
 

 

 

Abstract 
 

Faces are highly deformable objects which may 
easily change their appearance over time. Not all 
face areas are subject to the same variability. 
Therefore decoupling the information from 
independent areas of the face is of paramount 
importance to improve the robustness of any face 
recognition technique. This paper presents a robust 
face recognition technique based on the extraction 
and matching of SIFT features related to 
independent face areas. Both a global and local (as 
recognition from parts) matching strategy is 
proposed. The local strategy is based on matching 
individual salient facial SIFT features as connected 
to facial landmarks such as the eyes and the mouth. 
As for the global matching strategy, all SIFT 
features are combined together to form a single 
feature. In order to reduce the identification errors, 
the Dempster-Shafer decision theory is applied to 
fuse the two matching techniques. The proposed 
algorithms are evaluated with the ORL and the IITK 
face databases. The experimental results 
demonstrate the effectiveness and potential of the 
proposed face recognition techniques also in the 
case of partially occluded faces or with missing 
information. 
 

1. Introduction 
Face recognition is one of most challenging 

research areas in machine vision and biometrics [1, 
2]. The variability in the appearance of face images, 
either due to intrinsic and extrinsic factors, makes the 
identification problem ill-posed and difficult to solve. 
Moreover, additional complexities like the data 
dimensionality and the motion of face parts causes 
major changes in appearance. In order to make the 
problem well-posed, vision researchers have adapted 
and applied an abundance of algorithms for pattern 
classification, recognition and learning. To cope for 
the data dimensionality, several appearance-based 
techniques have been successfully used, such as the 
Principal Component Analysis (PCA) [1], Linear 
Discriminant Analysis (LDA) [1], Fisher 
Discriminant Analysis (FDA) [1], and Independent 

Component Analysis (ICA) [1]. Other methods have 
been studied based on the extraction of salient facial 
features by means of cascaded scale-space filtering 
[3, 4, 5, 6]. Most of the times, one missing part is the 
link between the features extracted from the face 
images and the geometry of the face itself. 

The aim of this paper is to perform a robust and 
cost effective face recognition using SIFT features 
extracted from face images [7, 8, 9, 10] but also 
directly related to the face geometry. In this regard, 
two face-matching techniques, based on local and 
global information and their fusion are proposed. In 
the local matching strategy, SIFT keypoint features 
are extracted from face images in the areas 
corresponding to facial landmarks, such as the eyes, 
nose and mouth. Facial landmarks are automatically 
located by means of a standard facial landmark 
detection algorithm [11, 12]. Then matching of a pair 
of feature vectors is performed by a minimum 
Euclidean distance metric. Matching scores produced 
from each pair of salient features are fused together 
using the sum rule [13]. In the global matching 
strategy, the SIFT features extracted from the facial 
landmarks are fused together by concatenation. Also 
in this case, matching is performed by means of a 
minimum Euclidean distance metric. The matching 
scores obtained from the local and global strategies 
are fused together using the Dempster-Shafer 
decision theory. The proposed techniques are 
evaluated with two face databases, the IITK and ORL 
(formerly known as AT&T) face databases.  

The paper is organized as follows. Section 2 
briefly describes the SIFT features extraction. Local 
and global matching strategies are discussed in 
Section 3. Section 4 describes the fusion of local and 
global matching using the Dempster-Shafer theory. 
The experimental results are presented and discussed 
in Section 5 and 6. 

2. Overview of the SIFT feature 
extraction 

The scale invariant feature transform, called SIFT 
descriptor, has been proposed by Lowe [8, 9] and 
proved to be invariant to image rotation, scaling, 
translation, partly illumination changes. The basic 
idea of the SIFT descriptor is detecting feature points 
efficiently through a staged filtering approach that 
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Figure 1: Invariant SIFT feature extraction are shown on a 
pair of face images. 
 

identifies stable points in the scale-space. Local 
feature points are extracted by searching peaks in the 
scale-space from a difference of Gaussian (DoG) 
function. The feature points are localized using the 
measurement of their stability and orientations are 
assigned based on local image properties. Finally, the 
feature descriptors, which represent local shape 
distortions and illumination changes, are determined. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each feature point is composed of four types of 

information – spatial location (x,y), scale (S), 
orientation (θ) and Keypoint descriptor (K). For the 
sake of the experimental evaluation, only the 
keypoint descriptor [6, 9, 10] has been taken into 
account. This descriptor consists of a vector of 128 
elements representing the orientations within a local 
neighborhood. In Figure 1, the SIFT features 
extracted from a pair of face images are shown. 

3. Local and global matching 
In this section we develop two matching strategies, 

namely the local, based on parts, and the global face 
matching. In addition, we introduce a classifier 
fusion technique, where the scores obtained from the 
local strategy are fused together in terms of matching 
scores obtained from individual classifiers.  

3.1. Local face matching strategy 

Faces are deformable objects which are generally 
difficult to characterize with a rigid representation. 
Different facial regions, not only convey different 
information on the subject’s identity, but also suffer 
from different time variability either due to motion or 
illumination changes [14]. A typical example is the 
case of a talking face. While the eyes can be almost 
still and invariant over time, the mouth moves 
changing its appearance over time. As a 
consequence, the features extracted from the mouth 
area cannot be directly matched with the 
corresponding features from a static template. 
Moreover, single facial features may be occluded 
making the corresponding image area not usable for 
identification. For these reasons to improve the 

robustness of the identification process it is 
mandatory to decouple the image information 
corresponding to different face areas. The aim of the 
proposed local matching technique is to correlate the 
extracted SIFT features with independent facial 
landmarks. The SIFT descriptors are extracted and 
grouped together at locations corresponding to static 
(eyes, nose) and dynamic (mouth) facial positions. 

In Figure 2 and 3 an example showing the concept 
of independent matching facial features from local 
areas is presented. 

 
 
 
 
 
 
 
 

 
Figure 2: Example of matching static facial features. 

 
 
 
 
 
 
 
 

Figure 3: Example of independent matching of static and 
dynamic facial features. 

 
The eyes and mouth positions are automatically 

located by applying the technique proposed in [11]. 
The position of nostrils is automatically located by 
applying the technique proposed in [12]. A circular 
region of interest (ROI), centered at each extracted 
facial landmark location, is defined to determine the 
SIFT features to be considered as belonging to each 
face area. 

Given a face image I four independent ROI are 
extracted. Two ROI regions I left-eye and Iright-eye refer to 
the left and right eyes. Two other ROI regions, Inose 
and Imouth refer to the nose and mouth locations. The 
SIFT feature points are then extracted from these 
four regions and gathered together into four groups. 
From these groups pair-wise salient feature matching 
is performed. Finally, the matching scores obtained 
are fused together by the sum fusion rule [13] and the 
fused score are compared against a threshold. More 

formally, if ),( gallerygalleryeyeLeft IID −
is the distance 

between a pair of left eyes, then the distance can be 
defined as follows: 
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where, m and n are the dimensions of concatenated 
feature points for a pair of gallery and test samples 
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and k refers the keypoint descriptor.
kΨ is the 

threshold, which is computed a priori from a training 
set of face images. This face set is disjoint from the 
image sets used for testing and validation. 

In the same fashion, the distances for a pair of 
right eyes, for a pair of noses and for a pair of 
mouths can be determined as follows: 
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Finally, the fused matching score 

),( gallerytest IIFD  is computed by combining these 
four individual matching scores together using sum 
rule [13]: 
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3.2. Global face matching strategy 

While for the local matching each face area is 
handled independently, in the global matching all 
SIFT features are grouped together. In particular, the 
SIFT features extracted from the image areas 
corresponding to the located four facial landmarks, 
are grouped together to form an augmented vector by 
concatenation. The actual matching is performed 
comparing the global feature vectors for a pair of 
face images. Before performing the face matching a 
one to one correspondence is established for each 
pair of facial landmarks, as discussed in Section 3.1. 

In order to compute the matching distance/score 
between gallery and probe samples by computing 
distance between a pair of concatenated feature sets, 
let us consider, 

)(),(),(),( kIkIkIkI mouthnoseeyeRighteyeLeft −−
 

which are the four facial features computed from 
both the gallery and probe face images. Two 
concatenated keypoint sets can be computed as: 
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 where, m, n, p and q are the dimensions of the 
extracted keypoint feature sets computed from the 
left eye, right eye, nose and mouth. In order to obtain 
a fused feature set for a gallery sample face, we 
concatenate the keypoints of four components 
together, one by one, as: 
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Similarly, the concatenated feature set for a probe 

sample is obtained by the equation: 
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The final matching score ),( galleryprobe
GLOBAL IIFD  

is computed by first determining all the minimum 
pair distances and then computing a mean score of all 
the minimum pair distances as: 

 

∑ ∈∈
= )}}(),({min{min),( j

probe
i

gallery

NjMi

galleryprobe
GLOBAL kIkIIIFD   (8) 

 
In Equation (8), the final distance is determined by 

the Hausdorff distance metric and the distance score 
is compared against a threshold computed 
heuristically from a training set of face images. As 
for the local matching threshold, this face set is 
disjoint from the image sets used for testing and 
validation. 

4. Fusion of local and global matching 
scores using the Dempster-Shafer 
Theory 

In the proposed classifier fusion, the Dempster-
Shafer decision theory [15, 16, 17] is applied to 
combine the decision of the local and global 
matching. 

The Dempster-Shafer theory is based on 
combining the evidences obtained from different 
sources to compute the probability of an event. This 
is obtained combining three elements: the basic 
probability assignment function (bpa), the belief 
function (bf) and the plausibility function (pf). 

The bpa maps the power set to the interval [0,1]. 
The bpa function of the empty set is 0 and the bpa’s 
of all the subsets of the power set is 1. Let m denote 
the bpa function and m(A) represent the bpa for a 
particular set A. An element of a universal set X 
belongs to the set A, but to no particular subset of A, 
while m(A) would represent the proportion of all the 
relevant evidence and claims the association of the 
element to the set A. The value of m(A) pertains only 
to the set A and makes no association to any subsets 
of A. If we consider m(B) is the bpa for another set B 



 

 

and AB ⊂ , then we can say that any further 
evidence happens to the subsets of A. Formally, the 
basic probability assignment function can be 
represented by the following equations 
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Where )(ΧP is the power set of A, Ø is the empty 

set, and A is a set in the power set )(Χ∈ PA . 
From the basic probability assignment, the upper 

and lower bounds of an interval are bounded by two 
nonadditive continuous measures called Belief and 
Plausibility. The lower bound Belief for a set A is 
defined as the sum of all the basic probability 
assignments of the proper subsets (B) of the set of 

interest (A) ( AB ⊂ ). The upper bound Plausibility 
is the sum of all the basic probability assignments of 

the sets (B) that intersect (A) ))( ∅≠∩AB . For all the 

sets A that are elements of the power set ))(( Χ∈ PA : 
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An inverse function with the Belief measures can 

be used to obtain the basic probability assignment: 
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where |A-B| is the difference of the cardinality 

between the two sets A and B. 
It is possible to derive these two measures, Belief 

and Plausibility from each other. If Plausibility can 
be derived from Belief measures, then the following 
equation holds: 

 
)(1)( ABelAPl −=         (15) 

 

Where A  is the complement of A. In addition, the 
Belief measures can be written as: 
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Let, 
LocalΓ and 

GlobalΓ are the two matching score 
sets obtained from the two different matching 

processes. Also, let, )( Localm Γ and )( Globalm Γ are 
the bpa functions for the Belief measures 

)( LocalBel Γ and )( GlobalBel Γ for the two classifiers, 
respectively. Then the Belief probability assignments 

(bpa) )( Localm Γ and )( Globalm Γ can be combined 
together to obtained a Belief committed to a 

matching score set Θ∈C according to the following 
combination rule or orthogonal sum rule 
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The denominator in equation (18) is a normalizing 

factor which denotes how much the Belief 

probability assignments )( Localm Γ and 
)( Globalm Γ are conflicting. 

Let m(Local) and m(Global) are the two matching 
score sets obtained from the local and global 
matching strategies. They can be fused together 
recursively as: 
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where,⊕ denotes the Dempster combination rule. 
The final decision of user acceptance and rejection 
can be established by the following equation and by 

applying the threshold Ψ to m(final) 
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5. Experimental evaluation and results 
To investigate the effectiveness of the proposed 

local and global face matching strategies and their 
fusion, we carried out extensive experiments on the 
IITK and the ORL face databases [18]. 

The local and global matching strategies are 
evaluated independently on both databases. The 
matching scores obtained from the proposed 
techniques (local and global matching) are fused 
together to improve the recognition performance. 

5.1. Evaluation on the IITK database 

The IITK face database consists of 800 face 
images with four images per subject (200X4). The 
images have been captured in different sessions, 
within a controlled environment with ±20 degrees of 
rotation in the head pose and with almost uniform 
lighting. The facial expressions are consistently kept 
neutral, with very small changes. The face images are 
downscaled to 140×100 pixels. For the face 
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matching, all probe images are matched against all 
target images, yielding 800×3 genuine scores (images 
from the same subject) and 800×799×3 imposter 
scores (images from different subjects). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4: ROC curves determined on IITK face database is 
shown for both the local and global matching strategy. 

 
Matching 
Strategy 

FRR 
(%) 

FAR 
(%) 

EER 
(%) 

Recognition 
rate (%) 

Local 
matching 

6.29 2.19 4.24 95.76 

Global 
matching 

9.87 3.61 6.79 93.21 

 
Table 1. Performance metrics computed from the tested 
matching strategies as obtained from the IITK database. 
 
The results obtained from the IITK dataset are 

quite promising. From the ROC curve in Figure 4 
and the Table 1, it turns out that the fusion of pair-
wise local matching of the facial feature components 
outperforms the global matching strategy. This result 
clearly shows the advantages of component-based 
strategies to cope for unexpected changes in few 
areas of the face. The fusion of local information 
allows to achieve a robust identification. 

5.2. Evaluation on the ORL database 

The same recognition experiment as before, was 
performed on the ORL face database (formerly 
known as AT&T face database) [18]. The ORL face 
database consists of 400 images taken from 40 
persons. Out of these 400 images, we used 200 face 
images (5 samples per subject) in which ±20 to ±30 
degrees orientation changes have been considered. 
The face images show variations of pose and facial 
expression (smile/not smile, open/closed eyes). When 
the faces were taken, the original resolution was 92 x 
112 pixels. However, for our experiment the 
resolution was re-scaled to 140×100 pixels in line 

with IITK database. In total 200×4 genuine scores 
and 200×4×199 imposter scores were generated for 
the entire data set. 

Also in this case, the results obtained from the 
local matching strategy outperform the global 
matching strategy in terms of recognition rates and 
true/false acceptance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5: ROC curves determined on ORL face database 
are shown for local and global matching strategies. 

 
Matching 
Strategy 

FRR 
(%) 

FAR 
(%) 

EER 
(%) 

Recognition 
rate (%) 

Local 
matching 

3.77 1.45 2.61 97.39 

Global 
matching 

5.86 2.48 4.17 95.83 

 
Table 2. Performance metrics computed from the tested 
matching strategies as obtained from the ORL database. 

5.3. Fusion of global and local matching 
scores 

In order to determine the effectiveness of score 
level fusion of local and global face matching, we 
applied the Dempster-Shafer theory for fusion. 
Before performing score level fusion, the computed 
matching scores are firstly normalized by applying 
the “min-max” technique [13]. The Dempster-Shafer 
decision theory is then applied to the normalized. 

The fusion method has been applied to the IITK 
and the ORL face databases. To limit the page 
length, the partial results for Yale database have not 
been included instead the DS theory based fusion 
result. Yet, the large variability in the face samples 
due to changes in the facial expression allowed us to 
thoroughly validate the advantage of a part-based 
representation and matching.  

The ROC curves of the error rates obtained from 
the score fusion applied to the three face databases 
are shown in figure 6. The computed recognition 
accuracy for the IITK database is 96.29% and for the 
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ORL database is 98.93%. These values correspond to 
an improvement in accuracy of about 1% over the 
local fusion strategy. The recognition result for the 
Yale database is 98.19%, which is also promising. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 6: ROC curves determined from three face 
databases: IITK, ORL and Yale face databases. 

6. Conclusion 
Human faces can be characterized both on the 

basis of local as well as of global features. While 
global features are easier to capture they are 
generally less discriminative than localized features, 
but are less sensitive to localized changes in the face 
due to the partial deformability of the facial structure. 
On the other hand, local features on the face can be 
highly discriminative, but may suffer for local 
changes in the facial appearance or partial face 
occlusion. The optimal face representation should 
then allow to match localized facial features, but also 
determining a global similarity measurement for the 
face [14]. 

In this paper, a robust, integrated classification 
paradigm for face recognition has been presented, 
comparing a local and a global face representation. 
Both representations are based on robust and 
invariant photometric features (SIFT features). 
Performances of individual matching techniques have 
been evaluated with two face databases: the IITK and 
the ORL face datasets. Results on score level fusion 
are reported also from the Yale database. 

The Dempster-Shafer theory has been applied to 
fuse both the local and global fusion strategies. The 
experiments performed on the ORL face database 
scored 98.93% of accuracy in recognition. The same 
tests performed on the IITK face dataset scored 
96.29% of accuracy in recognition of about 3% 
increase in relative performances over the global 

matching method alone. 
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