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Abstract Linear-quadratic (LQ) optimization is a fairly standard technique in the
optimal control framework. LQ is very well researched, and there are many extensions
for more sophisticated scenarios like nonlinear models. Conventionally, the quadratic
objective function is taken as a prerequisite for calculating derivative-based solutions
of optimal control problems. However, it is not clear whether this framework is as
universal as it is considered to be. In particular, we address the question whether the
objective function specification and the corresponding penalties applied arewell suited
in case of a large exogenous shock an economy can experience because of, e.g., the
European debt crisis. While one can still efficiently minimize quadratic deviations
around policy targets, the economy itself has to go through a period of turbulence
with economic indicators, such as unemployment, inflation or public debt, changing
considerably over time.We test four alternative designs of the objective function: a least
median of squares based approach, absolute deviations, cubic and quartic objective
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functions. The analysis is performed based on a small-scale model of the Austrian
economy and illustrates a certain trade-off between quickly finding an optimal solution
using the LQ technique (reaching defined policy targets) and accounting for alternative
objectives, such as limiting volatility in economic performance. As an implication, we
argue in favor of the considerably more flexible optimization technique based on
heuristic methods (such as Differential Evolution), which allows one to minimize
various loss function specifications, but also takes additional constraints into account.

Keywords Differential evolution · Nonlinear optimization · Optimal control · Least
median of squares

JEL Classification C54 · C61 · E27 · E61 · E63

1 Introduction

Today, several countries in the European Union face difficulties in mitigating their
public budget deficit and debt issues, which were triggered by the last economic crisis.
In 2010, for example, the first bail-out program for Greece (of 110 Billion Euro) was
approved by the Troika of the International Monetary Fund, the European Central
Bank and the European Commission. In 2013, a 47.5% haircut for deposits above 100
Thousand Euro was applied to several Cypriot banks.

For the Austrian economy (and other countries of the Euro zone) such an event
has a one-time (nonrecurring) negative impact on the budget balance. The question
for the local government is how to react to such a budget balance shock. The optimal
control framework is a well-known tool to address such a fiscal policy question (see,
e.g., Feichtinger and Hartl 1986; Neck et al. 2008; Neck 2009). A ‘traditional’ way to
consider optimal control problems is the linear quadratic (LQ) optimization technique.
This technique is mainly based on works by Pontryagin et al. (1962) and Bellman
(1957). There are several more sophisticated numerical algorithms, which are also
based on the LQ optimization framework, and allow us to consider nonlinear problems
as well, e.g., the OPTCON algorithm developed by Blueschke-Nikolaeva et al. (2012).
However, a characteristic property of the LQ framework is its sensitivity to outliers.
The objective (or loss, as it will be referred henceforth) function is formulated in a
quadraticway.A squaredoutlier influences the objective function considerably, forcing
an active use of control variables, which might be undesirable in certain situations. For
example, Fatas and Mihov (2003) show that an aggressive use of fiscal policy induces
significant macroeconomic instability. Thus, in case of a large exogenous shock, a
policy maker faces an additional task of mitigating the effects of this shock without
putting the stability of the whole system at risk.

In a recent study by Blueschke et al. (2013), a new way of handling optimal control
problems is proposed. The authors test an evolutionary approach for this purpose,
namely Differential Evolution (DE, Storn and Price 1997), which does not rely on
the LQ framework. Blueschke et al. (2013) apply DE to optimal control problems in
nonlinear dynamic economic systems with an asymmetric objective function where
the ‘traditional’ OPTCON algorithm does not work. The application of the DEmethod
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increases computation time substantially but gives much more flexibility in designing
the objective function and different system constraints.1 In the present paper we aim
to use this flexibility of the DE method by introducing and solving an optimal control
problem with different specifications of the objective function. In particular, we test
four alternative designs of the loss function: a least median of squares based approach
(LMS), absolute deviations, cubic and quartic objective functions.

The least median of squares (LMS) estimator (Rousseeuw 1984) is among the best
known robust estimators for linear problems. It has been widely used in numerous
applications of finance and technology (see, for example, Winker et al. 2011), and is
regarded as a standard technique for the robust data analysis. It was demonstrated,
however, that this function exhibits multiple equilibria search space, which is usually
very hard to handle in ‘traditional’ optimal control problems (see, e.g., Feichtinger
2004), but can be efficiently solved using the DE approach. The main advantage in
minimizing the median of squares instead of the mean is the robustness, or rather non-
sensitivity, of the LMS framework to unique large outliers. We apply this framework
to design the objective function in an optimal control problem and check how LMS
behaves in this case. The question that we address here is whether LMS-style-shaped
objective function serves the goal of mitigating instability due to a one-time shock
(which can be interpreted as an outlier) or this approachmay even increase the volatility
of the resulting states and controls obtained by the optimal control exercise.

An alternative objective function specification may be to apply deviations in states
and controls to a power different from two (power two corresponds to the LQ frame-
work). Simple intuition suggests that a power above two would penalize any deviation
more, limiting volatility in states and controls generated by the exogenous shock.
In particular, we consider the cubic and quartic penalties, which have not yet been
addressed well in the literature.2 In addition, to get a more comprehensive understand-
ing of how different penalties’ exponents drive the resulting optimal paths, absolute
deviations (i.e. power one) are also considered.3

The rest of the paper is structured as follows. In Sect. 2 we describe a model of
the Austrian economy experiencing an exogenous shock and solve it using the well
known LQ framework. Section 3 contains a detailed description of alternative objec-
tive function specifications. Section 4 briefly reviews OPTCON and DE as different
strategies for solving optimal control problems. Section 5 presents the results of the
comparative study. Section 6 discusses the trade-off between alternative economic
policy objectives and the corresponding loss function specifications, and concludes.

2 The ATOPT model

In our study we consider a small nonlinear macroeconometric model of the Austrian
economy (ATOPT). The ATOPTmodel can be seen as an extended Phillips curve con-

1 The trade-off between flexibility and higher computational demand is well known for heuristic optimiza-
tion. For a concise discussion of the matter see Gilli and Schumann (2014).
2 To the best of our knowledge, the only exception is c (Bass and Webber 1966).
3 See, for example, Luus et al. (2001) for the application of an absolute values based objective function to
optimal control problems.
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nected with a simple model of the public finance sector. The model includes four state
variables (the inflation, the unemployment rate, the budget balance and the public
debt), one exogenous non-controlled variable and eight unknown (estimated) para-
meters. It includes one fiscal policy instrument, the primary balance, which allows
a policy maker to control the whole system. Furthermore, it includes a channel for
an external shock acting on the budget balance. The annual data for the time periods
1987–2013 yield 36 observations.4 The start period for the optimization is 2014 and
the end period is 2023 (10 years).
Model equations:
(Standard deviations are given in parentheses)

pit = −0.14
(0.27)

+ 0.60
(0.10)

∗ pit−1 + 5.48
(1.67)

∗ 1

urt
, (1)

urt = 6.58
(0.34)

−0.11
(0.04)

∗gr_exrt + 0.72
(0.16)

∗ prim_balancet , (2)

budget_balancet = −2.65
(0.15)

+ 0.69
(0.11)

∗ prim_balancet + bb_shockt , (3)

debtt = debtt−1 + budget_balancet . (4)

Equations (1) and (2) can be regarded as an extended Phillips curve including a non-
linear influence of the unemployment rate (denoted by ‘ur ’) on the inflation rate
(‘pi’). The unemployment rate5 is mainly driven by exogenous indicators: The growth
rate of exports (‘gr_exr ’)6 and the fiscal policy of the national government. For the
latter, the estimated model suggests an expansionary effect of the fiscal policy. The
primary balance is the fiscal policy instrument, which is under direct control of the
Austrian government. In contrast, the budget deficit (or surplus if positive) (denoted
by ‘budget_balance’) is estimated on the basis of the primary balance as stated in
Eq. (3). Furthermore, the budget balance can be influenced directly by an exogenous
shock (‘bb_shockt ’). In our study, we apply a negative shock, which increases the
budget deficit. Finally, the changes in the public debt level (‘debt’) are driven by the
budget deficits (or surpluses if positive), as given in Eq. (4).

In the present study, the exogenous shock is modeled ex ante as if the government
knewwhat a budget balance shock itwould face in a fewyears time due to theEuropean
debt crisis. This is done mainly for simplicity to speed up the calculation and in order
not to concentrate on the explanatory part of the model, given its limitations.7

TheATOPTmodel, as stated in Eqs. (1)–(4), captures a highly aggregated dynamics
of the Austrian economy.We are aware that this is not sufficient to get accurate insights

4 The first three equations are estimated by OLS. The last equation is an identity.
5 The unemployment rate can also be considered as a proxy for the economic situation and the output.
6 Which is a reasonable assumption for the small, trade-dependent Austrian economy.
7 However, the exercise can be easily extended to model an unexpected shock. For this reason, one would
have to apply the DE algorithm twice: first, before the shock is known on the entire period of interest;
and second, once the shock takes place—at the period between the shock and the remaining part of the
calculation period. Again, given that the focus of the present paper is the specification of the objective
function to be applied and not the economic conclusion the ATOPT model provides, we choose a simpler
ex-ante option.
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Table 1 Objective variables in the ATOPT model

Variable Initial value Target value Weight

pi 1.6 2 1

ur 7.6 6 1

budget_balance −1.5 0 1

debt 74.5 74.5↘60 0.2

prim_balance 0.7 0 1

The symbol ↘ indicates that the target values for the objective variable debt are calculated in a linear
decreasing way starting at initial value 74.5 and reaching the value 60 at the end of the planning horizon

into the economic and/or fiscal situation in Austria. Instead, we use this model to test
the performance of proposed approaches in case of a one-time shock which increases
the budget deficit. The initial values, the target values and the weights of the variables
considered in the objective function are reported in Table 1.

2.1 Nonlinear quadratic optimal control

In the first step we consider a standard optimum control problem with a quadratic
objective function (a loss function to be minimized) and a nonlinear multivariate
discrete-time dynamic system. The inter-temporal objective function is formulated in
quadratic tracking form, which is often used in applications of optimal control theory
to econometric models. ‘Traditionally’ it can be written as

J =
T∑

t=1

Lt (xt , ut ) (5)

with

Lt (xt , ut ) = 1

2

(
xt − x̃t
ut − ũt

)′
Wt

(
xt − x̃t
ut − ũt

)
, (6)

where xt is an n-dimensional vector of state variables that describes the state of the
economic system at any point in time t , ut is an m-dimensional vector of control
variables, x̃t ∈ Rn and ũt ∈ Rm are given ‘ideal’ (target) levels of the state and
control variables respectively. T denotes the terminal time period of the finite planning
horizon. Wt is an ((n + m) × (n + m)) matrix specifying the relative weights of the
state and control variables in the objective function. TheWt matrix may also include a
discount factor α,Wt = αt−1W .Wt (orW ) is symmetric. The dynamics of the system
is given by ATOPT model as stated in Eqs. (1)–(4).

In order to solve the stated nonlinear optimal control problem, the OPTCON algo-
rithm (Blueschke-Nikolaeva et al. 2012) is used. This algorithm allows for a numerical
approximation of a nonlinear solution based on the standard techniques of linear
quadratic optimization (LQ).
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2.2 Optimal quadratic control in case of a one-time shock

We apply the nonlinear quadratic framework as stated in the previous section to cal-
culate the optimal fiscal policy for the Austrian economy in presence of an external
one-time shock on the budget balance. The start period for the optimization is 2014
and the end period is 2023.We assume the shock to occur in 2016. Aswe aremodelling
a negative shock, we set the variable bb_shock [see Eq. (3)] defining the government
budget balance) to be −7 in period 3, i.e. bb_shock3 = −7. Thus, it is assumed that
due to the exogenous shock the budget balance of the Austrian economy worsens by
7% points in 2016.

Wepresent here the optimal solution in situationswith andwithout external shock, in
order to show the effects of such a negative event to the Austrian economy. The results
are obtained by the OPTCON algorithm but are identical for the Differential Evolution
approach (see Sect. 4 for the description of the methods and Table 2 for the summary
of the results). Figure 1 illustrates the optimal path for the control variable (primary
balance), while Fig. 2 presents the optimal paths for the state variables (the rate of
inflation, the unemployment rate, the government budget balance and the public debt).

Graphical results show a strong trade-off betweenfiscal stability and output oriented
policy,which goes in linewith the ‘philosophy’ of theATOPTmodel. In the experiment
without shock, the LQ approach requires a restrictive fiscal policy to be run in order
to stabilize the financial situation. The policy is required to be more active at the
beginning of the planning horizon (prim_balance1 = 4.9), continuously decreasing
until the end (prim_balance10 = 1.8).

Table 2 Results for the ATOPT model with different settings

OPTCON2 Differential evolution

Uncontrolled Optimal LMS ABS LQ CUB QUART

No shock

J 693.20 188.91 126.36 73.75 188.91 2021.34 4437.39

std n/a n/a (0.0000) (0.0000) (0.0003) (0.0006) (0.0009)

cpu .001s .5s 487s 472s 99s 310s 284s

LQJ n/a 188.91 240.39 547.45 188.91 212.61 208.92

WVar n/a 22.71 138.62 178.55 22.71 18.37 11.54

With shock

J 1076.56 291.43 207.25 91.95 291.43 3760.97 9776.78

std n/a n/a (0.0000) (0.0000) (0.0007) (0.0010) (0.0022)

cpu .001s .5s 665s 521s 116s 316s 315s

LQJ n/a 291.43 334.71 884.78 291.43 321.96 320.05

WVar n/a 72.50 198.52 304.38 72.50 62.90 56.73

Results for LQJ (linear-quadratic J ) for alternative objective function specifications are obtained by re-
evaluating the identified optimal sets of states and controls with the standard LQ function. Results onWVar
(weighted variance) are calculated by estimating variance in the distribution of the states and controls
obtained and accounting for the weights of the variables in the optimal control exercise as given in Table 1
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Fig. 2 State variables for ATOPT (LQ solution)

In the scenario with the shock, the LQ approach requires an even more restrictive
fiscal policy to be run in the ‘shocked’ period, as an attempt to compensate for the
negative impact of the shock (prim_balance3 = 8.3 and budget_balance3 = −3.9
vs. bb_shock3 = −7). In order to measure the volatility of such a discretionary policy,
we calculate a weighted variance (WVar ) of the time series involved. In particular,
after calculating the variances of all the specific variables (both the control and the
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states), we aggregate them into one indicator, using the weights applied in the earlier
stageof optimization.This has the advantageof accounting for eachvariable differently
(given that they have different units of measurement and, as a result, different orders
of variance are involved), but at the same time not using any other arbitrary weights,
which would increase the number of parameters affecting the results.8

WVar in the non-shocked scenario for the LQ framework is 22.71 and rises to
72.50 in the shocked scenario. The LQ framework is more or less forced to require a
very active fiscal policy, due to quadratic costs of the outlier event. Such an intensive
and restrictive fiscal policy has a relatively strong negative impact on the economic
situation, with the unemployment rate rising by more than 2% points in one period.

In the next section we test alternative forms of objective function specification.
Special attention should be paid to the excess volatility of fiscal policy.

3 Different objective function specifications

In this section, we describe four alternative objective function specifications for an
optimal control framework. The proposed alternatives include an experiment using the
idea of least median of squares (LMS), absolute deviations (ABS), a cubic objective
function (CUB) and a quartic objective function (QUART).

Least median of squares

We reformulate the objective function ‘J’ (Eqs. 5, 6) using the median of squares
instead of the sum of squares on the corresponding states but not the control(s).9 The
intuition behind the usage of a method like LMS is that, being more robust, it will
devote little attention to the external shock, thus making the framework more stable
to external effects. In particular, one can expect the volatility of the optimal paths of
the states and controls to be lower using LMS than without it. As a result we get the
following objective function:

J =
N∑

i=1

median(Lxi
1 , Lxi

2 , . . . , Lxi
T ) · T +

T∑

t=1

Lu
t , (7)

Lx
t (xt ) = 1

2
(xt − x̃t )

′ Wx
t (xt − x̃t ) , (8)

Lu
t (ut ) = 1

2
(ut − ũt )

′ Wu
t (ut − ũt ) . (9)

8 An alternative would have been to measure the coefficient of variation (CV), which standardizes the
variances by the corresponding averagesmaking it easy to compare betweendifferent variables and aggregate
them into one single indicator. However, given that some of our variables have averages close to zero, this
biases the result making CV not applicable.
9 We have also tested the possibility of applying the median of squares to both the states and the controls,
but the resulting dynamics of the variables under consideration become even more volatile and intractable
in such a case and we did not proceed in considering it further. Results are available on request.
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Lx
t represents the squared deviations between the state variables and their target val-

ues. Lu
t represents the squared deviations between the control variables and their target

values. As stated above and given in Eq. (7), the objective function for states is cal-
culated as a median (over time) of squares (corresponds to the LMS approach). The
control variables are handled in a traditional way in the objective function by summing
the squares (corresponds to LQ framework). The difference in levels between Lx and
Lu needs to be adjusted by factor T as given in Eq. (7).

Absolute values

We calculate the objective function based on normal (non-quadratic or rather power
equal to one) deviations. In order to prevent the problem of offsetting positive and
negative numbers, the absolute values of the calculated deviations are used.

J =
T∑

t=1

Lx
t +

T∑

t=1

Lu
t , (10)

Lx
t (xt ) = 1

2
|xt − x̃t |′ Wx

t , (11)

Lu
t (ut ) = 1

2
|ut − ũt |′ Wu

t . (12)

Cubic objective function

In this scenario the deviations from the targets are penalized by factor three. Similar to
the previous scenario, we use the absolute values of deviations before calculating the
exponent in order to prevent the problem of offsetting positive and negative numbers.

J =
T∑

t=1

Lt (xt , ut ), (13)

with

Lt (xt , ut ) = 1

2

(( |xt − x̃t |
|ut − ũt |

)′)1.5

Wt

(( |xt − x̃t |
|ut − ũt |

))1.5

. (14)

Quartic objective function

Finally, we calculate the deviations between state variables and the corresponding
target paths to the power four.

J =
T∑

t=1

Lt (xt , ut ), (15)
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where

Lt (xt , ut ) = 1

2

((
xt − x̃t
ut − ũt

)′)2

Wt

((
xt − x̃t
ut − ũt

))2

. (16)

4 Optimization algorithms

4.1 OPTCON

The OPTCON algorithm determines approximate solutions to optimal control prob-
lems with a quadratic objective function and a nonlinear multivariate dynamic system.
It relies on the standard techniques of the LQG framework10 and combines elements
of previous algorithms developed by Chow (1975, 1981) and Kendrick (1981). In
our experiments we use the latest version of the OPTCON algorithm, which is called
OPTCON2. We skip the presentation of the OPTCON algorithm, which can be found
in more detail in Blueschke-Nikolaeva et al. (2012) and Savin and Blueschke (2015).

4.2 Differential evolution

Proposed by Storn and Price (1997), Differential Evolution (DE) is a population based
optimization technique for continuous objective functions. DE belongs to the so-called
heuristic optimization approaches [for an overview of these techniques see Gilli and
Winker (2009)] and is well acknowledged to be efficient at exploring complex search
spaces with multiple local minima, but also for being relatively easy to apply, as it
needs little parameter tuning. For applications of DE in finance, risk management and
innovation management see Lyra et al. (2010), Winker et al. (2011) and Egbetokun
and Savin (2014) respectively. Applications of DE, but also other heuristics (such as
particle swarm optimization), can be also found in the area of optimal control, but
mainly in the field of engineering (Cruz et al. 2003; Modares and Sistani 2011).

A detailed description on how DE deals with an optimal control problem for a
deterministic scenario (single parameter set) can be found in Blueschke et al. (2013,
pp. 824–825), while Savin and Blueschke (2015, pp. 7–10) extend the exercise for the
stochastic scenario. For the sake of this study it suffices to say that starting with an ini-
tial population of random solutions (line 2 in Algorithm 1), DE updates this population
by linear combination (line 7: with the scale factor F determining the shrinkage rate in
exploring the search space) and crossover (line 9: with CR standing for the crossover
rate) of four different solution vectors into one, and selects the fittest solutions among
the original and the updated population. This continues until some stopping criterion
is met. Each member of the population (each candidate solution) contains all control
variables for all time periods. Thus, each candidate i = 1, . . . , p represents an alter-
native complete solution path for the whole optimum control problem, and is given as

10 Optimization of linear systems with Gaussian noise under a quadratic objective function.
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an (m × T )-matrix P(1)
.,.,i = (P(1)

j,t,i ) j=1,...,mt=1,...,T = (u(1),i
1 , u(1),i

2 , . . . , u(1),i
T ), where

u(1),i
t is anm-dimensional vector of controls and T is the size of the planning horizon.
It is important to mention that each candidate solution is also described by the

time paths of corresponding state variables, which results from the dynamic system f ,
parameter set θ and the selected controls, i.e. (x (1),i

t=1,...,T = f (. . . , u(1),i
t=1,...,T , θ, . . .)).

For each candidate solution (for each set of control variables) and for each parameter
set θ , there is a unique set of state variables. These state variables are not directly
included in a candidate solution but they contribute to the objective function to be
minimized.

Algorithm 1 Pseudocode for Differential Evolution
1: Initialize parameters m, T, p, F and CR

2: Randomly initialize P(1)
j,t,i , j = 1, . . . ,m; t = 1, . . . , T ; i = 1, . . . , p

3: while the stopping criterion is not met do
4: P(0) = P(1)

5: for i = 1 to p do
6: Generate r1,r2,r3 ∈ 1, . . . , p, r1 �= r2 �= r3 �= i

7: Compute P(υ)
.,.,i = P(0)

.,.,r1 + F × (P(0)
.,.,r2 - P(0)

.,.,r3 )

8: for j = 1 to m and t = 1 to T do
9: if u < CR then P(n)

j,t,i = P(υ)
j,t,i else P(n)

j,t,i = P(0)
j,t,i

10: end for
11: if J (P(n)

.,.,i ) < J (P(0)
.,.,i ) then P(1)

.,.,i = P(n)
.,.,i else P(1)

.,.,i = P(0)
.,.,i

12: end for
13: end while

Tuning the DE parameters is a problem specific exercise. For this reason we con-
ducted a series of simulation experiments, as described in Blueschke et al. (2013, pp.
825–826), to calibrate the DE parameters. In brief, we first fix F and CR both to
be equal to 0.55 (average value), and test different population sizes (between 5d and
30d), increasing the number of generations g until DE results in the same outcome for
several replications. Having defined the population size p, we then runDE for different
CR and F ranging between 0.1 and 1. We identify combinations of parameter values
with the lowest average number of generations required to achieve the value-to-reach
(VT R), which is set to 101% of the best objective value achieved by DE over the one
hundred parameter combinations considered. It turns out that for the LMS objective
function the optimal combination of parameters is F = 0.5 and CR = 0.8 with the
population size p = 50 × m × T (where m is the number of controls and T is the
number of time periods involved), while the number of DE generations gmax = 2500.
These parameters are taken sufficiently large to ensure convergence. For the remain-
ing objective function specifications, which are apparently simpler to solve, we set the
following parameters: F = 0.4, CR = 0.1, p = 10 × m × T , while gmax = 750.
Additionally, we check the convergence within the population by looking at the candi-
dates’ objective values. Working on a continuous optimization problem, it is unlikely
that two candidates reach exactly the same value, but a difference of 0.0001% between
the fittest solution and a few closest followers is realistic and is therefore applied in our
study. Thus, the DE algorithm stops if 30% of the solutions in the population reach
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this deviation from the best solution available. In addition, if for 100 generations more
than 50% of the solutions in the population do not improve, the algorithm also stops.
For each objective function DE is restarted ten times.

Both methods, OPTCON and DE, are implemented in Matlab to simplify their
comparison. The corresponding computational time for the different objective func-
tions tested in this study necessarily varies depending on the complexity of a particular
problem (largest for LMS and absolute deviations), but never exceeds 12min using
Matlab 8.5.0 and a Pentium IV 2.7GHz.

5 Optimal control results

The four presented objective function alternatives and the nonlinear dynamic system
given by the ATOPT model constitute four different optimal control problems solved
using the OPTCON and the Differential Evolution methods as described above.

Figures 3 and 4 show the optimal results for the four proposed objective func-
tion specifications in the presence of a one-time shock. The LQ approach requires
an extremely restrictive fiscal policy to be run in the third period (2016) to try to
compensate the negative impact of the shock. The LMS approach allows smoothing
of the effects of the one-time shock but increases the overall volatility and signif-
icantly differs from the optimal path both in control and state variables. Thus, the
robust characteristics of the original LMS approach do not hold for optimal control
problems.

The ABS scenario produces results, which deviate dramatically from other alterna-
tives. Considering the absolute deviations in the objective functions makes it possible
to givemuch less importance to the one-time shock but it also ignores larger deviations
in states. In such a case, the government is required to run an extremely expansionary
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fiscal policy with strong positive effects on unemployment but drastic consequences
for public finance, with the public debt exceeding 100% of GDP at the end of the
planning horizon.

The cubic and quartic objective functions, in contrast, restrict the volatility of the
optimal paths of the corresponding states and controls, thus constituting a more robust
way a policy maker can respond to an exogenous shock. The reason is that the penalty
rises exponentially for any deviation from the targets stated, so that the effects of the
shock are absorbed by a larger number of periods. Clearly, the larger the exponent of
the penalty, the smoother the paths of the corresponding variables.

Table 2 summarizes the results for the LQ framework and its four alternatives in
terms of:

• Minimal objective function values J achieved. These values are estimated by
applying different function specifications and respective penalties, making them
incomparable with each other;

• Standard deviation in DE results over restarts and cpu time required to obtain the
results (per restart);

• Minimal objective function values estimated with quadratic penalties (i.e. applying
LQ framework to the states and controls achievedwith different objective functions)
LQJ . This presents an LQ-normalized and thus more comparable basis for the
functions, but also—as expected—indicates LQ results to be the best;

• The above-mentioned weighted variance (WVar ), which makes it possible to com-
pare the objective functions in terms of the volatility in state and control time series.

The first column in Table 2 contains the objective function values for the uncon-
trolled solution, which uses the initial states of the corresponding systems and is
intended only for a comparison with the optimal results. The second column contains
optimal objective values as calculated by the OPTCON2 algorithm. The fifth column
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gives the objective values as calculated byDifferential Evolution (DE) using a standard
objective function (LQ framework) demonstrating that DE converges to basically the
same solution as OPTCON but taking considerably more time (‘cpu’). The third col-
umn gives the objective values as calculated by DE using the LMS objective function
(LMS), while the fourth column contains the results for the objective function with
absolute values (ABS). The last two columns state the results for the cubic (CUB) and
quartic (QUART) loss functions.

In terms of the LQ-normalized objective function values (LQJ), all alternatives
except ABS showmore or less similar results. Certainly, the scenario with LQ function
to be minimized demonstrates the best result, but this simply indicates that the DE
algorithm does its workwell. If one had normalized the results not on the quadratic but,
e.g., on the quartic objective function, there is no doubt that the QUART result would
have been the lowest. However, taking the volatility (WVar ) into account, there are
significant differences in performance. While a higher power in the objective function
leads to a reduction of the volatility, the LMS and the ABS approaches result in much
greater instability of the Austrian economy.

Hence, the actual trade-off one is facing is to find an optimum within the shortest
computational time (optimize the quadratic function by the OPTCON algorithm as
reported by the second column in Table 2) or use a more sophisticated objective func-
tion accounting for additional policy objectives. In this particular case, the alternatives
applying deviations from the targets a power above two seem most promising. The
larger the power, the smaller the variance in states and controls over time. Thus, we
find that using larger exponents on deviations in states and controls one can better
restrict volatility in macroeconomic variables while ensuring that the system reacts to
the external shocks and minimizes its deviations from the targets given.

Note at this point that this study does not argue that, for example, the cubic loss
function is always better than the quadratic one. Instead, we illustrate that the loss
functionswith higher exponents better enable to account for additional constraints such
as volatility in the states and control variables over time. Imagine that the volatility
(measured by the weighted volatility WVar ) would be added as a penalty to the
objective (loss) function. Then this penalty could result in the quartic or cubic functions
outperforming the standard quadratic one. Elsewise, one could introduce some upper
threshold on the volatility, which could again indicate in favor of the alternative loss
function specifications. Clearly, more research on this matter first has to be done to
make any concrete numerical suggestions. All we want to say is that optimal control
problems may be far more complex (i.e. requiring broader set of loss functions to be
considered and/or additional constraints to be included) than to be solved by the ‘one
size fits all’ LQ approach.

6 Discussion and conclusion

In this paper we compare alternative forms of objective function specifications in
the context of nonlinear dynamic optimal control problems experiencing a one-time
exogenous shock. Given that the alternative specifications are not necessarily well
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behaved, we optimize them not by means of a linear-quadratic optimization technique
but using an evolutionary algorithm, namely Differential Evolution.

Applying the alternative functional forms on a new small-scale model of the Aus-
trian economy (ATOPT), we find that the traditional (quadratic) objective function
does not perform as well as its alternatives (using a power greater than two) in restrict-
ing the volatility of the resulting optimal paths of the corresponding states and controls.
The latter, in fact, has an important side effect on macroeconomic instability, which a
policy maker tends to avoid. This serves as further evidence that the (historical) dom-
inance of the quadratic tracking form objective function specification present in the
literature, due to its convenience in applying LQ framework11 in finding its optimum,
does not automatically imply that this quadratic form is an optimal choice for various
problems and model scenarios to be considered. Hence, a more thorough selection
of a suitable objective function accounting for multiple objectives pursued by policy
makers is necessary.

The latter argument, in fact, leads us to a more general problem. For many decades
various optimization problems have been simplified (from any additional restrictions)
to fit some existing optimization frameworks (and their assumptions), so as to allow fast
and guaranteed convergence. Nowadays, we observe the opposite trend: thanks to the
recent advances in computing technology, one could develop more time consuming
methods by either modifying existing optimization algorithms or by offering novel
and much more flexible (derivative free) nature-inspired optimization methods, like
the heuristics, which can allow for as many additional restrictions as one needs. The
example of the volatility in the state and control variables of the ATOPT model is just
one example. For more examples one can read Blueschke et al. (2013) (asymmetry
of the objective function) or Blueschke et al. (2015) (non-negative values of control
variables). This study demonstrates that alternative functional forms of an objective
(loss) function can easily be applied when using the evolutionary heuristic approach
for solving optimal control problems. Moreover, it is illustrated that the quadratic
functional form is not the ‘perfect hammer’ accounting for different objectives one
has. Effectively, this study calls for some sort of meta-theory, which helps to choose
among different policy objectives. Including an additional penalty for volatility, or
some kind of risk aversion, could be an example of such a more sophisticated way of
choosing an optimal policy. The formulation of more exact functional forms, which
better address specific objectives one is willing to balance remains, from our point of
view, problem-specific so far and is left for further research.

Acknowledgements Open access funding provided by Austrian Science Fund (FWF).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

11 Indeed, Cukierman (2002), p. 23 describes the quadratic (penalization) function as the one being ‘chosen
mainly for analytical convenience rather than for descriptive realism’.
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