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Abstract Crowdsourced shipping can result in significant economic and social

benefits. For a shipping company, it has a potential cost advantage and creates

opportunities for faster deliveries. For the society, it can provide desirable results by

reducing congestion and air pollution. Despite the great potential, crowdsourced

shipping is not well studied. With the aim of using the spare capacities along the

existing transportation flows of the crowd to deliver small-to-medium freight vol-

umes, this paper defines the multi-driver multi-parcel matching problem and pro-

poses a general ILP formulation, which incorporates drivers’ maximum detour,

capacity limits, and the option of transferring parcels between drivers. Due to the

high computational complexity, we develop two heuristics to solve the problem.

The numerical study shows that crowdsourced shipping can be an economic viable

and sustainable option, depending on the spatial characteristics of the network and

drivers’ schedules. Furthermore, the added benefits increase with an increasing

number of participating drivers and parcels.
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1 Introduction

E-commerce currently appears to be one of the fastest growing marketing channels

for different kinds of products and services for consumers. Online sales of goods in

the European Union amounted to approximately 200 billion euros (B2C only) in

2014 and may double in the next five years with annual growth rates above 15% per

year (Prologis 2015), which has resulted in a rapid growth in parcel delivery. With

the growth of e-commerce in distribution channels, deliveries will likely become

more fragmented than ever with a large number of small-to-medium packages that

need to be delivered to customer’s locations rapidly (Fatnassi et al. 2015). Although

a ‘‘last-mile’’ delivery service is convenient for the customer, it creates significant

logistical challenges for shipping companies, one of which is the allocation of large

load capacity to address small volume demands (Montreuil 2011). A larger fleet size

increases congestion and environmental problems in urban areas. The INRIX Traffic

Scorecard Annual report shows that countries with strong economic growth in 2014,

such as the US, Germany, Ireland, Switzerland and Luxembourg, all experienced

increased gridlock on their roads. In the US, for instance, 6.9 billion hours of US

drivers’ extra time and 3.1 billion gallons of fuel, which is approximately 160

billion US dollars, are wasted in traffic congestion (Schrank et al. 2015). The road

transport sector also plays an important role in world energy use and emissions of

greenhouse gases. Up to 30–40% of road sector CO2 emissions come from road

freight transport (ITF 2010; IPCC 2014).

As a result of the ever-growing conflict between the increasing demand for

mobility and limited resources, shared transport practice has gained a lot of attention

recently. It focuses on making joint use of transport resources, between passengers

and goods flows. Trentini and Mahléné (2010) provide an overview of solutions for

combining passenger and freight transportation used in practice. Large retailers such

as Walmart and Amazon are also considering crowdsourced parcel services (Barr

and Wohl 2013; Reilly 2015). As shared economy is increasingly in the spotlight,

related strategic and operational aspects of providing integrated transportation

services for both people and freight have received academic attention. Several

attempts to develop such integrated models have been made. Li et al. (2014) and

Nguyen et al. (2015) consider problems in which people and parcels are handled in

an integrated way by the same taxi network. Ghilas et al. (2013) study the

possibility of transporting freight by public transport, which operates according to

predetermined routes and schedules. Similarly, Masson et al. (2014) design a two-

tier distribution system that uses spare capacity of the buses combined with a fleet of

near-zero emission city freighters to deliver parcels to shops and administrations

located in congested city cores. In addition, Fatnassi et al. (2015) investigate the

potential of integrating a shared goods and passengers on-demand rapid transit

system in urban areas. Presumably due to the computational complexity, the

prevailing literature focuses on the driver-parcel matching problems where parcels

cannot hop (be transferred) between drivers. Our research fills this gap and explores

People and Freight Integrated Transportation (PFIT) problems with the consider-

ation of multiple hops. As a result, drivers and parcels can be matched without
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requirements of sharing a similar destination or parcel destination that are

positioned on or near the driver’s route. Instead, parcels can move towards their

destination one hop at a time. The multi-hop principle makes our approach

suitable for instances with longer distances, such as intercity transportation.

From the standpoint of a shipping company (or a consortium of shippers), this

paper considers a problem where the shipper provides freight transportation services

via a pool of approved drivers with spare capacity. This crowdsource business

setting has a potential cost advantage because thousands of drivers are commuting

between home and businesses with spare space in their cars, and those drivers pay

for their own cars, gas, insurance, and maintenance. It also creates opportunities for

faster deliveries and thus enhances customer satisfaction. Traditionally, for a

shipping company’s business-to-customer (B2C) model to be profitable, a critical

mass of customers need to be engaged for the provision of the service. Having the

crowd as potential means, the time and effort necessary for arranging economically

sustainable delivery may be substantially less.

From the ecological and social standpoint, this paper can provide desirable

logistics solutions that exploit unused capacities along the existing transportation

flows of the crowd. The resulting deliveries require less parcel-miles, which may

help alleviate the traffic congestion problem and reduce emissions. The booming

development of e-commerce results in fragmented package logistics, since the

number of single parcel deliveries is growing (Rougès and Montreuil 2014). As

such, a more direct connection between parcel-miles and vehicle-miles for parcel

delivery can be foreseen, which makes the proposed model more attractive from the

perspective of reducing the ecological impact of logistics. Although it is out of the

scope of this paper, we would like to point out that crowdsoured shipping can also

be used to provide peer-to-peer (P2P) delivery, as seen recently with examples as

Deliv, Walmart and Amazon. Such a delivery platform is considered by Arslan

et al. (2016). We would also like to comment on the environmental and social

benefits of crowdsourced shipping. Without the condition of using the existing

vehicle flows, such services (e.g., Uber) may also induce additional movements and

thus do not necessarily reduce congestion and air pollution.

The goal of this paper is to provide the means for a shipping company (or a

consortium of shippers) to match its demand for freight transportation with people

transportation with a particular focus on using spare capacities of the existing

private vehicle flows with the objective to minimize the total cost of delivering all

the parcels on time. To achieve this goal, we present a mixed integer programming

formulation for matching and scheduling such a combined system. Considering the

combination with existing planned routes of the drivers, we limit our attention to the

offline problem: given all drivers and known delivery requests (i.e., origin,

destination, earliest departure time and latest arrival time), find an optimal plan to

deliver all the parcels on time, ignoring possible future request. In contrast to P2P

platforms where users usually expect a direct response, we focus on periodic

planning to benefit from resource consolidation, which makes sense from a

shipper’s perspective. The offline setting enables us to batch incoming requests

smartly and facilitates the multi-driver multi-parcel matching. Even a driver with a

completely different destination can take the parcel to an intersection where the
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parcel could be transferred to other vehicles that travel closer to the destination.

Furthermore, we provide two heuristics for solving non-trivial problem instances of

the considered NP-hard optimization problem, which are the time compatibility

based heuristic and the time expanded graph based heuristic. These heuristics use

different approaches to handle timetable information of the drivers. As a result, they

deviate from the exact solution approach due to the consideration of different

solution spaces and also require different levels of computational efforts. In this

paper, we explain the pros and cons of both heuristics and provide an extensive

experimental comparison of the two approaches.

The remainder of the paper is organized as follows. In the next section, we

position our research in the context of the relevant literature. After introducing the

Multi-Driver Multi-Parcel Matching Problem (MDMPMP) in Sect. 3, the mixed

integer programming formulation is presented in Sect. 4. We propose two heuristics

for solving the MDMPMP in Sect. 5. Section 6 presents the experimental settings.

Section 7 reports the results obtained from extensive computational experiments.

The paper ends with concluding remarks in Sect. 8.

2 Literature review

As far as the application is concerned, the design and planning of the driver-parcel

matching problem described in this paper falls into the field of People and Freight

Integrated Transportation problems (PFIT problems). Despite the increasing interest

in practice, an integrated people and freight transport solution to short-haul (intra

and intercity) transportation has not been sufficiently taken into consideration in the

literature (Lindholm and Behrends 2012; Ghilas et al. 2013). Three ways of

integration (i.e., public transport, taxi, and private vehicles) are proposed in the

literature. We subsequently discuss each of them in the following paragraphs.

Public transport, such as bus, train, metro and other light rail systems, operates

according to predetermined routes and schedules. Ghilas et al. (2013) investigate

the opportunity of making use of available public transport as a part of the freight

journey of logistics service providers, which operates according to predetermined

routes and schedules. An arc-based mixed integer program is presented and it is

amenable to solve by CPLEX. The numerical analysis shows significant reductions

in operating cost and carbon dioxide emission, and the potential for mitigating

traffic congestion. Along the same vein, Shen et al. (2015) conduct a case study on

the Yuantong Express, one of the major national logistics enterprises in China, to

explore the feasibility of the proposed public transit-based freight system using the

existing bus network in Zhenjiang City in China. Such an integrated system results

in a significant reduction in the fleet size required for good delivery service. Masson

et al. (2014) design a two-tiered distribution system that uses the buses spare

capacity combined with a fleet of near-zero emissions city freighters to deliver

parcels to shops and administrations located in congested city cores.

A taxi carries passengers and(or) parcels between locations of their choice, which

differs from the abovementioned modes of public transport where the pick-up and

drop-off locations as well as the schedules are determined by the service provider.
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Li et al. (2014) propose to integrate parcel transportation into a taxi service, which

is defined as the Share-A-Ride Problem, an extension of the dial-a-ride problem. For

the sake of reducing the computational complexity, they also propose a method to

optimize the insertion of parcel requests into the predefined taxi routes. Nguyen

et al. (2015) build upon the model from Li et al. (2014) and conduct a case study on

the Tokyo-Musen Taxi company in Tokyo city. Typically, a taxi driver has to

comply with the service levels for both the passenger and the parcels. In common

practice, parcel deliveries should not interfere with passenger transport, the core

business of running a taxi.

When it comes to private vehicles, drivers have absolute control of the routes and

schedules, and parcels can never travel without a driver. A closely related work by

Arslan et al. (2016) studies the incorporation of crowdshipping into the last-mile

delivery system within an urban area. The differentiating feature of our work is the

consideration of transfers, which makes our approach typically more suitable for

instances with longer distances, e.g., transport between urban areas. To support this,

we have to make sure that parcels are not left unattendedly due to the presence of

transfers. These requirements strengthen the interdependency between drivers and

parcels.

Methodologically, our research belongs to the family of ride-sharing problems,

and more specially the multiple driver, multiple rider arrangement (Agatz et al.

2012). Gruebele (2008) describes such multi-hop and multi-passenger routing

systems in detail. Herbawi and Weber (2011) consider a single rider version of the

multi-hop ride-sharing problem where drivers do not deviate from their routes and

schedules. As such, the set of drivers’ routes form the transportation network for the

rider who aims at minimizing time, cost and number of transfers. The problem is

modeled as a multi-objective shortest path problem on a time-expanded graph

representing the drivers’ offers. They propose an evolutionary multi-objective route

planning algorithm to solve the problem, and show that this approach can provide

good quality solutions in reasonable runtime. The multi-hop ride-sharing problem is

a lot more difficult when also considering the routing of the drivers (Agatz et al.

2012). Herbawi and Weber (2012) extend the previous work to match multiple riders

with multiple drivers having time windows and allowing a possible detour from their

routes. They propose a genetic algorithm and show that it can be used to solve the

model in reasonable time. Drews and Luxen (2013) show that the problem studied by

Herbawi and Weber (2012) can also be solved by exploiting time-expanded graphs

representing the drivers’ offers. In this paper, we consider a problem with (1)

multiple drivers, (2) multiple parcels, (3) time windows, (4) the routing of the drivers,

and (5) multiple hops of the parcels. Additional complexity is introduced in our

problem due to the requirement of keeping parcels attended all the time.

The contribution of this paper is multi-fold. First, we provide one of the earliest

modeling efforts on matching the demand for freight transportation with people

transportation by utilizing spare capacities of the existing private vehicle flows.

Second, we consider the possibility of transfers, which makes our approach

suitable for instances with longer distances. Third, we show that the proposed model

can by solved by two very distinct heuristics and provide a comprehensive

comparison of the pros and cons of using them.
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3 Problem description

As e-commerce grows and evolves, shipping companies need to deliver a large

number of small-to-medium freight volumes and home deliveries every day, while

thousands of drivers are commuting between home and businesses with spare space

in their cars. To reduce shipping costs and efforts, shipping companies consider to

pay these independent drivers to deliver the parcels for them on the way. To

accommodate the parcels, the driver has to make a detour and make extra stops. The

length of the detour and the number of extra stops are determined by the driver’s

willingness to extend his trip with respect to both distance and time. Drivers may

take a single parcel or multiple parcels (sequentially or simultaneously) along the

journey, as long as the capacity of their vehicle is not exceeded. Similarly, parcels

may be carried by a single driver from their origins to their destinations or may be

transported by multiple drivers and transferred from one to another en route to their

destinations. We propose the Multi-Driver Multi-Parcel Matching Problem

(MDMPMP) based on the Multi-Hop Ride Sharing Problem.

The MDMPMP is defined on a directed graph G ¼ ðN ; EÞ, where N is the set of

nodes representing the possible locations for departure, arrival or transfer, and E is

the set of edges that directly connect two aforementioned locations, i.e., represents

the road network. With each edge ði; jÞ 2 E, a distance dij and a travel time tij are

associated. Furthermore, we are given a set of drivers Q and a set of parcels P.
Driver q 2 Q will travel from his origin oQq to his destination wQ

q and SPq represents

the set of edges belonging to his shortest path from oQq to wQ
q . An earliest time EQ

q at

which he can depart from his origin oQq and a latest time LQq at which he has to arrive

at his destination wQ
q are also associated with driver q. Driver q has Vq spare space

available for parcels. Similarly, each parcel p 2 P will travel from its origin oPp to its

destination wP
p . An earliest time EP

p at which it can depart from its origin oPp and a

latest time LPp at which it has to arrive at its destination wP
p are also associated with

parcel p. Each parcel has a volume of vp.

To cope with realistic requirements, our model has the following features. First,

drivers are allowed to deviate from their shortest path to pick up and drop off

parcels, as long as their detour is at most a fraction d of their shortest path length,

and thus the routing of the drivers also need to be considered. Second, parcels are

not allowed to be left unattendedly. As a result, the waiting time of the driver who

needs to handover the parcel at a certain station (and thus the subsequent possible

paths) depends on the arrival time of the following driver, and so on. Third, parcels

are not as time sensitive as riders in the ride sharing problem, as long as they are

delivered within the associated time windows. Therefore, assigning longer paths to

the parcels may facilitate the system-wide matching. To avoid making too many

unnecessary transfers, parcels are not allowed to pass the same node more than once

in our model. To avoid departing from their shortest path too much, drivers are also

not allowed to visit the same node twice, on top of the aforementioned restriction on

the length of their detour. We are aware that multiple visits at the same node might

help to reduce the travel distance of a driver for picking up a parcel in some cases,
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but the possibility as well as the associated impact is limited. Therefore, we make it

as a design choice to simplify the problem. We will revisit this assumption at the

end of Sect. 4, where we will point out a way to relax this assumption. From an

algorithmic viewpoint, the first two features make the assignment of parcels to

drivers more complicated because the validation of the possible paths for different

drivers are intertwined.

While it costs the shipping company cp to deliver parcel p itself, it can also let the

crowd do it by paying them a compensation for the service. Our goal is to help the

shipper deliver all the parcels on time with minimum overall cost, which consists of

(1) the shipping costs, and (2) the compensation for drivers’ traveling cost and

inconvenience due to the parcel delivery. Table 1 summarizes all the relevant

parameters and variables used in the MDMPMP. For expository purposes, all the

edge-related parameters and variables are defined for all combinations of i and j.

However, the corresponding values are zeros if ði; jÞ 62 E.

4 Mathematical model for the MDMPMP

In this section, we develop the mathematical model for the MDMPMP from a

shipping company’s perspective. In Sect. 4.1, we describe the procedure of finding

possible routes for drivers given the maximum detour d. This procedure is used to

obtain the x matrices in solving the mixed-integer program presented in Sect. 4.2

and to build the subgraph in the time compatibility based heuristic (TC-heuristic) to

be presented in Sect. 5.1. As stated in Table 1, each element of x (i.e., xqij) is a

parameter that indicates whether (i, j) is an edge that can be used for driver q. This

means that xqij ¼ 1 if and only if ði; jÞ 2 E and also belongs to the set of paths of

driver q, with lengths no more than ð1þ dÞrq.

4.1 Finding possible routes

Taking the maximum detour into account, the goal of this subsection is to find all

the possible paths for drivers in terms of travel distance. For any driver q, the

shortest path SPq is found through the unidirectional A* algorithm (Hart et al.

1968). Then, a variant of the depth-first search (DFS) strategy (Cormen et al. 2009)

is used to enumerate all possible paths that are no longer than the maximum detour,

with respect to the shortest path that the driver is willing to take. These possible

paths constitute a subgraph of the original graph. Figure 1 provides an illustrative

example for two drivers. Figure 1a is the original graph with 10 stations, where

driver 1 needs to travel from Station 1 to Station 8 and driver 2 needs to travel from

Station 1 to Station 9. The number associated with each edge represents the travel

distance between the two nodes connected by the edge. Each driver is willing to take

a detour of at most 10% of his/her shortest path (d ¼ 0:1). There are three options to
travel from Station 1 to Station 8, which are 1 ! 2 ! 7 ! 8; 1 ! 2 ! 6 ! 8 and

1 ! 3 ! 8, and the corresponding travel distances are 9, 9.5 and 16, respectively.

Since the maximum distance driver 1 is willing to travel is 9:9ð¼1:1� 9Þ, only
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Table 1 Parameters and decision variables for the MDMPMP model

Parameters

Q Set of drivers

P Set of parcels

N Set of nodes

E Set of edges

oQq Driver q’s origin

wQ
q

Driver q’s destination

oPp Parcel p’s origin

wP
p

Parcel p’s destination

SPq Set of edges belonging to the shortest path of driver q from oQq to wQ
q

EQ
q

Earliest departure time of driver q

LQq Latest arrival time of driver q

rq Distance of the shortest path from oQq to wQ
q of driver q

d Coefficient of maximum detour

xqij Binary parameter equal to 1 if ði; jÞ 2 E and (i, j) belongs to the set of paths of driver q, with

lengths no more than ð1þ dÞrq; and 0 otherwise

EP
p

Earliest departure time of parcel p

LPp Latest arrival time of parcel p

Vq Available car capacity of driver q

vp Volume of parcel p

dij Travel distance from node i to node j;8i; j 2 N
tij Travel time from node i to node j; 8i; j 2 N
cp Cost of delivering parcel p by the shipping company

w1 Compensation per parcel per kilometer for a driver who help carry freight

w2 Cost of transferring a parcel between drivers

w3 Compensation per minute for a driver waiting on the way

w4 Compensation per kilometer for a driver’s additional travel cost due to detour

M, K Large numbers

Decision variables

Zqij Binary variable equal to 1 if driver q goes directly from node i to node j; and 0 otherwise

Ypqij Binary variable equal to 1 if driver q carries parcel p directly from node i to node j; and 0

otherwise

Wp Binary variable equal to 1 if parcel p is delivered by the shipping company

DQ
qi

Departure time of driver q at node i

DP
pi

Departure time of parcel p at node i

Dependent variables

Spqi Binary variable equal to 1 if driver q picks up parcel p at node i

A
Q
qi

Arrival time of driver q at node i

AP
pi

Arrival time of parcel p at node i

ypj Binary variable for logic constraints that are used to ensure that parcels are not left unattendedly
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1 ! 2 ! 7 ! 8 and 1 ! 2 ! 6 ! 8 are possible paths for driver 1. Therefore, we

obtain x1;1;2; x1;2;7; x1;7;8; x1;2;6; x1;6;8 ¼ 1, and 0 for the rest of the elements.

Similarly, the only possible path for driver 2 is 1 ! 4 ! 5 ! 9, and thus

x2;1;4; x2;4;5; x2;5;9 ¼ 1, and 0 for the rest of the elements. Figure 1b describes the

resulting subgraph for the MDMPMP. This procedure efficiently reduces the size of

the problem by removing unnecessary edges.

4.2 Mathematical formulation

In this subsection, we present a mixed-integer program for the MDMPMP from a

shipping company’s perspective. With this model, the shipping company can

determine (1) the optimal matching plan between drivers and parcels for the whole

planning horizon (e.g., one day), (2) the optimal path of each driver and each parcel,

and (3) the time schedule for the drivers and the parcels to be delivered by

independent drivers. Depending on the availability of the drivers, many parcels

might still need to be delivered by the shipper itself (see numerical results from

Sect. 7). The driver-parcel matching requires a seamless coordination among

drivers, parcels, and the freight transportation network, which motivated us to

design this MDMPMP model.

The objective is to minimize the overall cost of the shipping company related to

the parcel delivery service, which consists of the shipping cost incurred from self

delivery and the four weighted costs of compensating the crowd. The compensation

includes (1) the transportation cost compensation for the kilometers that the drivers

travel with parcels, (2) the risk and inconvenience associated with the number of

parcel transfers, (3) the waiting time for transferring parcels, and (4) the extra

kilometers traveled. The last two components are the compensation for the system-

wide opportunity costs incurred by all the drivers due to the parcel delivery.

Accordingly, the objective function in our formulation of the MDMPMP is written

as follows. Each of the five terms has a weight attached.

Fig. 1 An example of building a subgraph a The original graph b The subgraph
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min
X

p

cpWp þ w1

X

q

X

p

X

i;j

dijYpqij þ w2

X

p

X

q

X

i 6¼oPp

Spqi

þ w3

X

q

AQ

q;wQ
q

� DQ

q;oQq

� �
�
X

i;j

tijZqij

 !

þ w4

X

q

X

i;j

dijZqij � rq

 !
ð1Þ

The MDMPMP is confined by two sets of constraints: (1) spatial constraints and (2)

capacity and time constraints.

Constraints for spatial issues
X

j

Zqij ¼ 1 8q; i ¼ oQq ð2Þ

X

i

Zqij �
X

k

Zqjk ¼ 0 8q; 8j 2 N n oQq ;w
Q
q

n o
ð3Þ

X

i

Zqij ¼ 0 8q; j ¼ oQq ð4Þ

X

i

Zqij � 1 8q; j ð5Þ

Zqij � xqij 8q; i; j ð6Þ
X

i;j

dijZqij � rqð1þ dÞ 8q ð7Þ

X

q

X

j

Ypqij þWp ¼ 1 8p; i ¼ oPp ð8Þ

X

i

X

q

Ypqij �
X

q

X

k

Ypqjk ¼ 0 8p; 8j 2 N n oPp ;w
P
p

n o
ð9Þ

X

q

X

i

Ypqij ¼ 0 8p; j ¼ oPp ð10Þ

Ypqij � Zqij 8p; q; i; j ð11Þ

Spqj �
X

i

Ypqji �
X

i

Ypqij 8p; q; j ð12Þ

Zqij; Ypqij;Wp; Spqi 2 f0; 1g 8p; q; i; j ð13Þ

Constraints (2)–(13) are imposed to find the feasible matches between drivers and

parcels based on the spatial information (i.e., origins and destinations). Constraints

526 W. Chen et al.

123



(2) and (3) ensure that each driver will take one and only one path, and this path is

continuous. Constraints (4) ensure that no driver will return to his/her origin.

Constraints (5) prevent the drivers returning to already visited nodes. Constraints (6)

guarantee that drivers only use edges of paths that comply with the maximum detour

constraint. Constraints (7) are the maximum detour constraint for the drivers. By

Constraints (8) and (9), each parcel will be delivered from origin to destination

either by drivers or by the shipping company itself. Constraints (10) ensure that no

parcel will return to its origin. Constraints (11) ensure that the parcels that are

scheduled to be delivered by drivers cannot travel without a driver. Constraints (12)

keep track of the stations where parcels are picked up by drivers. Constraints (13)

are domain constraints.

Constraints for capacity and time related issues
X

p

vpYpqij �Vq 8q; i; j ð14Þ

A
Q
qj �D

Q
qi þ tij �Mð1� ZqijÞ 8q; 8i 2 N n wQ

q

n o
;8j 2 N n foPpg ð15Þ

DP
pi �EP

p ð1�WpÞ i ¼ oPp ; 8p ð16Þ

AP
pj � LPp ð1�WpÞ j ¼ wP

p ; 8p ð17Þ

DP
pi �AP

pi 8i 2 N n oPp ;w
P
p

n o
; 8p ð18Þ

DQ
qi �EQ

q i ¼ oQq ; 8q ð19Þ

A
Q
qj � LQq j ¼ wQ

q ; 8q ð20Þ

DQ
qi �AQ

qi 8i 2 N n oPp ;w
P
p

n o
; 8q ð21Þ

DP
pi � DQ

qi �M 1�
X

j

Ypqij

 !
8p; q; 8i 2 N n wP

p ;w
Q
q

n o
ð22Þ

DP
pi � DQ

qi � �M 1�
X

j

Ypqij

 !
8p; q; 8i 2 N n wP

p ;w
Q
q

n o
ð23Þ

A
Q
qi � AP

pi �M 1�
X

j

Ypqji

 !
8p; q; 8i 2 N n oPp ; o

Q
q

n o
ð24Þ

AQ
qi � AP

pi � �M 1�
X

j

Ypqji

 !
8p; q; 8i 2 N n oPp ; o

Q
q

n o
ð25Þ
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q
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qj � DP
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X

i

Ypqij

 !
� ypjK j ¼ wQ

q ; 8p; q ð27Þ
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pj � AQ

rj � �M 1�
X

k

Yprjk

 !
� Kð1� ypjÞ 8q; r 2 Q; 8p; 8j 2 N n wP

p ;w
Q
r

n o

ð28Þ

D
Q
qi;D

P
pi;A

Q
qi;A

P
pi � 0 8q; p; i ð29Þ

ypj 2 f0; 1g 8p; j ð30Þ

Constraints (14)–(30) concern the capacity and time related issues. Constraints (14)

are capacity constraints for the drivers. Constraints (15) calculate the arrival times of

drivers based on the associated departure times. Constraints (16) and (17) ensure that

each parcel that is to be delivered by the crowd departs after the corresponding

earliest departure time and arrives before the corresponding latest arrival time.

Clearly, the departure time cannot be earlier than the arrival time at the same station,

which is considered by Constraints (18). Similarly, the time compatibility issues for

the drivers are enforced by Constraints (19)–(21). Constraints (22) and (23) ensure

that the departure time of a parcel equals the departure time of the driver who will

carry it. Constraints (24) and (25) guarantee that the arrival time of a parcel equals

the departure time of the driver who will carry it. Thus, Constraints (22)–(25) ensure

the time consistency of a parcel and all the drivers carrying it. Constraints (26) ensure

that the departure time of the driver who brought the parcel to a particular node is no

earlier than the departure time of the parcel. Constraints (27) deal with the boundary

situation of Constraints (26) that the driver who has arrived at his destination with a

parcel has to stay until the parcel departs again. Constraints (28) guarantee that the

arrival time of the driver who will carry the parcel arrives earlier than the parcel. If

y ¼ 0, then only Constraints (26) and (27) hold, and if ypj ¼ 1 then only Constraints

(28) hold. This either/or behavior ensures that parcels are never left unattendedly.

Constraints (29) and (30) are domain constraints.

Valid inequalities In addition, we add the following valid inequalities to the

model that help us find the optimal solution faster. Although these five sets of

constraints are not necessary, the scenarios we tested show that they can reduce the

run time by up to 11.6%.
X

i

Zqij ¼ 1 8q; j ¼ wQ
q ð31Þ

D
Q
qi �M

X

j

Zqij 8q; 8i 2 N n wQ
q

n o
ð32Þ
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A
Q
qi �M

X

j

Zqij 8q; 8i 2 N n oQq

n o
ð33Þ

DP
pi �M

X

q

X

j

Ypqij 8p; 8i 2 N n wP
p

n o
ð34Þ

AP
pi �M

X

q

X

j

Ypqij 8p; 8i 2 N n oPp

n o
ð35Þ

Constraints (31) ensure each driver will visit the destination once and only once.

Constraints (32)–(35) prevent assigning arrival and departure times to the non-

visited nodes of drivers and parcels. In fact, Constraints (6) are also valid

inequalities, the purpose of which is to restrict a driver from traveling via the other

drivers’ possible paths on the subgraph. This set of constraints effectively reduce the

actual size of the ILP model.

In closing this section, we remark on how to relax the assumption that any driver

cannot visit a node more than once. Instead of using a node-based formulation, we

need to use an arc-based formulation with a set of constraints to ensure that every

driver does not visit a directed arc more than once.

5 Algorithms

The MDMPMP is an extension of the Share-A-Ride Problem, which is an NP-hard

problem. The computational complexity of the MDMPMP motivated us to develop

heuristics to efficiently solve the problem. In Sect. 5.1, we propose the time

compatibility heuristic (TC-heuristic), the basic idea of which is to assign each

parcel to the shortest feasible path in the subgraph, yet checking the time

compatibility on the basis of every assignment. These time compatibility checks can

be computationally costly, as the dependency of the assignments increases. In

Sect. 5.2, we propose the time-expanded graph based heuristic (TEG-heuristic), the

basic idea of which is to use a more stable structure to model the

timetable information.

5.1 Time compatibility based heuristic

The basic idea of the TC-heuristic is to assign each parcel to the shortest feasible

path on the subgraph described in Sect. 5.1, where feasibility is based on the time

compatibility and capacity availability between the parcel and the associated drivers

on the path. For each object (either a parcel or a driver), there exists a time interval

associated with a node, a time range between the earliest possible time to arrive at

this node from the origin and the latest possible time to depart from this node in

order to arrive at the destination on time. Time compatibility refers to the existence

of an intersection between the time interval of drivers and parcels, either two drivers

or a driver and a parcel. Figure 2 describes the major steps of the TC-heuristic.
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The parcels are sorted in decreasing shipping cost if delivered by the shipping

company. As such, the more costly parcels will have bigger chances of being

assigned to the crowd. Having the subgraph built, the TC-heuristic finds the shortest

path of each parcel on the subgraph. Finding a physical path through the subgraph is

not a sufficient condition for a match. In addition to the car capacity constraints, the

time constraints of a parcel must also fit those of the drivers’. The major challenge

of this heuristic is how to evaluate the time compatibility issue of a parcel and all

the drivers who are assigned to deliver the parcel along the way. To this end, we

need to construct time intervals of parcels and drivers on each node.

The TC-heuristic utilizes the bidirectional A* search to solve the shortest paths of

parcels. For each step, forward and backward, it checks the time compatibility. The

lower-bound of a parcel’s time interval in the forward A* search (the upper-bound

of a parcel’s time interval in the backward A* search) at a node is represented by the

earliest arrival time departing from the origin (destination). Since the path from the

current node to the sink in each search direction has not been fixed yet, the time

needed to travel to the sink is approximated by the time needed if traveling through

Fig. 2 Flowchart of the TC-heuristic
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‘‘airplane distance’’. As such, the exact value of the upper-bound of a parcel’s time

interval in the forward A* search (the lower-bound of a parcel’s time interval in the

backward A* search) can be estimated as above.

To solve the time compatibility issue for drivers, we introduce the concept of the

equivalent time interval associated with a driver at a node, which is the possible

time interval for the driver if he would pass the node as part of his route. These

nodes do not necessary belong to the feasible paths of the driver. In order to become

a ‘‘time-compatible’’ node on a parcel path, the intersection of the parcel’s time

interval and the equivalent time intervals of those drivers who have carried the

parcel must be non-empty. Figure 3 provides an illustrative example of the time

compatibility check. A parcel (P) is requested to be shipped from Node 1 to Node 4.

Drivers 1, 2, 3 and 4 (D1, D2, D3, and D4) travel from 1 to 5, 2 to 6, 3 to 7, and 3 to

7, respectively. The numbers in italic are inputs and the rest are obtained via

calculation. The time intervals of the parcel and the equivalent time intervals

associated with the drivers are calculated. The parcel has been carried by D1 and D2

to Node 3. Spatially, either Driver 3 or Driver 4 can take the parcel from Node 3 to

Node 4. By checking the time compatibility at Node 4, P \ D1 \ D2 \ D3 ¼ ;
while P \ D1 \ D2 \ D4 ¼ ð240; 250Þ 6¼ ;. Therefore, Node 4 is a time-compatible

node associated with P, D1, D2 and D4. It is important to mention that the arrival

time and the departure time at a node are assumed to be equal, which implies that

the drivers do not wait after departure.

The time compatibility is checked at each step of the algorithm with

approximated values and it is checked with exact values when a path is found. If

the final check of a path fails, the algorithm keeps searching for more paths, and

stops when a feasible path is found or all possible paths have been checked. If no

feasible path is found, the parcel will be delivered by the shipping company.

5.2 Time-expanded graph based heuristic

The pairwise time compatibility checks in the TC-heuristic might lead to a

combinatorial explosion in realistic problems with more potential meeting points

and more transfers. The computational complexity of the TC-heuristic motivated us

P: (190, 250)
D1: (240, 290)
D2: (200, 255)
D3: (120, 150)
D4: (120, 250)

1

42

3

5

6

7

Parcel: 1->4; (0, 250)
D1: 1->5; (50,200)
D2: 2->6; (50, 200)
D3: 3->7; (50, 200)
D4: 3->7; (50, 300)

D1: (150, 200)

P: (0, 60)
D1: (50, 100)

P: (40, 100)
D1: (90, 140)
D2: (50, 105)

D2: (145, 200)

D3: (170, 200)
D4: (170, 300)

P: (120, 180)
D1: (170, 220)
D2: (130, 185)
D3: (50, 80)
D4: (50, 180)

Fig. 3 Time compatibility
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to develop a second heuristic for solving larger-scale problem instances. In

particular, we engineer the MDMPMP by exploiting a dynamic time-expanded

graph that is typically used in public transportation to model timetable information.

Given the information associated with a driver q (i.e., EQ
q ; L

Q
q ; o

Q
q and wQ

q ), we

define l ¼ fs1; s2; t1; t2; qg as an offer with s1; s2 2 S; q 2 Q; t1\t2; s1 6¼ s2, mean-

ing that driver q needs to drive from s1 to s2, departing at the earliest t1 and arriving

at the latest t2. Each offer corresponds to a set of possible paths that satisfy this

offer. Figure 3 provides an illustration of what an offer is. D4 travels from Node 3 to

Node 7, and thus his initial offer is f3; 7; 50; 300; 4g. After Parcel P is assigned to

D4, he has to go from Node 3 to Node 7 through Node 4 within a certain time

window, considering of the schedule of D1, D2 and P. Accordingly, his offers are

updated as f3; 4; 170; 250; 4g and f4; 7; 240; 300; 4g.
A delivery request contains an origin oPp , destination wP

p , earliest departure time

EP
p , and implicit service window LPp � EP

p . The time expanded graph can be defined

by time nodes and time edges. A time node is denoted by a triple (n, l, t),

representing this driver’s offer l at node n at time t. There exists a time node for

every departure or arrival of a driver. Each time edge is associated with a weight

that is the travel time. Note that on a TEG, a station node is represented by a set of

time nodes, which are sorted according to the time of the event they represent. The

time-ordered nodes of a station can be connected by so-called transfer edges that

model the waiting within the station. For the details of this technique we refer to

Drews and Luxen (2013). Here, we focus on the differentiating feature of the TEG-

heuristic, compared to the typical TEG method.

The proposed TEG-heuristic can be divided into two parts. First, to use the

drivers’ information to build a TEG based on graph G. Second, to greedily assign

parcels to drivers’ offers. The critical feature of this approach is that a parcel

delivery request is answered by applying some shortest-path algorithm (A*

algorithm in our case) to a suitably constructed bigraph (i.e., timetable). As

discussed above, parcels may be carried by multiple drivers but cannot be left

unattendedly during the transfer. Hence, either the driver who carries the parcel to

the transfer point or the driver who is going to pick up the parcel from there is

required to wait. Given that the drivers do not have predetermined routes and

schedules, this requirement makes the time that a driver has to spend on each

transfer point highly uncertain, not only depending on the path he travels, but also

on the path of the driver whom he is going to hand over the parcel to. In order to

localize the procedure of finding the possible paths for each driver, we apply a fixed

‘‘hold time’’ to each driver who needs to hand over a parcel. Any transfer that takes

longer than the ‘‘hold time’’ is not possible. At a potential price of finding less

possible paths, forcing the drivers to wait a ‘‘hold time’’ at each transfer enables us

to find the possible paths for each driver by considering only his/her own detour and

time constraints, which can be efficiently done by any shortest-path algorithm. As

we discuss later on, post-processing can be used to reduce the negative impact of the

fixed ‘‘hold time’’. Similar to slotted TEGs, on the other hand, the fixed ‘‘hold time’’

adds some reliability to making transfers and thus reflects arguably more realistic

scenarios (Drews and Luxen 2013). Following this idea, we propose a greedy
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heuristic that incorporates the TEG procedure for the MDMPMP. Figure 4 describes

the major steps of the TEG-heuristic.

The TEG-heuristic simplifies the MDMPMP by letting drivers depart at their

earliest departure times. In fact, for the realistic MDMPMP drivers are fine with any

postponement of departure as long as they can arrive on time. This discrepancy

leads us to develop an improved version of the basic TEG-heuristic, which we call

the constrained randomized TEG-heuristic (CR-TEG heuristic). In this algorithm,

the initial solution obtained by the TEG-heuristic is then improved by attempting to

randomize the departure times of the drivers who have not yet had any parcel

assignment. The results are also compared with a fully randomized version (R-TEG

heuristic) where we attempt to find the best solution among the independent

iterations of the basic TEG-heuristic with randomly generated departure times for

all drivers, including those that already have parcels assigned to.

5.3 Discussion

In the previous subsections, we proposed two very different approaches that solve

the MDMPMP as shortest-path problems in weighted graphs. The TC-heuristic

Fig. 4 Flowchart of the time expanded graph based heuristic
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applies a routing algorithm in a road network, while the TEG-heuristic utilizes the

time-expanded graph approach that is typically used to model timetable information

in public transportation where the routes and schedules are usually predetermined.

As such, the most differentiating feature of the two approaches is whether the

decision on a driver’s route and the corresponding time schedule affects the

feasibility of another driver’s decision.

Given that drivers’ timetable information are not modeled explicitly in the TC-

heuristic, a driver’s time interval at a node not only depends on the path he travels,

but also on the paths of the drivers who previously carried the same parcel. Thus,

the pairwise time compatibility has to be checked at every step of the heuristic. Such

time compatibility checks can be computational costly. Even worse, the fulfillment

of all the checks with approximate values cannot guarantee the feasibility of the

candidate path in the final check. Very differently, the TEG-heuristic creates a fixed

‘‘hold time’’ as a buffer between any two consecutive drivers along a parcel’s path

in order to localize the procedure of finding possible paths for each driver. At a

potential price of finding less possible paths, forcing the drivers to wait a ‘‘hold

time’’ at each transfer enables us to find the possible paths for each driver by

considering only his own detour and time constraints.

In order to reduce the computational complexity, The TC- and TEG-heuristics

are not designed to consider all the possible paths of each driver. Under the

assumption that drivers do not wait after departure, the TC-heuristic loses feasible

solutions with transfers that require waiting time, the impact of which is controlled

by adjusting the departure time based on the assignment results, and by minimizing

the number of drivers assigned to a parcel. The TEG-heuristic loses possible paths

in two ways. First, due to the fixed ‘‘hold time’’ at each transfer, drivers’ effective

travel time decreases. Second, drivers are assumed to depart at the earliest departure

time in the original TEG-heuristic. Although it cannot regain the lost paths, post-

processing may improve the objective value of the existing driver-parcel assign-

ments by re-optimizing the time schedule of the given assignment. To this end, we

can run the ILP by using the resulting Zqij; Ypqij and Wp from the TEG-heuristic as

input. Moreover, these two approaches are greedy algorithms in the sense that they

give matching priority to parcels that are more expensive to deliver. As such, the

locally optimal assignments eliminate a subset of drivers’ possible paths, which may

include the global optimum. In addition, as a starting point, a shortest path algorithm

is used by both heuristics as an efficient way to generate possible paths for parcels,

which deviates from the fact that parcels are not as time sensitive as people. The

heuristics might lead to a better results without this rule. From a different angle, the

shipping company may view it as a business opportunity to segment customers by

providing even more speedy delivery service.

To summarize, the search spaces of the two heuristics intersect. However, the

TC-heuristic tends to be able to generate more possible paths, and thus, it is more

likely to find a better solution at the cost of computational effort, especially in

small-to-medium instances where number of transfers is rather limited. Considering

the potential shortcomings of the TEG-heuristic, we proposed two variants to
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generate different departure times aiming at mitigating the loss of possible paths, the

benefits of which are shown in Sect. 7.

6 Experimental settings

In this section, the experimental settings are described. Our goal of the numerical

experiments is twofold. First, we present the features of the MDMPMP and the

efficiency gain by integrating crowdshipping. Second, we show that our solution

methods can obtain high quality solutions in reasonable time.

Three basic factors affect the complexity of the problem: the number of drivers,

the number of parcels, and the maximum detour. Two additional factors that affect

the behavior of the model are the spatial distribution of the network and the

planning horizon. The experiments reported here are to test the influence of these

five factors. The results are analyzed from the standpoints of the shipper, drivers,

parcel senders, and the society. From the shipper’s perspective, the most important

performance indicator is the total cost spent on delivering all the parcels on time,

either by the crowd or by itself. The compensation for drivers relates to the

kilometers traveling with parcel(s), the number of parcel transfers, the waiting time

during transfer, and the detour distance. Another performance indicator that can

show the benefit of our model is the match rate, a ratio between the number of

parcels delivered by the crowd and the total number of parcels to be delivered. For

drivers, we record the maximum, minimum and mean values of drivers’ extra travel

time, as well as the average capacity utilization of a driver’s car. For parcels, the

average number of hops is the only performance indicator. In terms of social

welfare, we use the parcel-miles saved as an indicator for the reduction of traffic

congestion and CO2 emission. Considering the difficulty in estimating the extent of

consolidation for unmatched parcels in practice, we assume that these parcels are

delivered by the shipper using a traditional parcel delivery service. As such, this

indicator provides an optimistic estimation of the potential social benefit of

crowdsourced shipping.

We start the numerical experiments with small-scale networks with graphs of 25

nodes. Two different spatial distributed sets with 25 nodes generated from the

Solomon’s benchmark problem R101 are considered: the scattered set and the

clustered set. In particular, customer locations 26–50 are used to generate the

scattered set, while customer locations 76–100 are used to generate the clustered set.

The scattered set nicely represents the characteristics of the evenly-distributed

cities, while the clustered set represents a network with city clusters. We multiply

the coordinations of these nodes by 3, resulting in an area of 210� 210 kilometers

(roughly the size of the Netherlands) and connect them by generating the Delaunay

graph (Delaunay 1934) for the two sets of 25 nodes. A Delaunay graph for a set of

nodes in a plane is a graph such that no node is inside the circumcircle of any

triangle in the graph. It is a geometric spanner with the best upper bound known,

that is, the shortest path between any two nodes, along Delaunay edges, is known to

be no longer than 4p
3
ffiffi
3

p � 2:418 times the Euclidean distance between them. This

property can be exploited to compute shortest paths efficiently, which allows us to

Multi-hop driver-parcel matching problem with time windows 535

123



focus on the efficiency of the main operations such as the time to compute a match

and the time to add an offer. The Delaunay graph is also used to construct road

networks on given sets of nodes by Vckovski et al. (1999), Baccelli et al. (2000)

and Liu (2014). The resulting graphs are depicted in Fig. 5.

The Euclidean distance is used to calculate the distances between the connected

nodes. Each driver’s earliest departure time is uniformly distributed between 0 and

120 (representing the time window between 8 am and 10 am); his/her latest arrival

time is the summation of the corresponding earliest arrival time plus a time slack.

Any time slack is assumed to be dependent on the associated driver’s shortest travel

distance rq. We assign a time slack of 30 min to the driver who has the shortest

shortest path and a time slack of 120 to the driver who has the longest shortest path.

For the rest of the drivers, the corresponding time slack is calculated proportionally

based on the length of his/her shortest path. These numbers are reasonable regarding

the network used in the experiment. The cost and capacity related parameters are

summarized in Table 2. The value of the cost parameters that are used in the

experiments are inspired by the real life situation in the Netherlands.

In order to study how parcels’ time windows affect the matching performance,

we consider three delivery service options, namely, the next-day, the same-day and

Table 2 Cost and capacity

related parameters
Parameter Value

Average speed 60 km/h

Vq Uniform� (5,6,7,8,9,10)

vp Uniform� (1,2,3,4)

cp 20þ 0:1� SP

w1 0.09 €/km

w2 2 €

w3 10 €/h

w4 0.3 €/km

Fig. 5 The two networks used in smaller-scale test problems a Scattered network (SC), b Clustered
network (CL)
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the urgent delivery options. Table 3 provides a summary of the three delivery

options concerning the earliest departure and the latest arrival times.

In order to understand the efficiency of integrating crowdshipping in a more

realistic setting, we consider a case that might be faced by a shipping company

operating in the Netherlands using the proposed heuristics. The network used in this

more realistic case consists of 39 big cities in the Netherlands. Each city is

represented by a node on the graph. We assume that transfers can only happen in the

cities. All crossings/mergings of the roads within a 5-km radius of each city center

are also assumed to be located at the city center as a potential transfer point. The

edges between each city pair represent the travel route chosen by Google Maps

under the criteria of shortest driving time. The resulting graph is depicted in Fig. 6.

7 Numerical results

Test instances are solved on an Intel Core i7-4790 3.60 GHz, CPU 8 GB RAM

computer. The ILP is solved by using the standard CPLEX12.4MIP solver inAIMMS.

The TC-heuristic is implemented using Delphi XE7. In order to take advantage of

existing open-source libraries and frameworks to build the time-expanded graph

structure, the TEG-heuristics (i.e., TEG, CR-TEG and R-TEG) are implemented in

Java. Statistically, Delphi XE6 is found to be at least 3 times as fast as Java

(Arudchelvam et al. 2013; Karaci 2015). Due to the performance gap between the two

compilers in terms of run time, our analysis of the performance of the two heuristics

concerning run time will focus on the increments rather than the absolute values.

Sections 7.1 and 7.2 study the features of the MDMPMP based on the optimal

solution for different scenarios. A scenario refers to a problem setting with respect

to the number of drivers and parcels, the maximum allowed detour, the set of

delivery windows, and a certain network, the results of which are averaged over 10

instances. Section 7.1 analyzes the impact of crowdsourced shipping in different

spatial distributions of the network from different stakeholder’s viewpoints.

Section 7.2 highlights the influence of the planning horizon. In Sect. 7.3, we

compare the performance of the two proposed heuristics. In Sect. 7.4, we study the

more realistic case.

7.1 Results of the ILP

In this subsection, we illustrate the performance of the ILP with different maximum

detours and different number of drivers and parcels, the results of which are

compared with the situation where crowdsourced shipping is not implemented

Table 3 Delivery service options

Earliest departure time Latest arrival time Representing time window

Next-day 0 450 8 a.m.–5 p.m.

Same-day Uniform� (0,180) 450 11 a.m.– 5 p.m.

Urgent Uniform� (0,270) EP
p þ 180 3 h
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(denoted by NoCrowd). Figure 7 presents the total costs with varying maximum

detour d for 15 drivers and 30 parcels. In the interest of readability, we remind the

reader that the scales of the y-axis in some figures may differ for two subfigures.The

total cost of NoCrowd provides an upper bound of the driver-parcel matching

system; the total cost obtained by the ILP provides the best lower-bound. As d
increases, more parcels can be delivered by the crowd, at the expense of increasing

travel distances, which becomes a source of CO2 emission and traffic flow. A higher

driver participation could be a socially responsible alternative, given that the drivers

who participate in this problem need to travel anyway. Besides, Fig. 8 shows its

economic viability. In order to illustrate the ideas in a transparent manner, the

results of varying d in Fig. 8 is a reorganization of the results obtained by the ILP in

the scattered and clustered networks that are shown in Fig. 7. Starting from the

benchmark case of #driver = 15, #parcel = 30 and d ¼ 0:05, it compares the total

cost of 15 participating drivers at d ¼ 0:05; 0:1; 0:15; 0:2, and the total cost of 15,

20, 25, and 30 participating drivers who are willing to deviate at d ¼ 0:05. The

Fig. 6 The network used in the realistic case
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total cost is plotted as a function of d and #driver, respectively. In the scattered

network (SC), we find that the total cost function of #driver always has a steeper

slope. Since we start from the same benchmark case, this means that the total cost of

having 5 additional participating drivers is always lower than a 5% points increase

in the driver’s willingness to deviate from their shortest path; the difference is

increasing with increasing #driver and d. Such a cost advantage does not always

exist in the clustered network (CL).

Tables 4 and 5 report on the numerical results with varying number of drivers

and parcels using a maximum detour of 10%. We define the parcel-miles saved as

the difference between the sum of the shortest paths lengths of all parcels that are

delivered through crowdsourced shipping and the increase in driver-miles for

delivering those parcels. The total cost of EA is obtained by the ILP; the total cost of

NoCrowd is calculated by
P

p cpWp. Table 4 shows that the total cost decreases

with increasing number of drivers, because the parcels can be delivered by the most

appropriate driver(s) among a larger pool of them. Table 5 shows that the total cost

increases with increasing number of parcels, because more parcels need to be

delivered. Moreover, increasing number of drivers and parcels are both more

socially desirable since the overall cost efficiency of the assigned parcels and drivers

increases with increased number of parcels and drivers in the candidate pool. In

order to present some joint observations in Tables 4 and 5, we define the driver-

Fig. 8 The comparison of varying d given #driver ¼ 15, and varying #driver given d ¼ 0:05

Fig. 7 The impact of maximum detour on total cost (#driver = 15, #parcel = 30)
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parcel (DP) ratio, the ratio between the number of drivers and the number of parcels.

It seems to suggest the existence of a critical DP ratio (1 in SC and 0.33 in CL),

below which, the percentage cost saving remains stable. Although the potential cost

saving from the crowd is relatively robust in this case, the overall parcel-miles

constantly increases. This is because more suitable parcels among a relatively larger

parcel pool can be assigned to the crowd. Fleet consolidation leads to a significant

reduction in overall parcel-miles, and thus reduced CO2 emission and traffic

congestion. Above the critical DP ratio, the percentage cost saving increases as the

DP ratio increases, which results from assigning parcels to more suitable drivers

among a relatively larger driver pool. Note that this increased driver-parcel ratio can

be translated into either an increased number of drivers or a decreased number of

parcels. Although the maximum extra travel time (the average over the maximum

values of each instance) for a driver varies from 6.5 to 17.8 min, the average extra

time is less than 4 min for all the scenarios. Based on the basic results presented in

Tables 5 and 9 studies the correlation between capacity utilization and parcel-miles

saved, both resulting from varying the number of parcels. It suggests that a positive

correlation exists between the parcel-miles saved and the capacity utilization, and

the correlation coefficient is larger in SC.

We observe that the cost performance and the match rate in CL is better than in

SC. For instance, given the same number of drivers and parcels, the average cost

reduction in CL is about 70% higher than in SC. The match rate in CL can reach

91%, when the DP ratio is 3. The average number of hops for a parcel to reach its

destination is also larger in CL. These phenomena can be explained by the fact that

the majority of drivers’ and parcels’ origins and destinations are close to each other

within the clusters, leading to a denser subgraph consisting of drivers’ possible paths

for these parcels. We also find that different key parameters in SC and CL have a

different effect on the total cost. For instance, the maximum allowed detour has

more impact on the total cost in CL (see Fig. 7), while the total cost in SC reacts

stronger to increasing car capacity utilization (see Fig. 9). In addition, implementing

crowdsourced shipping saves more parcel-miles in SC in 6 out of the 8 scenarios.

This is mainly because SC is more geographically spanned, that is, the average

distance between any two nodes in SC is about 48% longer than in CL. The parcel-

miles saved is larger in CL only when its match rate is significantly higher, i.e., the

DP ratio between 0.5 and 1 in Fig. 10.

To conclude, we find that in general (1) the total cost decreases with increasing

number of drivers, and (2) increasing number of drivers and parcels are both more

socially desirable. Comparing the two networks, we find that (1) the cost

performance and the match rate in CL is better than in SC, and (2) crowdsourced

shipping saves more parcel-miles in SC.

7.2 Impact of delivery time windows

The same-day delivery option is rare and expensive in the Netherlands. The goal of

this subsection is to show that by using crowdsourced shipping, a shipper can

provide affordable same-day delivery services to its customers.
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Tables 6 and 7 provide a summary of the results obtained under different delivery

options, including next-day delivery, same-day delivery, and 3-hour emergency

delivery services. We observe similar trends of the cost reduction and the match rate

in the same-day delivery and the 3-hour delivery service by varying the number of

parcels and drivers. In Table 7, although the delivery window in the same-day

delivery is only 1.5 hours less on average compared to the next-day delivery, the

cost saving drops 4.7% (7.9%) on the SC (CL), which is 1.2 (1.4) times more than

the cost saving reduction from the same-day delivery to the 3-hour delivery service.

This seems counter-intuitive at first glance. However, it can be explained by the fact

that the shipper mainly use the morning commute (8–10 a.m.) of the crowd to

deliver parcels, yet the parcels that are delivered via the same-day delivery option

are ready at 9:30 a.m. on average. It results in a drastic decrease in available drivers.

Therefore, it is important for the shipper to fully understand the feature of the
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Fig. 10 Impact of the DP ratio on the match rate

Fig. 9 Impact of driver’s capacity utilization on parcel-miles saved
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crowd’s schedule and select the delivery options that are compatible with

crowdsourced shipping. Otherwise, the shipper may lose not only the benefit of

crowdsourced shipping but also the opportunity of in-house resource consolidation.

Tables 6 and 7 also show that if crowdsourced shipping can be efficiently

implemented, faster delivery service options can be provided with lower costs.

7.3 Performance of the algorithms

In this subsection, we illustrate the computational performance of both the TC-

heuristic and the TEG-heuristic in the small-scale numerical setting with different

maximum detours as well as different number of drivers and parcels, the results of

which are compared with the exact solution, and the NoCrowd solution.

Compared to the exact solution given by the ILP, the optimality gap varies

between 2.9% (2.5%) and 49.9% (39.4%) for the TC (TEG) heuristic. Based on the

Table 6 Results under different delivery options varying the number of drivers (d ¼ 0:1)

Network #driver #parcel NoCrowd Cost saving (%) Match rate

Next

day

Same

day

Urgent Next

day

Same

day

Urgent

SC 15 15 489.9 17.6 12.2 8.9 0.30 0.21 0.15

30 487.9 37.8 33.3 23.9 0.67 0.56 0.37

45 494.5 44.3 33.9 21.4 0.78 0.57 0.35

CL 15 15 423.0 34.8 26.8 18.8 0.50 0.39 0.27

30 413.1 53.7 33.9 30.4 0.75 0.59 0.42

45 416.7 65.7 55.3 34.5 0.91 0.76 0.47

Table 7 Results under different delivery options varying the number of parcels (d ¼ 0:1)

Network #driver #parcel NoCrowd Cost saving (%) Match rate

Next-day Same-day 3-h Next-day Same-day 3-h

SC 15 15 489.9 17.6 12.2 8.9 0.30 0.21 0.15

30 974.7 15.9 11.6 7.9 0.27 0.20 0.13

45 1455.8 16.9 13.1 8.4 0.30 0.23 0.14

60 1953.4 17.8 12.3 8.0 0.31 0.22 0.13

75 2475.8 15.4 10.7 6.8 0.27 0.19 0.11

90 2915.5 14.6 10.4 7.5 0.25 0.18 0.12

CL 15 15 423.0 34.8 26.8 18.8 0.50 0.39 0.27

30 835.4 33.8 23.1 17.9 0.48 0.33 0.25

45 1271.5 26.4 19.1 14.8 0.37 0.27 0.21

60 1662.7 25.9 18.2 12.6 0.36 0.25 0.18

75 2099.1 24.7 19.9 12.7 0.35 0.28 0.18

90 2531.0 25.8 16.9 12.6 0.37 0.25 0.18

544 W. Chen et al.

123



percentage difference from the exact solution, Figs. 11 and 12 depict the quality of

the solutions obtained by the TC, TEG, CR-TEG and R-TEG heuristics by varying

the number of parcels and drivers. Given a fixed number of drivers (i.e.,

#driver ¼ 15), Fig. 11 shows that the performance of every solution method is

robust to changes in the number of parcels, compared to the best possible practice.

This means that as the number of parcels increases, the percentage difference

between the solution obtained by a certain heuristic and the exact solution obtained

by solving the ILP does not vary a lot. In contrast, the heuristics perform less with

increasing number of drivers (see Fig. 12). This is mainly due to the neglect of the

increasing number of possible paths for the drivers, as the previous analysis has

shown that the number of drivers is a dominant source of the computational

complexity. Even so, all the proposed heuristics can be used to obtain a solution that

performs much better than the NoCrowd situation. Arguably, the R-TEG heuristic

outperforms the other methods in all these scenarios and its deterioration rate is the

lowest among the four heuristics, as the number of drivers increases. The above

results are computed using a maximum detour of 0.1. Interestingly, as seen before,

Fig. 11 Impact of the number of parcels, compared to the exact solutions

Fig. 12 Impact of the number of drivers, compared to the exact solutions
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Fig. 7 shows that when d is small, the TC-heuristic performs better than the three

TEG heuristics, but it gets behind quickly as either the number of drivers or the

maximum detour increases. This demonstrates the fact that when the subgraph that

is constructed by drivers’ possible paths becomes better connected, the number of

potential transfers for each parcel increases. As such, not being able to wait at

transfer points becomes the most influential adverse factor that affects the quality of

the solution. Figure 13 also shows that the TEG approaches perform consistently

well as the maximum detour increases.

The run time of each solution method spent in solving the different scenarios is

summarized in Tables 8 and 9. We see that the number of drivers is a major source

of computational complexity, compared to the number of parcels. For each instance,

the CR-TEG and the R-TEG heuristics run for 100 iterations and 1000 iterations,

respectively. Obviously, these two heuristics achieve a better solution at the cost of

having a 100–1000 times longer run time. Therefore, we study the number of

iterations needed for CR-TEG (R-TEG) to achieve a certain percentage improve-

ment on the gap between the TEG objective and the objective of the CR-TEG (R-

TEG) after 100 (1000) iterations. The results of using #driver ¼ 15;#parcel ¼
90; d ¼ 0:1 are shown in Fig. 14. We see that the CR-TEG heuristic reaches 90%

improvement after 8 iterations in SC and after 10 iterations in CL. The R-TEG

Fig. 13 Impact of d, compared to the exact solutions

Table 8 Summary of the run time by varying the number of drivers (d ¼ 0:1)

Network #driver #parcel Run time (s)

TC TEG CR-TEG R-TEG EA

SC 15 15 0.006 0.003 1.255 2.813 1.846

30 0.028 0.007 2.191 6.604 2367.392

45 0.029 0.010 2.869 9.688 12852.460

CL 15 15 0.006 0.005 1.925 5.385 28.355

30 0.019 0.011 3.177 11.103 4610.559

45 0.032 0.019 4.019 18.515 16539.498
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heuristic obtains 90% improvement after 98 iterations in SC and after 23 iterations

in CL. We also studied the other scenarios and found similar patterns. The fast

convergence of the heuristics shows the added value of using even more iterations is

limited.

Based on the results of the smaller instances (i.e., 15–45 drivers and 15–90

parcels with at most 0.2 detour), we find that TC and R-TEG provide solutions with

approximately the same quality. We recommend to use TC because it requires less

run time.

Fig. 14 Convergence speed of the CR-TEG and R-TEG heuristics

Table 9 Summary of the rum time by varying the number of parcels (d ¼ 0:1)

Network #driver #parcel Run time (s)

TC TEG CR-TEG R-TEG EA

SC 15 15 0.006 0.003 1.255 2.813 1.846

30 0.008 0.004 1.514 3.878 30.873

45 0.011 0.006 2.249 6.381 88.961

60 0.006 0.007 2.351 7.090 37.831

75 0.014 0.006 2.062 6.326 196.111

90 0.016 0.008 2.577 8.115 76.930

CL 15 15 0.006 0.005 1.925 5.385 28.355

30 0.014 0.008 2.550 8.137 1627.549

45 0.019 0.009 3.019 8.649 3130.300

60 0.015 0.009 2.959 9.227 4391.117

75 0.019 0.011 3.190 11.388 22442.349

90 0.020 0.011 3.405 11.345 7008.197
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7.4 Realistic case

In this subsection, we solve a larger-scale problem setting that a Dutch shipping

company might face when using crowd based shipping within the Netherlands using

the proposed heuristics. We compare the efficiency of each heuristic and also

compare the results with the NoCrowd scenario that the shipper delivers all the

parcels itself. Our goal is two-fold. First, we want to show that the proposed

heuristics are capable of solving real life problems in reasonable run time. Second,

the MDMPMP could be an economically sound alternative for a shipper, and can

lead to socially desirable results.

Since the number of drivers is a major source of computational complexity, we

consider scenarios with 300 parcels and varying number of drivers ranging between

100 and 900. The results are shown in Table 10. Note that the objective values are

measured as percentage improvement as compared to NoCrowd. A larger

percentage corresponds to a bigger improvement, and therefore is better. As

explained at the beginning of Sect. 7, we focus on the increments rather than the

absolute values concerning the run times. We see that the run time of the TC

heuristic increases super-linearly with respect to the number of drivers, whereas the

run time of the TEG-typed heuristics increases linearly. For the largest scenario that

we test (i.e., 900 drivers, 300 parcels, 0.1 maximum detour and next-day delivery

window), the use of the TC (TEG) heuristic leads to 53.4% (38.5%) average

reduction in the overall cost compared to NoCrowd, with a run time of 43.9 (3.2)

Table 10 Results of a realistic case under different delivery options (#parcel = 300, d ¼ 0:1)

Delivery

option

#driver Relative difference in objective value

compared to NoCrowd

Run time (s)

TC

(%)

TEG

(%)

CR-TEG

(%)

R-TEG

(%)

TC

(%)

TEG

(%)

CR-TEG

(%)

R-TEG

(%)

Next-day 100 16.9 11.4 12.5 13.6 2.045 0.171 12.275 34.127

300 46.9 25.3 29.4 29.2 9.738 0.993 65.736 198.648

500 52.1 34.2 39.0 38.1 15.656 1.839 101.066 367.745

700 53.2 39.0 42.2 42.4 28.938 2.723 167.474 544.695

900 53.4 38.5 40.4 39.3 43.878 3.220 131.794 643.949

Same-day 100 15.3 9.7 11.3 11.7 1.735 0.173 12.254 34.585

300 40.2 22.6 27.2 27.4 9.482 0.925 60.059 184.925

500 49.2 29.2 37.4 34.8 17.545 1.769 100.447 353.868

700 52.0 32.3 42.7 39.1 29.717 2.565 144.293 512.900

900 52.2 33.4 43.8 38.7 46.388 3.320 144.990 664.015

Urgent 100 13.5 7.8 9.7 10.8 1.391 0.172 11.115 34.466

300 30.5 17.2 23.1 22.2 9.377 1.021 67.539 204.139

500 37.2 22.5 31.7 29.3 21.043 1.523 114.407 304.521

700 42.0 24.8 36.5 36.0 37.027 3.324 167.370 664.809

900 43.2 25.2 39.4 32.5 60.435 4.510 231.232 901.989

Considering the convergence speed as well as to keep run times reasonable, 50 iterations are applied to

the CR-TEG and 200 iterations are applied to the R-TEG
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seconds. We also present the averaged values of Table 10 with varying the number

of drivers and delivery options in Table 11. We find that on average TC performs

8.6 percent points better than the best result obtained by the TEG heuristics. In

general, the gap is smaller in scenarios with a higher number of drivers (e.g., #driver =

700, 900) and shorter delivery time windows (e.g., urgent delivery). We also find

that there is almost no impact on the run time between the next-day delivery and the

same-day delivery, but a run time increment between the same-day delivery and the

urgent delivery.

As the problem scale increases, the CR-TEG outperforms the R-TEG in both

quality and run time. Due to the substantial increase in the solution space, the CR-

TEG has a steeper and more steady descent by fixing the existing parcel-driver

assignments. Similar to a random walk, the R-TEG is better at escaping from a local

minimum and achieve better solutions in principle, but the limited number of

iterations compared to the solution space becomes a barrier. Furthermore, the

impact of shortening the time window has the least impact on the CR-TEG, mainly

because the solution is obtained based on an initial solution where drivers are

considered to depart at the earliest departure time.

To conclude, TC has the better performance concerning solution quality and run

time in all the tested instances up to 900 drivers and 300 parcels, as compared to

CR-TEG and R-TEG. Therefore, we recommend the TC heuristic for applications

using a smaller scale. However, we also see that the run time of TC increases super-

linearly with respect to the number of drivers, whereas the run time of the TEG-

typed heuristics increases linearly. It is foreseeable that when the number of

participating drivers, the number of parcel requests and the number of cities are

even larger, the TC heuristic can become computationally prohibitive to solve.

Under this circumstance, the CR-TEG heuristic is the best alternative based on its

overall performance with respective to quality and run time. On the other hand, if

the management wants to have a reasonably good solution with short run time, then

TEG should be their option.

Table 11 Average results of Table 10 with varying number of drivers and delivery options, measured as

percentage difference compared to NoCrowd solutions (#parcel = 300, d ¼ 0:1)

Relative difference in objective value compared

to NoCrowd

Run time (s)

TC (%) TEG

(%)

CR-TEG

(%)

R-TEG

(%)

TC TEG CR-

TEG

R-TEG

#driver = 100 15.2 9.6 11.2 12.0 1.724 0.172 11.881 34.393

300 39.2 21.7 26.6 26.3 9.532 0.980 64.445 195.904

500 46.2 28.6 36.0 34.1 18.081 1.710 105.307 342.045

700 49.1 32.0 40.5 39.2 31.894 2.871 159.712 574.135

900 49.6 32.4 41.2 36.8 50.234 3.683 169.339 736.651

Next-day 44.5 29.7 32.7 32.5 20.051 1.789 95.669 357.833

Same-day 41.8 25.4 32.5 30.3 20.973 1.750 92.409 350.059

Urgent 33.3 19.5 28.1 26.2 25.855 2.110 118.333 421.985
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7.5 Summary of results

In closing this section, we note that our numerical results validate the potential of

crowdsourced shipping from the perspectives of total shipping cost and parcel-

miles. Using smaller-scale problem instances up to 45 drivers and 90 parcels,

Sects. 7.1 and 7.2 show that if crowdsourced shipping can be efficiently

implemented, the shipping company can provide not only the standard delivery

service but also faster service options with lower costs. Since we use the existing

passenger flows and control their maximum detour, crowdsourced shipping also

creates parcel-miles saving. Although a direct translation between parcel-miles of

all parcels that are delivered through crowdsourced shipping and the additional

miles required for a courier service to deliver the parcels is not provided in the

paper, we believe that there exists a positive correlation between them. Therefore,

crowdsourced shipping can also mitigate the ecological impacts of logistics such as

emissions of greenhouse gas, and traffic congestion. Such ecological benefits differ

among shipping companies, depending on many parameters in operations, such as

the number of vehicles used for delivery, the location of the depots, the service area,

and the time windows for pickup and delivery. Our analysis also points out the

importance of a high participation. Increasing the number of drivers and parcels are

both more cost efficient and more socially desirable. Results from the realistic case

conducted in Sect. 7.4 also confirms that an increasing number of participating

drivers improves the efficiency of the system.

Rather than replacing the traditional logistics services, crowdsourced shipping by

using existing passenger flows can become part of greener logistics networks. It

offers a promising alternative to courier services, parcel deliveries in rural areas,

and parcel deliveries with short time-windows (e.g., same day deliveries). A

common feature of these applications is that they are not able to utilize efficient

hub-and-spoke networks as typically used by the large postal and parcel service

providers.

In addition, our numerical results in Sects. 7.3 and 7.4 provide guidelines in

selecting the most suitable heuristic according to the instance scale. That is, TC is

preferred up to the scale of 900 drivers and 300 parcels, after which CR-TEG

becomes the best alternative.

8 Conclusion

In this paper, we consider the problem where a shipper (or a consortia of shippers)

uses crowdsourced shipping for home deliveries of small-to-medium freight

volumes. In particular, we take advantage of the spare capacity in the private

vehicles from crowdsourced drivers along their scheduled trips. We provide a

general ILP formulation for the multi-driver multi-parcel matching problem, which

can be viewed as an extension of the multi-hop ride sharing problem. The model

incorporates driver’s maximum allowed detour, vehicle capacities, and the option of

transferring parcels between drivers.
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Due to the high computational complexity of the problem, the ILP can be solved

to optimality only for small instances. This motivates us to develop two heuristics:

the time compatibility heuristic and the time-expanded graph heuristic. The time

compatibility heuristic assigns each parcel to the shortest feasible path on a network

that consists of drivers’ possible physical paths, yet checking the time compatibility

for each step can be computationally costly. The time-expanded graph heuristic uses

an approach that is typically used to model timetable information in public

transportation where the routes and schedules are usually predetermined. The most

differentiating feature of the two approaches is whether the decision on a driver’s

route and the corresponding time schedule affects the feasibility of another driver’s

decision. We explain the pros and cons of both heuristics and provide an extensive

experimental comparison of the two approaches.

Assuming the participating drivers need to travel anyway, the numerical results

show that an increasing number of participating drivers is beneficial for the shipper,

and socially desirable due to reduction in CO2 emissions and traffic congestion. In

addition, the results suggest that it is desirable to analyze the characteristics of the

system before implementing a crowdsourced shipping service. For instance, the

spatial characteristics of the logistical network, and the spatial distribution of the

origin and destination of the participating drivers and parcels can affect the

performance of the matching system as well as the response to key parametric

changes. Finally, we show that the TC-heuristic performs well in the small-to-

medium sized problems, while the CR-TEG is recommended for larger-scale

problems.

Future research can be done in three lines. First, future work can be done in

finding a search direction regarding the choice of departure time that gives a faster

convergence for the TEG approach. Second, as an extension towards a semi-online

model environment, a rolling-horizon approach can be introduced. Finally, a

shipping company may consider to collaborate with companies that provide storage

services (e.g., locker systems) at convenient locations, which can loosen the time

synchronization restriction among drivers and parcels.
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