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Abstract An important result of H. Weyl states that for every sequence (a;),>1 of
distinct positive integers the sequence of fractional parts of (a,®),>1 is uniformly
distributed modulo one for almost all «. However, in general it is a very hard problem
to calculate the precise order of convergence of the discrepancy Dy of ({a,}),>1
for almost all «. By a result of R. C. Baker this discrepancy always satisfies NDy =

ON %”) for almost all « and all € > 0. In the present note for arbitrary y € (0, %]
we construct a sequence (a,),>1 such that for almost all « we have NDy = O(N?Y)
and NDy = Q(NY~¥¢) for all ¢ > 0, thereby proving that any prescribed metric
discrepancy behavior within the admissible range can actually be realized.
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Mathematics Subject Classification 11K38 - 11J83

1 Introduction

Weyl [12] proved that for every sequence (a;,),>; of distinct positive integers the
sequence ({ana}),> is uniformly distributed modulo one for almost all reals «. Here,
and in the sequel, {-} denotes the fractional part function. The speed of convergence

Communicated by J. Schoilengeier.

B4 Christoph Aistleitner
christoph.aistleitner @jku.at

Gerhard Larcher
gerhard.larcher @jku.at

I Institute of Financial Mathematics and Applied Number Theory, University Linz, Linz, Austria

@ Springer


https://core.ac.uk/display/193931161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-015-0860-2&domain=pdf

508 C. Aistleitner, G. Larcher

towards the uniform distribution is measured in terms of the discrepancy, which—for
an arbitrary sequence (x;),>; of points in [0, 1)—is defined by

Ay ([a, b
Dy = Dy(x1,...,XNy) = sup M—(b—a),
O<a<b<l N

where Ay ([a,b)) :=#{l <n < N|x, €[a,b)}. For a given sequence (a),> it
is usually a very hard and challenging problem to give sharp estimates for the discrep-
ancy Dy of ({a,a}),>; valid for almost all a. For general background on uniform
distribution theory and discrepancy theory see for example the monographs [6,9].

A famous result of Baker [3] states that for any sequence (a,), > of distinct positive
integers for the discrepancy Dy of ({a,a}), > we have

NDy = O(N? (log N)3t¢) as N — oo 1)

for almost all « and for all &€ > 0.

Note that (1) is a general upper bound which holds for all sequences (a;,),>1; how-
ever, for some specific sequences the precise typical order of decay of the discrepancy
of ({a,a}),>1 can differ significantly from the upper bound in (1). The fact that (1)
is essentially optimal (apart from logarithmic factors) as a general result covering
all possible sequences can for example be seen by considering so-called lacunary
sequences (a,),>, 1.e., sequences for which a:‘l—“ >1+46forafixedd > Oandalln
large enough. In this case for Dy we have !

ND
< lim sup al

1
— ———— =< C§
42 7 Nooo v/2Nloglog N

for almost all « (see [10]), which shows that the exponent 1/2 of N on the right-
hand side of (1) cannot be reduced for this type of sequence. For more information
concerning possible improvements of the logarithmic factor in (1), see [5].

Quite recently in [2] it was shown that also for a large class of sequences with
polynomial growth behavior Baker’s result is essentially best possible. For example,
the following result was shown there: let f € Z [x] be a polynomial of degree larger
or equal to 2. Then for the discrepancy Dy of ({f(n)a}),- for almost all « and for
all ¢ > 0 we have -

NDy = Q(NZ7%).

On the other hand there is the classical example of the Kronecker sequence, i.e.,
a, = n, which shows that the actual metric discrepancy behavior of ({a,a}),>1 can
differ vastly from the general upper bound in (1). Namely, for the discrepancy of the
sequence ({na}),s; for almost all & and for all £ > 0 we have

NDy = O(log N (loglog N)' %), )

@ Springer



On sequences with prescribed metric discrepancy behavior 509

which follows from classical results of Khintchine in the metric theory of continued
fractions (for even more precise results, see [11]). The estimate (2) of course also
holds for a, = f(n) with f € Z[x] of degree 1. In [2] further examples for (a,),>
were given, where (a,),> has polynomial growth behavior of arbitrary degree, such
that for the discrepancy of ({a,a}),>; we have

NDy = O((log N)***)
for almost all @ and for all ¢ > 0; see there for more details.

These results may seduce to the hypothesis that for all choices of (a;,),> for the
discrepancy of ({a,a}),> for almost all @ we either have

NDy = O(N®) (3)

or '
NDy = Q(N279%). 4)

This hypothesis, however, is wrong as was shown in [1]: let (a,),>; be the sequence
of those positive integers with an even sum of digits in base 2, sorted in increasing
order; thatis (a,)n>1 = (3, 5, 6,9, 10, .. .). Then for the discrepancy of ({a,a}),, > for
almost all @ we have

NDy = O(N“t%)
and

NDy = Q(N“7%)
for all ¢ > 0, where « is a constant with « &~ 0.404. Interestingly, the precise value of
k is unknown; see [8] for the background.

The aim of the present paper is to show that the example above is not a singular
counter-example, but that indeed “everything” between (3) and (4) is possible. More
precisely, we will show the following theorem.

Theorem 1 Let0 <y < % Then there exists a strictly increasing sequence (an),> 1

of positive integers such that for the discrepancy of the sequence ({a,a}), > for almost
all @ we have

NDy = O(NY)
and
NDy = Q(NY™%)

forall e > 0.
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2 Proof of the theorem

For the proof we need an auxiliary result which easily follows from classical work of
Behnke [4].

Lemma 1 Let (ex);> be astrictly increasing sequence of positive integers. Let ¢ > 0.
Then for almost all « there is a constant K («, ) > 0 such that for all r € N there
exist M, < e, such that for the discrepancy of the sequence ({nza})nzl we have

er
M,Dy. > K (a,e) | —————.
e R TR

Proof For o € R let a; (o) denote the kth continued fraction coefficient in the con-
tinued fraction expansion of «. Then it is well-known that for almost all @ we have
ap(@) =0 (k1+8) forall e > 0. Lete > 0 be given and let @ and ¢ («, €) be such that

ar(@) < c(a, &) k'*e )

forall k > 1.
Let ¢; the Ith best approximation denominator of «. Then

g1 < (c (o, &) I" + Dg. (©6)

. L, .
Since g; > 22 in any case, we have [ < 211(§)ggqu , and we obtain

g1 < c1 (@, &) g (logg)'™*, (7)

for an appropriate constant ¢ («, €). In [4] it was shown in Satz XVII that for every
real « we have

N

)
§ eZmno{

n=1

— Q(N?).

Indeed, if we follow the proof of this theorem we find that even the following was
shown: for every « and for every best approximation denominator ¢; of « there exists

) . o
an ¥; < . /q; such that | z:’zl e2min "‘| > cCabs/q1- Here capg is a positive absolute
constant (not depending on «).
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Let now r € N be given and let [ be such that ¢; < ¢, < q+1, and let M, := Y]
from above. Then by (6) and (7) we obtain, for an appropriate constant c> (¢, €),

M,
)
E e27Tln o

n=1

> Cabsx/a

qi+1
zo@e) | — =
(logg)'**

> ¢ (@, 8) |—o!
o (a, &) | ——.
= (logel)H's

By the fact that (see Chapter 2, Corollary 5.1 of [9])

1
MrDM, > Z

which is a special case of Koksma’s inequality, the result follows. O
Now we are ready to prove the main theorem.

Proof of Theorem I Let (m;);>1 and (e;);>1 be two strictly increasing sequences
of positive integers, which will be determined later. We will consider the following
strictly increasing sequence of positive integers, which will be our sequence (a,,),>1:

1,2,3,..., m,
——
=:A
A+ 12, A1 +22, A+ 32 A +4%, AL+ el
——
=B
Bi+1,B1+2,B+3,..., Bl +ma,
——
=:A>
Ay +12, Ay +22 A + 3%, Ag + 4%, ., Ay + 2%,
——
=B
B, +1,By+2,By+3,..., By +ms,
—_————
=:A3
A+ 12, A3+ 22 A5+ 3% A3+ 42, As + e,
— ——
=:B3
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Furthermore, let

s s—1 s s
F :=Zm,~+2ei and E ::Zm[—i—Zei.
i=1 i=1 i=1 i=1

The sequence (a),>1 is constructed in such a way that it contains sections where it
grows like (n),>1 as well as sections where it grows like (nz)nz 1. By this construction
we exploit both the strong upper bounds for the discrepancy of ({na}),>1 and the
strong lower bounds for the discrepancy of ({n’a}),>1, in an appropriately balanced
way, in order to obtain the desired discrepancy behavior of the sequence ({a,ct}),>1.
In our argument we will repeatedly make use of the fact that

Dy(x1,...,xny) = Dn({x1 + B}, ..., {xny + B} (8)

for arbitrary x1,...,xy € [0,1] and B € R, which allows us to transfer the dis-
crepancy bounds for ({no}),>1 and ({nza})nzl directly to the shifted sequences
(M +n)a})p>1 and (M + nz)a})nzl for some integer M.

Let o be such that it satisfies (5) with & = 3. Then it is also well-known (see for
example [9]) that for the discrepancy Dy of the sequence ({na}),>; we have

NDy <7 (@) (log N)? )

forall N > 2.
By the above mentioned general result of Baker, that is by (1), we know that for
almost all « for the discrepancy Dy of the sequence ({n%a}) n>1 wWe have

NDy < c3(a, &) N? (log N)3+°

for all ¢ > 0 and for all N > 2, for an appropriate constant c3 («, €). Actually an even
slightly sharper estimate was given for the special case of the sequence ({n’a}),>1 by
Fiedler et al. [7], who proved that

NDy < ca(a, &) N2 (log N)i™e (10)

for almost all @ and for all ¢ > 0 and all N > 2.
Assume that « satisfies (10) with ¢ = % Then

NDy <& (a) N? (log N)§ (11)

for all N > 2. Now for such « and for arbitrary N we consider the discrepancy Dy
of the sequence ({a,a}),> .

Case I Let N = F; for some [. Then NDy < E;_1Dg,_, + (N — E;_1) Dg,_, R,
where D, , denotes the discrepancy of the point set ({a,0t}),—yt1.x42
by (8), (9) and by the trivial estimate Dpg, , < 1 we have

,,,,,,
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3
NDy < Ej—y +¢1 (o) (logmy)2
< 2 (logmy)®
< 2 (log N)?
for all [ large enough, provided that [condition (i)] my; is chosen such that
(logm))* > Ei_i.
Case 2 Let Fi < N < E| for some [. Then by Case 1 and by (8) and (11) we have for
[ large enough that
NDy < FiDp, + (N — F;) Di, n
1 3
<2(log F})* + ¢ (@) (N — F)? (log (N — F})¥ .

Note that0 < N — F} < ¢.
We choose [condition (ii)]

F 12
e .= W . ( )

Note that conditions (i) and (ii) do not depend on «. Now assume that / is so large that
2 (log F)? < %y Then

Fzy 2 1 Y
> <2(log F;)* + (e;loge))? <2F

and (note that y < %)
Ff<N<E =F+e¢ <2F. (13)

Hence

NDy < max (1,0 () 2F
<max (1,¢ (o)) 2N7.

Case 3 Let E; < N < Fyyq for some [. Then by Case 2 and by (8) and (9) we have

NDy < E/Dg, + (N — E;) Dg; N
< 2max (1,¢ (@) E] +7¢ () (log (N — E)))?
<3max(1,¢ (o)) NV

for N large enough.

It remains to show that for every ¢ > 0 we have NDy > NY~¢ for infinitely
many N. Let [ be given and let M; < ¢; with the properties given in Lemma 1. Let
N := F; + M;. Then by Lemma 1, Case 1, (8), (12) and (13) for [ large enough we
have
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NDy > MIDF],N — F[DF[

ey 2
>K(a,8) | ——————2(ogm
> K (a,¢) /(logel)pﬁ9 (logmy)

Y
> _E
(log F7)?

> NV 78,

This proves the theorem. O
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