On sequences with prescribed metric discrepancy behavior

Christoph Aistleitner ${ }^{1}$ • Gerhard Larcher ${ }^{1}$

Received: 23 July 2015 / Accepted: 11 December 2015 / Published online: 21 January 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract

An important result of H . Weyl states that for every sequence $\left(a_{n}\right)_{n \geq 1}$ of distinct positive integers the sequence of fractional parts of $\left(a_{n} \alpha\right)_{n \geq 1}$ is uniformly distributed modulo one for almost all α. However, in general it is a very hard problem to calculate the precise order of convergence of the discrepancy D_{N} of $\left(\left\{a_{n} \alpha\right\}\right)_{n \geq 1}$ for almost all α. By a result of R. C. Baker this discrepancy always satisfies $N D_{N}=$ $\mathcal{O}\left(N^{\frac{1}{2}+\varepsilon}\right)$ for almost all α and all $\varepsilon>0$. In the present note for arbitrary $\gamma \in\left(0, \frac{1}{2}\right]$ we construct a sequence $\left(a_{n}\right)_{n \geq 1}$ such that for almost all α we have $N D_{N}=\mathcal{O}\left(N^{\gamma}\right)$ and $N D_{N}=\Omega\left(N^{\gamma-\varepsilon}\right)$ for all $\varepsilon>0$, thereby proving that any prescribed metric discrepancy behavior within the admissible range can actually be realized.

Keywords Discrepancy theory • Metric number theory

Mathematics Subject Classification 11K38 - 11J83

1 Introduction

Weyl [12] proved that for every sequence $\left(a_{n}\right)_{n \geq 1}$ of distinct positive integers the sequence $\left(\left\{a_{n} \alpha\right\}\right)_{n>1}$ is uniformly distributed modulo one for almost all reals α. Here, and in the sequel, $\{\cdot\}$ denotes the fractional part function. The speed of convergence

[^0]towards the uniform distribution is measured in terms of the discrepancy, which-for an arbitrary sequence $\left(x_{n}\right)_{n \geq 1}$ of points in [0,1)-is defined by
$$
D_{N}=D_{N}\left(x_{1}, \ldots, x_{N}\right)=\sup _{0 \leq a<b \leq 1}\left|\frac{\mathcal{A}_{N}([a, b))}{N}-(b-a)\right|,
$$
where $\mathcal{A}_{N}([a, b)):=\#\left\{1 \leq n \leq N \mid x_{n} \in[a, b)\right\}$. For a given sequence $\left(a_{n}\right)_{n \geq 1}$ it is usually a very hard and challenging problem to give sharp estimates for the discrepancy D_{N} of $\left(\left\{a_{n} \alpha\right\}\right)_{n \geq 1}$ valid for almost all α. For general background on uniform distribution theory and discrepancy theory see for example the monographs [6,9].

A famous result of Baker [3] states that for any sequence $\left(a_{n}\right)_{n \geq 1}$ of distinct positive integers for the discrepancy D_{N} of $\left(\left\{a_{n} \alpha\right\}\right)_{n \geq 1}$ we have

$$
\begin{equation*}
N D_{N}=\mathcal{O}\left(N^{\frac{1}{2}}(\log N)^{\frac{3}{2}+\varepsilon}\right) \quad \text { as } N \rightarrow \infty \tag{1}
\end{equation*}
$$

for almost all α and for all $\varepsilon>0$.
Note that (1) is a general upper bound which holds for all sequences $\left(a_{n}\right)_{n \geq 1}$; however, for some specific sequences the precise typical order of decay of the discrepancy of $\left(\left\{a_{n} \alpha\right\}\right)_{n \geq 1}$ can differ significantly from the upper bound in (1). The fact that (1) is essentially optimal (apart from logarithmic factors) as a general result covering all possible sequences can for example be seen by considering so-called lacunary sequences $\left(a_{n}\right)_{n \geq 1}$, i.e., sequences for which $\frac{a_{n+1}}{a_{n}} \geq 1+\delta$ for a fixed $\delta>0$ and all n large enough. In this case for D_{N} we have

$$
\frac{1}{4 \sqrt{2}} \leq \limsup _{N \rightarrow \infty} \frac{N D_{N}}{\sqrt{2 N \log \log N}} \leq c_{\delta}
$$

for almost all α (see [10]), which shows that the exponent $1 / 2$ of N on the righthand side of (1) cannot be reduced for this type of sequence. For more information concerning possible improvements of the logarithmic factor in (1), see [5].

Quite recently in [2] it was shown that also for a large class of sequences with polynomial growth behavior Baker's result is essentially best possible. For example, the following result was shown there: let $f \in \mathbb{Z}[x]$ be a polynomial of degree larger or equal to 2 . Then for the discrepancy D_{N} of $(\{f(n) \alpha\})_{n \geq 1}$ for almost all α and for all $\varepsilon>0$ we have

$$
N D_{N}=\Omega\left(N^{\frac{1}{2}-\varepsilon}\right)
$$

On the other hand there is the classical example of the Kronecker sequence, i.e., $a_{n}=n$, which shows that the actual metric discrepancy behavior of $\left(\left\{a_{n} \alpha\right\}\right)_{n \geq 1}$ can differ vastly from the general upper bound in (1). Namely, for the discrepancy of the sequence $(\{n \alpha\})_{n \geq 1}$ for almost all α and for all $\varepsilon>0$ we have

$$
\begin{equation*}
N D_{N}=\mathcal{O}\left(\log N(\log \log N)^{1+\varepsilon}\right) \tag{2}
\end{equation*}
$$

which follows from classical results of Khintchine in the metric theory of continued fractions (for even more precise results, see [11]). The estimate (2) of course also holds for $a_{n}=f(n)$ with $f \in \mathbb{Z}[x]$ of degree 1. In [2] further examples for $\left(a_{n}\right)_{n \geq 1}$ were given, where $\left(a_{n}\right)_{n \geq 1}$ has polynomial growth behavior of arbitrary degree, such that for the discrepancy of $\left(\left\{a_{n} \alpha\right\}\right)_{n \geq 1}$ we have

$$
N D_{N}=\mathcal{O}\left((\log N)^{2+\varepsilon}\right)
$$

for almost all α and for all $\varepsilon>0$; see there for more details.
These results may seduce to the hypothesis that for all choices of $\left(a_{n}\right)_{n \geq 1}$ for the discrepancy of $\left(\left\{a_{n} \alpha\right\}\right)_{n \geq 1}$ for almost all α we either have

$$
\begin{equation*}
N D_{N}=\mathcal{O}\left(N^{\varepsilon}\right) \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
N D_{N}=\Omega\left(N^{\frac{1}{2}-\varepsilon}\right) . \tag{4}
\end{equation*}
$$

This hypothesis, however, is wrong as was shown in [1]: let $\left(a_{n}\right)_{n \geq 1}$ be the sequence of those positive integers with an even sum of digits in base 2 , sorted in increasing order; that is $\left(a_{n}\right)_{n \geq 1}=(3,5,6,9,10, \ldots)$. Then for the discrepancy of $\left(\left\{a_{n} \alpha\right\}\right)_{n \geq 1}$ for almost all α we have

$$
N D_{N}=\mathcal{O}\left(N^{\kappa+\varepsilon}\right)
$$

and

$$
N D_{N}=\Omega\left(N^{\kappa-\varepsilon}\right)
$$

for all $\varepsilon>0$, where κ is a constant with $\kappa \approx 0.404$. Interestingly, the precise value of κ is unknown; see [8] for the background.

The aim of the present paper is to show that the example above is not a singular counter-example, but that indeed "everything" between (3) and (4) is possible. More precisely, we will show the following theorem.

Theorem 1 Let $0<\gamma \leq \frac{1}{2}$. Then there exists a strictly increasing sequence $\left(a_{n}\right)_{n \geq 1}$ of positive integers such that for the discrepancy of the sequence $\left(\left\{a_{n} \alpha\right\}\right)_{n \geq 1}$ for almost all α we have

$$
N D_{N}=\mathcal{O}\left(N^{\gamma}\right)
$$

and

$$
N D_{N}=\Omega\left(N^{\gamma-\varepsilon}\right)
$$

for all $\varepsilon>0$.

2 Proof of the theorem

For the proof we need an auxiliary result which easily follows from classical work of Behnke [4].

Lemma 1 Let $\left(e_{k}\right)_{k \geq 1}$ be a strictly increasing sequence of positive integers. Let $\varepsilon>0$. Then for almost all α there is a constant $K(\alpha, \varepsilon)>0$ such that for all $r \in \mathbb{N}$ there exist $M_{r} \leq e_{r}$ such that for the discrepancy of the sequence $\left(\left\{n^{2} \alpha\right\}\right)_{n \geq 1}$ we have

$$
M_{r} D_{M_{r}} \geq K(\alpha, \varepsilon) \sqrt{\frac{e_{r}}{\left(\log e_{r}\right)^{1+\varepsilon}}}
$$

Proof For $\alpha \in \mathbb{R}$ let $a_{k}(\alpha)$ denote the k th continued fraction coefficient in the continued fraction expansion of α. Then it is well-known that for almost all α we have $a_{k}(\alpha)=\mathcal{O}\left(k^{1+\varepsilon}\right)$ for all $\varepsilon>0$. Let $\varepsilon>0$ be given and let α and $c(\alpha, \varepsilon)$ be such that

$$
\begin{equation*}
a_{k}(\alpha) \leq c(\alpha, \varepsilon) k^{1+\varepsilon} \tag{5}
\end{equation*}
$$

for all $k \geq 1$.
Let q_{l} the l th best approximation denominator of α. Then

$$
\begin{equation*}
q_{l+1} \leq\left(c(\alpha, \varepsilon) l^{1+\varepsilon}+1\right) q_{l} . \tag{6}
\end{equation*}
$$

Since $q_{l} \geq 2^{\frac{l}{2}}$ in any case, we have $l \leq \frac{2 \log q_{l}}{\log 2}$, and we obtain

$$
\begin{equation*}
q_{l+1} \leq c_{1}(\alpha, \varepsilon) q_{l}\left(\log q_{l}\right)^{1+\varepsilon}, \tag{7}
\end{equation*}
$$

for an appropriate constant $c_{1}(\alpha, \varepsilon)$. In [4] it was shown in Satz XVII that for every real α we have

$$
\left|\sum_{n=1}^{N} e^{2 \pi i n^{2} \alpha}\right|=\Omega\left(N^{\frac{1}{2}}\right)
$$

Indeed, if we follow the proof of this theorem we find that even the following was shown: for every α and for every best approximation denominator q_{l} of α there exists an $Y_{l}<\sqrt{q_{l}}$ such that $\left|\sum_{n=1}^{Y_{l}} e^{2 \pi i n^{2} \alpha}\right| \geq c_{\mathrm{abs}} \sqrt{q_{l}}$. Here c_{abs} is a positive absolute constant (not depending on α).

Let now $r \in \mathbb{N}$ be given and let l be such that $q_{l} \leq e_{r}<q_{l+1}$, and let $M_{r}:=Y_{l}$ from above. Then by (6) and (7) we obtain, for an appropriate constant $c_{2}(\alpha, \varepsilon)$,

$$
\begin{aligned}
\left|\sum_{n=1}^{M_{r}} e^{2 \pi i n^{2} \alpha}\right| & \geq c_{\mathrm{abs}} \sqrt{q_{l}} \\
& \geq c_{2}(\alpha, \varepsilon) \sqrt{\frac{q_{l+1}}{\left(\log q_{l}\right)^{1+\varepsilon}}} \\
& \geq c_{2}(\alpha, \varepsilon) \sqrt{\frac{e_{l}}{\left(\log e_{l}\right)^{1+\varepsilon}}}
\end{aligned}
$$

By the fact that (see Chapter 2, Corollary 5.1 of [9])

$$
M_{r} D_{M_{r}} \geq \frac{1}{4}\left|\sum_{n=1}^{M_{r}} e^{2 \pi i n^{2} \alpha}\right|
$$

which is a special case of Koksma's inequality, the result follows.

Now we are ready to prove the main theorem.

Proof of Theorem 1 Let $\left(m_{j}\right)_{j \geq 1}$ and $\left(e_{j}\right)_{j \geq 1}$ be two strictly increasing sequences of positive integers, which will be determined later. We will consider the following strictly increasing sequence of positive integers, which will be our sequence $\left(a_{n}\right)_{n \geq 1}$:

$$
\begin{aligned}
& 1,2,3, \ldots, \underbrace{m_{1}}_{=: A_{1}}, \\
& A_{1}+1^{2}, A_{1}+2^{2}, A_{1}+3^{2}, A_{1}+4^{2}, \ldots, \underbrace{A_{1}+e_{1}^{2}}_{:=B_{1}}, \\
& B_{1}+1, B_{1}+2, B_{1}+3, \ldots, \underbrace{B_{1}+m_{2}}_{=: A_{2}}, \\
& A_{2}+1^{2}, A_{2}+2^{2}, A_{2}+3^{2}, A_{2}+4^{2}, \ldots, \underbrace{A_{2}+e_{2}^{2}}_{=: B_{2}}, \\
& B_{2}+1, B_{2}+2, B_{2}+3, \ldots, \underbrace{B_{2}+m_{3}}_{=: A_{3}}, \\
& A_{3}+1^{2}, A_{3}+2^{2}, A_{3}+3^{2}, A_{3}+4^{2}, \ldots, \underbrace{A_{3}+e_{3}^{2}}_{=: B_{3}},
\end{aligned}
$$

Furthermore, let

$$
F_{s}:=\sum_{i=1}^{s} m_{i}+\sum_{i=1}^{s-1} e_{i} \quad \text { and } \quad E_{s}:=\sum_{i=1}^{s} m_{i}+\sum_{i=1}^{s} e_{i}
$$

The sequence $\left(a_{n}\right)_{n \geq 1}$ is constructed in such a way that it contains sections where it grows like $(n)_{n \geq 1}$ as well as sections where it grows like $\left(n^{2}\right)_{n \geq 1}$. By this construction we exploit both the strong upper bounds for the discrepancy of $(\{n \alpha\})_{n \geq 1}$ and the strong lower bounds for the discrepancy of $\left(\left\{n^{2} \alpha\right\}\right)_{n \geq 1}$, in an appropriately balanced way, in order to obtain the desired discrepancy behavior of the sequence $\left(\left\{a_{n} \alpha\right\}\right)_{n \geq 1}$. In our argument we will repeatedly make use of the fact that

$$
\begin{equation*}
D_{N}\left(x_{1}, \ldots, x_{N}\right)=D_{N}\left(\left\{x_{1}+\beta\right\}, \ldots,\left\{x_{N}+\beta\right\}\right) \tag{8}
\end{equation*}
$$

for arbitrary $x_{1}, \ldots, x_{N} \in[0,1]$ and $\beta \in \mathbb{R}$, which allows us to transfer the discrepancy bounds for $(\{n \alpha\})_{n \geq 1}$ and $\left(\left\{n^{2} \alpha\right\}\right)_{n \geq 1}$ directly to the shifted sequences $(\{(M+n) \alpha\})_{n \geq 1}$ and $\left(\left\{\left(M+n^{2}\right) \alpha\right\}\right)_{n \geq 1}$ for some integer M.

Let α be such that it satisfies (5) with $\varepsilon=\frac{1}{2}$. Then it is also well-known (see for example [9]) that for the discrepancy D_{N} of the sequence $(\{n \alpha\})_{n \geq 1}$ we have

$$
\begin{equation*}
N D_{N} \leq \bar{c}_{1}(\alpha)(\log N)^{\frac{3}{2}} \tag{9}
\end{equation*}
$$

for all $N \geq 2$.
By the above mentioned general result of Baker, that is by (1), we know that for almost all α for the discrepancy D_{N} of the sequence $\left(\left\{n^{2} \alpha\right\}\right)_{n \geq 1}$ we have

$$
N D_{N} \leq c_{3}(\alpha, \varepsilon) N^{\frac{1}{2}}(\log N)^{\frac{3}{2}+\varepsilon}
$$

for all $\varepsilon>0$ and for all $N \geq 2$, for an appropriate constant $c_{3}(\alpha, \varepsilon)$. Actually an even slightly sharper estimate was given for the special case of the sequence $\left(\left\{n^{2} \alpha\right\}\right)_{n \geq 1}$ by Fiedler et al. [7], who proved that

$$
\begin{equation*}
N D_{N} \leq c_{4}(\alpha, \varepsilon) N^{\frac{1}{2}}(\log N)^{\frac{1}{4}+\varepsilon} \tag{10}
\end{equation*}
$$

for almost all α and for all $\varepsilon>0$ and all $N \geq 2$.
Assume that α satisfies (10) with $\varepsilon=\frac{1}{8}$. Then

$$
\begin{equation*}
N D_{N} \leq \bar{c}_{2}(\alpha) N^{\frac{1}{2}}(\log N)^{\frac{3}{8}} \tag{11}
\end{equation*}
$$

for all $N \geq 2$. Now for such α and for arbitrary N we consider the discrepancy D_{N} of the sequence $\left(\left\{a_{n} \alpha\right\}\right)_{n \geq 1}$.

Case 1 Let $N=F_{l}$ for some l. Then $N D_{N} \leq E_{l-1} D_{E_{l-1}}+\left(N-E_{l-1}\right) D_{E_{l-1}, F_{l}}$, where $D_{x, y}$ denotes the discrepancy of the point set $\left(\left\{a_{n} \alpha\right\}\right)_{n=x+1, x+2, \ldots, y}$. Hence by (8), (9) and by the trivial estimate $D_{B_{l-1}} \leq 1$ we have

$$
\begin{aligned}
N D_{N} & \leq E_{l-1}+\bar{c}_{1}(\alpha)\left(\log m_{l}\right)^{\frac{3}{2}} \\
& \leq 2\left(\log m_{l}\right)^{2} \\
& \leq 2(\log N)^{2}
\end{aligned}
$$

for all l large enough, provided that [condition (i)] m_{l} is chosen such that $\left(\log m_{l}\right)^{2} \geq E_{l-1}$.

Case 2 Let $F_{l}<N \leq E_{l}$ for some l. Then by Case 1 and by (8) and (11) we have for l large enough that

$$
\begin{aligned}
N D_{N} & \leq F_{l} D_{F_{l}}+\left(N-F_{l}\right) D_{F_{l}, N} \\
& \leq 2\left(\log F_{l}\right)^{2}+\bar{c}_{2}(\alpha)\left(N-F_{l}\right)^{\frac{1}{2}}\left(\log \left(N-F_{l}\right)\right)^{\frac{3}{8}} .
\end{aligned}
$$

Note that $0<N-F_{l}<e_{l}$.
We choose [condition (ii)]

$$
\begin{equation*}
e_{l}:=\left\lceil\frac{F_{l}^{2 \gamma}}{\log \left(F_{l}^{2 \gamma}\right)}\right\rceil . \tag{12}
\end{equation*}
$$

Note that conditions (i) and (ii) do not depend on α. Now assume that l is so large that $2\left(\log F_{l}\right)^{2}<\frac{F_{l}{ }^{\gamma}}{2}$. Then

$$
\frac{F_{l}^{\gamma}}{2} \leq 2\left(\log F_{l}\right)^{2}+\left(e_{l} \log e_{l}\right)^{\frac{1}{2}} \leq 2 F_{l}^{\gamma}
$$

and (note that $\gamma \leq \frac{1}{2}$)

$$
\begin{equation*}
F_{l}<N \leq E_{l}=F_{l}+e_{l} \leq 2 F_{l} . \tag{13}
\end{equation*}
$$

Hence

$$
\begin{aligned}
N D_{N} & \leq \max \left(1, \bar{c}_{2}(\alpha)\right) 2 F_{l}^{\gamma} \\
& \leq \max \left(1, \bar{c}_{2}(\alpha)\right) 2 N^{\gamma}
\end{aligned}
$$

Case 3 Let $E_{l}<N<F_{l+1}$ for some l. Then by Case 2 and by (8) and (9) we have

$$
\begin{aligned}
N D_{N} & \leq E_{l} D_{E_{l}}+\left(N-E_{l}\right) D_{E_{l}, N} \\
& \leq 2 \max \left(1, \bar{c}_{2}(\alpha)\right) E_{l}^{\gamma}+\bar{c}_{1}(\alpha)\left(\log \left(N-E_{l}\right)\right)^{2} \\
& \leq 3 \max \left(1, \bar{c}_{2}(\alpha)\right) N^{\gamma}
\end{aligned}
$$

for N large enough.
It remains to show that for every $\varepsilon>0$ we have $N D_{N} \geq N^{\gamma-\varepsilon}$ for infinitely many N. Let l be given and let $M_{l} \leq e_{l}$ with the properties given in Lemma 1. Let $N:=F_{l}+M_{l}$. Then by Lemma 1, Case 1, (8), (12) and (13) for l large enough we have

$$
\begin{aligned}
N D_{N} & \geq M_{l} D_{F_{l}, N}-F_{l} D_{F_{l}} \\
& \geq K(\alpha, \varepsilon) \sqrt{\frac{e_{l}}{\left(\log e_{l}\right)^{1+\varepsilon}}}-2\left(\log m_{l}\right)^{2} \\
& \geq \frac{F_{l}^{\gamma}}{\left(\log F_{l}\right)^{3}} \\
& \geq N^{\gamma-\varepsilon} .
\end{aligned}
$$

This proves the theorem.
Acknowledgments Open access funding provided by Austrian Science Fund (FWF). C. Aistleitner is supported by a Schrödinger scholarship of the Austrian Science Fund (FWF), and by FWF Project I1751N26. C. Aistleitner and G. Larcher are supported by FWF Project F5507-N26, which is part of the Special Research Program "Quasi-Monte Carlo Methods: Theory and Applications".

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aistleitner, C., Hofer, R., Larcher, G.: On parametric Thue-Morse sequences and lacunary trigonometric products. arXiv:1502.06738
2. Aistleitner, C., Larcher, G.: Metric results on the discrepancy of sequences $\left(a_{n} \alpha\right)_{n \geq 1}$ modulo one for integer sequences $\left(a_{n}\right)_{n \geq 1}$ of polynomial growth. Mathematika (To appear). arXiv:1507.00207
3. Baker, R.C.: Metric number theory and the large sieve. J. Lond. Math. Soc. (2) 24(1), 34-40 (1981)
4. Behnke, H.: Zur Theorie der diophantischen Approximationen. Abh. Math. Sem. Hambg. 3, 261-318 (1924)
5. Berkes, I., Philipp, W.: The size of trigonometric and Walsh series and uniform distribution mod 1. J. Lond. Math. Soc. (2) 50(3), 454-464 (1994)
6. Drmota, M., Tichy, R.F.: Sequences, discrepancies and applications. In: Lecture Notes in Mathematics, vol. 1651. Springer, Berlin (1997)
7. Fiedler, H., Jurkat, W., Körner, O.: Asymptotic expansions of finite theta series. Acta Arith. 32, 129-146 (1977)
8. Fouvry, E., Mauduit, C.: Sommes des chiffres et nombres presque premiers. Math. Ann. 305(3), 571599 (1996)
9. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)
10. Philipp, W.: Limit theorems for lacunary series and uniform distribution mod 1. Acta Arith. 26(3), 241-251 (1974/1975)
11. Schoissengeier, J.: A metrical result on the discrepancy of ($n \alpha$). Glasg. Math. J. 40(3), 393-425 (1998)
12. Weyl, H.: Über die Gleichverteilung von Zahlen modulo Eins. Math. Ann. 77, 313-352 (1916)

[^0]: Communicated by J. Schoißengeier.

 Christoph Aistleitner
 christoph.aistleitner@jku.at
 Gerhard Larcher gerhard.larcher@jku.at

 1 Institute of Financial Mathematics and Applied Number Theory, University Linz, Linz, Austria

