The ability to identify, quantify

and combine the most valuable traits will be a key for

maintaining or increasing genetic gain across produc-

tion and quality characteristics.

Strengths and weaknesses of the dataset

We used two historical datasets, PTAB and UCCE, to

describe phenotypic characteristics of the processing

tomato varieties grown in California. In contrast to

traditional experimentation where data analyses are

planned before the lay out of the experimental design,

we worked with data collected for other purposes than

this study. Within this context, the two sources of data

available have strengths and weaknesses. The PTAB

dataset reflected quality traits of fruit delivered to the

processing companies, which gave an accurate repre-

sentation of the phenotypes used by the industry.

Furthermore, for each year, the PTAB data reflects

variety evaluation across a large number of locations.

The PTAB data represented 9.2 M loads, and is thus

the most comprehensive set of data for processing

tomato quality. The UCCE trials were grown in

farmers’ fields, and were subjected to the same

agronomic practices as plants used for production

and were organized with a traditional experimental

design. Both datasets are highly unbalanced because

different sets of varieties were evaluated every year.

However, many varieties overlapped across years and

locations, allowing us to use a statistical model with

random effects to partition variance between genetic

and environmental factors and to evaluate adjusted

means for each variety. Despite the lack of balance,

both datasets represent phenotypes associated with the

varieties grown in California over a twenty year

period, trial environments are relevant, and the data

are highly replicated.

The phenotypic traits for each variety were esti-

mated using BLUPs which are adjusted values based

on random effects in the statistical models. The

random model used to calculate BLUPs comprised

location, year, and their interactions with variety. One

component of the large error variance in the PTAB

data is due to variation within location. Location

information in PTAB tracks broadly to counties. We

Table 3 Pearson correlation coefficients between traits for quality data from the AgSeeds variety trials from 2013 to 2015

Frt.Wt (g)a Raw Brixb Raw pHc a/bd Oswalde JBf PBBg

Raw Brix 0.28**

Raw pH -0.34** -0.27**

a/b -0.17 -0.21* 0.34**

Oswald -0.24* -0.30** -0.27** -0.03NS

JB 0.069NS 0.32** 0.13NS -0.22* -0.77***

PBB 0.16NS 0.65*** 0.00NS -0.27** -0.73*** 0.93***

cSth -0.24* -0.29** -0.27** -0.0NS 1.00*** -0.77*** -0.73***

NS Non significant or *, **, *** significant at P B 0.05, 0.01, or 0.001, respectively
a Fruit weight in grams
b Brix measured on raw fruit
c pH measured on raw fruit
d a/b color measurement
e Viscosity measured with Oswald capillary viscometer
f Juice viscosity measured with a Bostwick consistometer
g Predicted paste Bostwick = 11.53 ? (1.64*Brix.raw) ? (0.5*JB)
h Viscosity measured in centistokes AgSeeds (2016) Chemistry Profile—Archive. http://www.agseeds.com/processing-tomatoes/

archive/. Accessed 29 Sept 2016
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therefore defined ‘‘location’’ based on a North–South

gradient and we combined counties into groups of

similar latitudes. This criterion reflects one potential

level of differences and is more likely to reflect an

environmental variable than the somewhat arbitrary

political delimitation of a county. However, these

‘‘location’’ levels likely comprised several environ-

ments due to cultural practices, soil types, and climatic

conditions which also vary within a county or a group

of counties. The PTAB data were not collected in a

manner that allowed us to account for this detailed

level of variation. The PTAB data do represent a very

large number of environments and varieties with

variation due to local practices, local conditions, and

interactions accounted for in the error in our random

model.

Despite potential weakness due to a lack of balance

and the vague interpretation of the location factor,

these data represent the most comprehensive pheno-

typic information available for any vegetable crop.

When we compare analysis from these imperfect

datasets with analysis based on a randomized com-

plete block design we obtain similar results. The

proportion of phenotypic variance due to genetic

estimates from both PTAB and UCCE data were

similar to the ones obtained for a large population of

modern tomato varieties tested using classic experi-

mental design (Merk et al. 2012).

Historical trends

The evaluation of tomato varieties across years in the

UCCE trials showed an increase of yield between

2006 and 2013. The yield increase observed reflects

genetic changes influencing traits such as increases in

photosynthetic rates, leaf area and nitrogen use

efficiency; and architectural changes related to canopy

structure (Barrios-Masias and Jackson 2014). There

was also an increase in the average number of

resistance genes carried by processing tomato vari-

eties from 1992 to 2013, a trend which also reflects

genetic improvement potentially leading to higher

yield. Changes in agronomic practices could also

explain part of the yield increase. During the time-

frame of data collection, processing tomato production

in California shifted from furrow to drip irrigation, and

from direct seeding to transplantation. These tech-

niques also likely increase yield (Leskovar et al. 2014;

Mitchell et al. 2012). Brix did not show significant

changes over time and was stable at around 5.2 units.

The negative correlation between yield and Brix is

well documented and thought to be the main factor

slowing Brix improvement (Grandillo et al. 1999;

Merk et al. 2012; Stevens and Rudich 1978). In

addition, the varieties carrying resistance to tomato

mosaic virus (ToMV) and to tomato yellow leave curl

virus (TYLCV) tend to have a low Brix (Giordano

et al. 2000), but are preferred by growers in recent

years due to an increased presence of virus vectors.

These examples reveal tensions among traits consid-

ered important by the industry, yet difficult to combine

in a unique variety. The yield increase and the Brix

stability observed reflect continued selection for Brix.

There was an increase in pH between 2001 and 2009

for the overall population, and for the varieties ranking

in the top 10. This increase was previously attributed

to the practice of extended field holding of fruits

(Anthon et al. 2011). The subsequent decrease of pH

observed from 2009 to 2013 suggests the possibility

Fig. 4 Variety numbers used in California processing tomato

production. a The total number of varieties used per year in

California and b the number of varieties representing the top

25% used (square), the top 50% used (triangle), the top 75%

used (simple cross), and the top 90% used (double cross). The

number of variety were extracted from the Processing Tomato

Advisory Board (PTAB) yearly data from 1992 to 2013

Euphytica (2017) 213:100 Page 11 of 19 100

123



that management was altered as a result of outreach

efforts aimed at countering the trend toward undesir-

able increases in pH. It is interesting to note that

despite trend changes due to cultural practices, the

most successful varieties consistently showed a lower

pH relative to the population as a whole. The

association between pH and success metrics will be

discussed further, below.

Factors driving variety success

The regressions obtained between phenotype (single

trait or MTIs) and the success metrics were significant,

but correlation coefficients suggest that the models

only explain 20–44% of the variation (Table 5). These

moderate correlations indicate that other factors also

shape the success of a variety. Genetic factors that

were not considered in our MTIs included disease

resistance and several processing traits not measured

in the datasets. The average number of resistances

increased faster for the varieties ranking in the top 10

than for the rest of the population. Thus resistance

appears to be a trait valued by the market, and

incorporating it into models could lead to a better

prediction of variety success. However, data reflecting

disease resistance was only available from descrip-

tions in seed catalogues and was incomplete. Resis-

tance data was available for 216 varieties out of the

927 total varieties in the PTAB data. Resistance

information was only available for 113 varieties in the

datasets used to develop models. Modeling the role of

resistance will require a more complete dataset.

Non-genetic factors also influence success of

varieties. The role of processors in the choice of the

varieties cultivated by the contracted growers is

difficult to evaluate. The contracts between growers

and processors in California are negotiated by the

California Tomato Growers Association (CTGA), but

are different from one processor to another and subject

to annual changes. The contracts are set with a base

Fig. 5 Histograms of the

success metrics life span

(a) and market share (c),
and of their logarithmic

transformation (b, d) for the
258 varieties used for

modeling success based on

phenotypic data
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price per ton, with a linear deduction or increase

depending on quality criteria (Hueth and Ligon 2002).

Contracts have an impact on both the agricultural

techniques used by the farmers, and on the varieties

grown (Alexander et al. 2007). The contracts are

confidential, thus it is difficult to use these documents

to weigh traits in the context of a breeding program.

Similarly, the human factors involved in variety

choices, such as trust in a given brand or company,

are difficult to evaluate. As evidence of confounding

effects, market share was significantly associated with

seed company (Kruskal–Wallis test, P-

value = 6.0 9 10-8) (Table S1). In addition process-

ing tomato varieties can be divided into several

categories based on their properties and use, such as

multiuse, solid, and viscosity (Gould 1992; Stevens

and Rick 1986). The market share or life span of a

variety could be influenced by its market category,

particularly for the categories representing niches for

the industry. Processing categories were not available

for all varieties, and most of the varieties for which we

recovered this information were classified as multi-use

(83%). Thus the MTIs represent the processing tomato

market regardless of the variety categories, and should

be considered a multi-use index.

Weights of the multi trait indices

Yield alone ranked among the highest indices for

ability to predict variety success in the market. This

observation confirms that yield has been the main

driver of variety success. The equation Y9B has been

suggested to balance selection for two important traits

(Eshed et al. 1996; Grandillo et al. 1999; Tanksley

et al. 1996). However, the value of this equation does

not significantly correlate with variety success

(Table 5). The YxB index demonstrated a percentage

of co-selection higher than for a random sample, but

lower than yield alone and lower than the best MTIs

we developed (Table 6).

Three of the MTIs we developed predicted success

of varieties with approximately the same or better

accuracy than yield alone. The use of these MTIs in

breeding programs could increase genetic gains for

fruit quality traits. These MTIs were MTI9 [0.14*

yield ? 1.21*Brix], MTI13 [0.12*Yield - 8.23*pH],

and MTI15 [0.11*Yield - 0.25*Color - 8.87*pH].

MTIs with three or more components have a slightly

lower ability to predict success compared to theirT
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equivalent with two components; however they may

be more suitable to use in a breeding program aimed at

improving fruit quality. Yield consistently appeared as

an important trait to predict success. MTI13, and

MTI15 weight pH negatively with larger coefficients

than we expected. Although this result is consistent

with food safety goals of low pH (Anthon et al. 2011),

it was surprising because pH is rarely mentioned as a

trait of high importance by plant breeders. It is

possible that pH is also an indirect measure of other

traits. For example in the AgSeed data, low pH was

found to be correlated with high fruits weight, which is

desirable for diced products (Barrett et al. 2006). Fruit

with low pH also tended to have high viscosity, which

is desirable for paste production (Hui and Evranuz

2015). In addition low pH was correlated with low a/b

Table 6 The prediction ability of main effects, two way interactions and Multi-trait indices evaluated relative to percentage of co-

selectiona

Modeld Traite Market share Life span

UCCEb Combinedc UCCEb Combinedc

M1 Random (10,000 samples) 20 ± 6 20 ± 5 20 ± 6 20 ± 5

Yield 45 37 33 33

Brix 18 21 20 13

-Color 18 8 23 13

-pH 33 33 30 29

Yield*Brix 30 29 25 25

Yield*(-Color) 25 19 20 19

Yield*(-pH) 33 23 28 23

Brix*(-Color) 20 12 25 17

Brix*(-pH) 20 19 18 17

Color*pH 13 15 15 21

Modeld Traite Market share Life span

UCCEb Combinedc UCCEb Combinedc

M4 0.31*Y - 13.13*P ? 1.04*B*Y ? 4.51*Y*P ? 102.21*B*P 43 38 33 33

M5 M6 0.27*Y ? 0.93*C 35 25 25 21

M7 0.25*Y - 1.42*B ? 0.85*C 33 25 25 23

M8 0.34*Y ? 0.82*C ? 0.85*Y*B ? 0.24*Y*C ? 4.06*B*C ? 61.60*B*P 38 33 30 31

M9 0.14*Y ? 1.21*B 43 40 25 21

M10 0.14*Y ? 1.20*B 40 40 23 21

M11 0.13*Y ? 1.11*B -3.36*P 40 40 25 25

M12 0.13*Y ? 1.14*B - 0.21*Y*B - 2.01*Y*P ? 23.27*B*P - 8.52*C*P 35 31 28 21

M13 0.12*Y - 8.23*P 43 35 40 33

M14 -7.77*P - 0.22*Y*C - 2.3*B*C 33 23 28 23

M15 0.11*Y - 0.25*C - 8.87*P 43 35 38 33

M16 0.09*Y - 8.71*P - 0.29*Y*B - 0.16*Y*C - 2.59*B*C - 5.93*C*P 38 27 33 25

a Percentage of co-selection ¼ number of varieties selected based on phenotype and based on success
number of varieties in 20% of the population

� 100

b Yield, fruit Brix, color and pH data were evaluated in the University of California Cooperative Extension (UCCE) trials between

1996 and 2013. 198 varieties were taken into account
c Fruit Brix, color and pH data were from the Processing Tomato Advisory Board (PTAB) data between 1992 and 2013, and yield

data from UCCE trials between 1996 and 2013. 258 varieties were taken into account
d Percentage of co-selection for the multi-trait index were based on the leave-one-out cross validation approach used to develop the

models when the model was developed based on the same dataset than the one it was tested on
e Trait or combination of traits, with Y = yield, B = Brix, C = Color, P = pH
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ratio, an indication of good color. More importantly,

pH differed significantly by company, with Heinz and

De Ruiter (Monsanto), two companies with varieties

ranking high for market share, having lower pH than

the rest of the market. It is therefore possible that pH is

a variable that reflects trait-structure within the

landscape of breeding companies serving the Califor-

nia market. MTI9 [0.14*yield ? 1.21*Brix], is par-

ticularly adapted in the context of a breeding program

for varieties used for tomato product such as pastes

and would be a desirable substitute for the YxB index.

MTI15 [0.11*Yield - 0.25*Color - 8.87*pH],

favors tomatoes with deeper color and may be well

adapted for breeding tomatoes used for whole-peel or

diced products. An alternative strategy would be to

select for yield while using a threshold for quality

traits, with Brix set at a minimum threshold of 5.2, and

PTAB color scores at a maximum threshold of 24

units.

Conclusion

In the absence of consistent economic data valuing

attributes, weighing traits based on their ability to

predict success provides an alternative for processing

tomato breeders to develop MTIs. We used historical

data to develop models combining and weighting yield

and quality traits in order to predict variety success in

the market. For processing tomato, selected models

using yield, fruit Brix, color, or pH, correlated with

market share with coefficients ranging from 0.30 to

0.43. These models were also superior to random

sampling for their percentage of co-selection. The

models developed can be used as MTIs to select

superior individuals in a breeding population. This

method could be applied to other crops for which

accurate measurement of success and phenotypic data

are available for a large number of varieties.
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