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ABSTRACT

Ecosystem science increasingly relies on highly de-

rived metrics to synthesize across large datasets.

However, full uncertainty associated with these

metrics is seldom quantified. Our objective was to

evaluate measurement error and model uncertainty

in plot-based estimates of carbon stock and carbon

change. We quantified the measurement error

associated with live stems, deadwood and plot-level

variables in temperate rainforest in New Zealand.

We also quantified model uncertainty for height–

diameter allometry, stem volume equations and

wood-density estimates. We used Monte Carlo

simulation to assess the net effects on carbon stock

and carbon change estimated using data from 227

plots from throughout New Zealand. Plot-to-plot

variation was the greatest source of uncertainty,

amounting to 9.1% of mean aboveground carbon

stock estimates (201.11 MgC ha-1). Propagation of

the measurement error and model uncertainty re-

sulted in a 1% increase in uncertainty (0.1% of

mean stock estimate). Carbon change estimates

(mean -0.86 MgC ha-1 y-1) were more uncertain,

with sampling error equating to 56% of the mean,

and when measurement error and model uncer-

tainty were included this uncertainty increased by

35% (22.1% of the mean change estimate). For

carbon change, the largest sources of measurement

error were missed/double counted stems and fallen

coarse woody debris. Overall, our findings show that

national-scale plot-based estimates of carbon stock

and carbon change in New Zealand are robust to

measurement error and model uncertainty. We

recommend that calculations of carbon stock and

carbon change incorporate both these sources of

uncertainty so that management implications and

policy decisions can be assessed with the appropriate

level of confidence.

Key words: allometric models; carbon account-

ing; forest inventory and analysis; LUCAS; mea-

surement error; model uncertainty; tree height;

stem diameter; stem volume.

INTRODUCTION

Ecosystem science increasingly relies on the use of

highly derived metrics to synthesize across large

datasets (Pereira and others 2013). For example,

the valuation of ecosystem services requires inte-

gration of data on ecosystem function (mecha-

nisms, fluxes and pools), land use (maps,

classifications and area estimates) and economic or
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social estimates of the value provided by that ser-

vice (Costanza and others 1997). Misrepresentation

of uncertainty in derived metrics can lead to false

assessment of significance and biased results. For

example, Phillips and others (1998) analysed long-

term plot data and reported that tropical forests

were a net carbon sink; however, re-analysis by

Clark (2002) showed that this result was biased by

‘artefacts’ associated with measurement of but-

tressed trees. It is, therefore, important for

researchers to have quantitative estimates of the

uncertainty associated with the derived metrics

(Chave and others 2004; Yanai and others 2010;

Butt and others 2013). Uncertainty arises from the

inability to perfectly measure key variables, the

necessary use of models to make predictions and

the natural variability of ecosystem processes across

the landscape (Bolker 2008). Although some ele-

ment of sampling uncertainty is usually reported

(that is, among-plot variability in the derived

metric), other sources such as measurement error

and model uncertainty are generally not incorpo-

rated (Clark and Kellner 2012; Muller-Landau and

others 2013). It is essential to show the correct level

of uncertainty in the derived metrics so that man-

agement implications and policy decisions can be

assessed with the appropriate level of confidence.

Understanding the major determinants of uncer-

tainty can also be a powerful tool for improving

methodology and the accuracy of the resulting

estimates (for example, Baker and others 2004).

Plot-based estimates of forest carbon stocks and

carbon fluxes are derived metrics that contain

multiple sources of uncertainty (Phillips and others

1998; Chave and others 2008; Lewis and others

2009). Calculations of forest carbon stock are usu-

ally based on plot-based field measurements of

stem diameter and (occasionally) stem height.

These data are subject to measurement error. The

imperfect measurements are transformed into stem

biomass estimates, using models—introducing

model uncertainty (Chave and others 2004). These

include height–diameter models to predict tree

height and carbon biomass models to predict car-

bon stock as a function of diameter, height and

wood density (Coomes and others 2002; Chave and

others 2005). Finally, biomass is summed across all

stems in the plot and divided by the plot area to

give total carbon stock estimated on a per-area

basis. This step introduces a second element of

measurement error relating to missing or double-

counted stems and the ability to accurately mea-

sure plot area in steep and undulating terrain

(Abella and others 2004; Wright 2005). Averaging

across a number of plots also introduces sampling

error that depends on the number of plots in the

sample and the heterogeneity of the landscape

(Salk and others 2013). Failure to properly account

for all these sources of uncertainty is likely to result

in confidence estimates that are too narrow

(overoptimistic) with significant implications for

carbon accounting and greenhouse gas reporting,

carbon trading, and the ability to measure net

changes in carbon due to management interven-

tion (Gibbs and others 2007; Peltzer and others

2010; Holdaway and others 2012; Pelletier and

others 2012).

Relatively few studies to date have quantified the

measurement error or model uncertainty associ-

ated with the estimates of forest biomass. In one of

the more comprehensive studies, Chave and others

(2004) assessed the effects of measurement error

(stem diameter), model uncertainty associated with

height–diameter relationships, and sampling

uncertainty on estimates of tropical carbon stock in

Panama. They reported that the uncertainty

(standard deviation) in the aboveground biomass

for individual trees averaged 47% of the estimate,

with 31% arising from uncertainty in the allome-

tric model and 16% from measurement error. At

the stand level, however, the effect of measure-

ment error was reduced to less than 1%, and the

total uncertainty reduced to 20:10% due to allo-

metric uncertainty and 10% due to sampling

uncertainty. In another study, Djomo and others

(2011) propagated uncertainty in carbon stock

estimates in tropical forest in Cameroon using the

statistical propagation techniques described in

Chave and others (2004), and reported that

uncertainty in allometric equations contributed

30% of the total uncertainty in carbon stock esti-

mates. These estimates may have overestimated the

uncertainty due to allometric models (Yanai and

others 2010). Another limitation of these studies is

that they have focused on tropical forests. Our

study is one of the first to test these concepts in

temperate forest systems.

Previous studies have tended to focus on uncer-

tainty in carbon stock estimates, rather than

uncertainty in carbon change over time. Carbon

change is arguably the most important of the two

metrics as it is the basis for United Nations

Framework Convention on Climate Change (UN-

FCCC) reporting, including programs such as

REDD+ (Pelletier and others 2012). We expected

that model uncertainty is likely to be less important

for carbon change estimates provided that the same

allometric equations are used to calculate carbon

stocks at both time periods (Chave and others

2004). In contrast, measurement errors, such as in
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stem diameter and missing stems, are likely to be

more significant for estimates of change based on

repeated measures (for example, Wright 2005).

Muller-Landau and others (2013) looked at the

effects of measurement error (stem diameter only)

and the uncertainty introduced by data-cleaning

routines on the capacity to detect change in bio-

mass carbon pools. They showed that both mea-

surement errors and data-cleaning routines can

introduce systematic errors, and that data-cleaning

errors were larger. There are very few studies that

have looked at the cumulative effects of both

measurement error and model uncertainty on

estimates of carbon stock and carbon change, and,

therefore, the ability to assess the relative impor-

tance of the various potential sources of uncer-

tainty is limited (Pelletier and others 2012).

Here, we develop quantitative statistical methods

for propagating uncertainty in plot-based estimates

of carbon stock and carbon change in temperate

forests and describe the relative effects of mea-

surement error, model uncertainty and sampling

uncertainty. Using the New Zealand Land Use and

Carbon Analysis System (LUCAS) natural forest

plot network (MfE 2010) and associated methods

(Payton and others 2004) we quantify the mea-

surement error associated with tree-level data

(stem diameter, tree height and species identifica-

tion) and plot-level data (number of stems, plot

area and volume of coarse woody debris) collected

under normal field conditions using standard plot-

based carbon monitoring methodologies. We also

quantify the uncertainty associated with models

used to estimate tree-level biomass, including

height–diameter allometry, stem volume and wood

density. We use these data to conduct a sensitivity

analysis to identify the most important sources of

uncertainty for estimates of stand-level carbon

stock and carbon change, and illustrate the effects

that failing to account for these sources of uncer-

tainty could have on national estimates of forest

carbon stock and carbon change.

METHODS

Field Protocol for Carbon Estimation in
New Zealand Forests

We used standard methods for measuring carbon

stocks in natural forests developed for LUCAS

(Coomes and others 2002; Allen and others 2003;

Payton and others 2004). LUCAS monitors carbon

stocks in New Zealand’s natural forest to meet New

Zealand’s international reporting requirements

under UNFCCC and the Kyoto Protocol and follows

the Intergovernmental Panel on Climate Change

(IPCC) good practice guidance (MfE 2010). The

LUCAS natural forest plot network is based on

0.04-ha (20 9 20 m) plots located on an 8-km grid

(with a random origin) projected across New Zea-

land, sampling 1,372 grid intersections where land

use was classified as indigenous forest or shrubland

according to the New Zealand Land Cover Database

version 1 (LCDB1). Permanent carbon monitoring

plots were established on 1,256 (92%) of these grid

intersections during 2002–2007, and a random

subset of these plots were remeasured in 2009–

2010. All live stems at least 2.5-cm diameter (D) at

1.35 m were tagged, identified to species level, and

D measured using a diameter tape. Diameter of

standing dead stems (‡10 cm D) was also measured

and these stems scored with ordinal decay class (0–

4). Height was measured on a subset of live stems

(and all standing dead stems and tree ferns) on

each plot, using a vertex hypsometer (Haglöf,

Sweden) or 8-m metal tape. Length, two orthogo-

nal widths at each end, and decay class were re-

corded for all fallen coarse woody debris (CWD,

defined as fallen deadwood ‡10 cm in diameter).

Lengths and angles of each side of the plot were

measured using a vertex hypsometer and a sighting

compass to allow calculation of slope-corrected plot

area. Full field methods are described in Payton and

others (2004) and MfE (2012).

Field Quantification of Measurement
Error

In March 2012 we measured seven existing

20 9 20 m LUCAS natural forest plots three times

using independent field teams following the stan-

dard LUCAS field protocols described above. Plots

were located in the central North Island of New

Zealand, and were selected to encompass a broad

range of temperate broadleaved forest types and

stem densities (summary descriptions of plots pro-

vided in Appendix Table 1 of Supplementary

Material). Each field team comprised four people

and included at least one skilled botanist familiar

with the local species and two people with rea-

sonable (>5 years) field experience. Plots typically

took 1 day to complete, and to represent standard

field conditions and time expectations each team

had a 10-day period in which to measure all the

seven plots. Variation among teams, therefore, re-

flected typical measurement error expected from

experienced field teams under standard field con-

ditions (with, for example, weather and time con-

straints). All field teams had the same information

prior to arriving at the plot (for example, plot sheets
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and species lists from previous measurements) and

used the same field manual. All field staff under-

took additional training prior to fieldwork to stan-

dardize interpretation of the field manual. Care was

taken to minimize disturbance on the plot and no

communication among teams occurred during the

measurement period. Individual stems for which

species identification was uncertain in the field

were collected and identified by independent ex-

pert botanists for each team.

Statistical Analysis of Measurement Error

We report the variance in measurements for seven

different sources of measurement error, of which

three were estimated at the tree level (stem diam-

eter, tree height and species identification) and four

at the plot level (plot area, number of live stems,

number of standing CWD and total volume of

fallen CWD). For stem diameter and tree height,

we modelled the coefficient of variation (CV)

among teams using a log-normal distribution

(Appendix 2—Figures 1 and 2). This distribution

was chosen visually based on quantile plots of the

residuals versus fitted values (Appendix 2—Fig-

ures 3 and 4). We obtained an estimate of the

ability of teams to correctly classify each species by

calculating the proportion of overall agreement

between two teams from the species contingency

table (Everitt 1992), averaged over all pairwise

combinations of teams (team 1–team 2, team 2–

team 3, team 1–team 3), with the species-specific

results shown in Appendix 2—Figure 5. This

method assumes that teams’ species classification

performance is independent of species, and that

team pairwise comparisons are independent. We

modelled all the plot-level measurement errors

using a normally distributed CV.

Carbon Calculations

We calculated total aboveground carbon (live stems

and deadwood) following species-specific equations

from Beets and others (2012). Other pools (litter,

roots and soil carbon) were not included in our

analysis. For live trees, we calculated stem carbon

(Clive; kgC) using an allometric function that

incorporates diameter (D; cm), height (H; m) and

species-specific wood density (W; kg m-3):

Clive¼0:5�0:905�W�VstemþCbranchþCfoliageþeClive
;

ð1Þ

where 0.5 represents the carbon fraction of wood,

0.905 accounts for the lower wood density of the

bark fraction, eClive
is the model uncertainty; and

stem volume (Vstem), branch carbon (Cbranch) and

foliage carbon (Cfoliage) are:

Vstem ¼ 0:0000483 D2H
� �0:978 ð2Þ

Cbranch ¼ 0:0175D2:20 ð3Þ

Cfoliage ¼ 0:0171D1:75: ð4Þ

Equations (1)–(4) are based on pooled data from

143 harvested stems of 15 species. Measured tree

heights are typically not available for 75–80% of

the live stems. For these, we used species-specific

allometric equations to predict tree height (H, m),

based on the functional form described in Coomes

and others (2012):

ln H�1:35ð Þ¼ln að Þþln 1�bAð Þþln½1�exp cDd
� �

�þeH ;

ð5Þ

where D is stem diameter (cm); A is the normalized

elevation (elevation (m a.s.l.)/100) of the plot

scaled to be similar in range to the other predictors;

and a, b, c and d are model parameters. Height

models were based on a database containing over

64,000 records for 234 species, and were fitted

individually for each species (Appendix 1 of Sup-

plementary Material) using the non-linear least

squares (nls) function in R (R Development Core

Team 2010). Species-specific wood density values

were available for 113 species (Richardson and

others unpublished data). For species without

wood density values, we used the corresponding

genus-level average (Flores and Coomes 2011), and

where that was unavailable we used the growth-

form average. A separate allometric function was

used to estimate tree fern biomass as a function of

measured diameter and height, based on a sample

of 80 stems from four species (Beets and others

2012):

Ctf ¼ 0:0027ðD2HÞ1:19: ð6Þ

For standing dead stems (standing CWD), we

estimated carbon using New Zealand tree-specific

volume and taper equations (Beets and others

2012). First, stem volume (Vstem) of an equivalent

intact live stem was estimated from diameter (D,

cm) and expected total height (H, m) as:

Vstem ¼ 4:54� 10�5 D1:735
� � H2

H � 1:3

� �1:235

: ð7Þ

Then the volume of standing CWD (m3) was

estimated based on the actual measured height
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(Hdead) of the CWD spar, using the following taper

equation:

Vspar ¼Vstem 1� 0:06501x2 � 2:92127x3
�

þ3:37103x4 � 1:35551x5 � 0:02924x81
�
; ð8Þ

where x = (H - Hdead)/H. We adjusted the pro-

portion of biomass remaining for standing dead

stems for decay class using the general decay se-

quence of 82, 66 and 47% for decay classes 1, 2 and

3, respectively (Beets and others 2008). For fallen

CWD, we estimated the volume (m3) of each

individual piece using the formula for a truncated

cone following Beets and others 2009:

VCWD ¼
pl

3
ðr2

1 þ r2
2Þ þ ðr1 � r2Þ

� �
; ð9Þ

where r1 and r2 are the radius at each end of the log

(m) and l is the log length (m). We calculated the

biomass of each piece of fallen CWD as the product

of wood volume, wood density and decay class

modifier (as described above for the standing dead

stems).

Total aboveground carbon stock was the sum of

the carbon contained in live trees and CWD

(standing and fallen), divided by the slope-cor-

rected area of the plot (Aplot, m2). The horizontal

area of the plot (ha) was estimated from measure-

ments (m) of four side lengths (AD, MP, DM and

PA) as:

Aplot ¼
ADþMPð Þ=2ð Þ � ðDM þ PAÞ=2ð Þ

10; 000
: ð10Þ

Quantification of Model Uncertainty

We quantified model uncertainty for stem vol-

ume [equation (2)] using data from Beets and

others (2012). Following Beets and others (2012),

we fitted a generalized linear model (GLM) with

a gamma error distribution and a log-link func-

tion. Diagnostic checks confirmed that this model

met the basic GLM assumptions. Since the model

residuals were normally distributed, the uncer-

tainty of the model was quantified using the

standard error of the mean (SEM), which reflects

the standard error of an estimate of the mean of

Y (bY) at a specified value of X (Yanai and others

2010):

SEM ¼ RSD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ X � Xð Þ2
Pn

i¼1 Xi � Xð Þ2

vuut ; ð11Þ

where RSD is the residual standard deviation:

RSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

Y � bY
� �2

n� 2

s

: ð12Þ

Equation (11) was chosen over the predictive

uncertainty of the model as we were primarily

interested in predicting the mean value of the

population as opposed to predicting the value for

individuals within a population. Predictive uncer-

tainty for individuals is much larger (Yanai and

others 2010), and may overestimate uncertainty in

plot-scale measurements.

Visual inspection of the residuals of the species-

specific height–diameter relationships [equation

(5)] showed that although there was more depar-

ture from normality than in the volume models,

the residuals were approximately normally dis-

tributed for the majority of the species. We,

therefore, quantified the predictive uncertainty in a

similar fashion using the SEM of the fitted models.

Uncertainty in wood density estimates was mod-

elled using species-specific estimates of within-

species variability in wood density. Species-specific

CVs ranged from 0.01 to 0.32. For species without

species-specific wood density data (representing

approximately 4% of the total biomass) the average

CV (8.8%) was used.

Modelling Net Effects on Carbon Stock
and Stock Change

We used a Monte Carlo simulation approach to

assess the net effects of the main sources of

uncertainty on plot-level estimates of carbon stock

and carbon stock change (Yanai and others 2012).

Simulations were based on data from 227 LUCAS

natural forest plots measured first in 2002–2007

and then again in 2009–2010. This subset includes

only plots measured using the forest methodology

and classified as natural forest according to the New

Zealand Land Use Map (LUM2012 v002, sourced

from New Zealand Ministry for the Environment,

April 2013). Prior to analysis we conducted stan-

dard data-checking procedures on the remeasured

plot data to ensure that minimum quality standards

were met (Wiser and others 2001; Holdaway and

others 2013). We took a conservative approach,

identifying and correcting only extreme data out-

liers that can be traced back to clear data-entry

mistakes (Muller-Landau and others 2013).

We first calculated carbon stocks and carbon

stock change using the standard methods described

above, including among-plot sampling error but

without including any form of measurement error
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or model uncertainty. Monte Carlo simulations

were then used to test the contribution of various

sources of measurement error and model uncer-

tainty to the overall estimates of carbon stock and

carbon stock change. For each simulation, mea-

surement errors for stem diameter and (measured)

tree height were estimated for each stem by sam-

pling from the observed distributions of measure-

ment error. These error terms were then added to

the observed values to give an estimate of the true

value. Uncertainty in plot area was modelled in a

similar way, by sampling from the measurement

error distribution and adjusting the observed plot-

level value accordingly. The number of live stems

and number of standing CWD spars were estimated

from the observed error distributions and the

appropriate number of stems was either added to

the plot data, assigning species and diameter values

by randomly sampling from the existing stems

within the plot, or removed from the data by ran-

dom selection. We assumed that the CV for total

fallen CWD volume was the same as the CV for

total fallen CWD carbon stocks, and adjusted the

fallen CWD carbon stocks directly by sampling from

the measurement error distribution for the total

fallen CWD volume. This assumption is correct if

the missing and double-counted CWD volume

comes from a random sample of the species and

decay classes present on the plot. Species identifi-

cation errors were simulated by sampling the

measurement error distribution to estimate the

number of stems misidentified for each plot. The

corresponding number of stems was then selected

at random from the plot, and species identification

was changed to a random alternative species that

was present in the plot and had the same growth

form as the original observed value.

Model uncertainty was also propagated for each

simulation. Uncertainty in wood density was esti-

mated for each species using the species-specific

wood density CV. This uncertainty was applied to

both live stem wood and deadwood density prior to

adjusting for decay. Model errors associated with

stem volume and height–diameter relationships

[equations (2) and (5), respectively] were gener-

ated by sampling from a normal distribution with a

mean of zero and a standard deviation equal to the

SEM of the associated fitted model. For the stem

volume model, a single (diameter-specific) error

term was applied to all the stems in the dataset for

each simulation (Yanai and others 2010). This error

term was added to the predicted (mean) value to

simulate the predictive uncertainty of the model.

For the height–diameter relationship, a single

(diameter-specific) error term was added per species

for each simulation to reflect the use of multiple

species-specific height–diameter relationships.

For each scenario, we ran a total of 1,000 simu-

lations and calculated the mean and standard

deviation of each simulation, giving a distribution

of values in each case. We then used the bootstrap

to calculate the median values of both the mean

and the standard deviation, and the 95% bias-

corrected accelerated percentiles of these distribu-

tions. This method provided estimates of uncer-

tainty that incorporated measurement error, model

uncertainty, and sampling uncertainty.

We ran a power analysis (Bolker 2008, p. 159)

for carbon change to identify the minimum effect

size that was detectable across a range of sample

sizes and error scenarios. This analysis used a re-

peated-measures design (paired t test) with a power

of 0.8 and significance level of 0.05 and assumed

that all the plots were measured using forest

methodology described here. All statistical analyses

were conducted in R version 2.11 (R Development

Core Team 2010).

RESULTS

Measurement Error

Total aboveground carbon stock across all seven

repeat measured plots (Appendix Table 1) ranged

from 77.6 to 503.7 MgC ha-1 (Figure 1), with the

across-plot average being similar for the three

teams (repeated-measures ANOVA, F(2,12) = 0.54,

P = 0.59). This result indicates that there was no

evidence of detectable bias among teams. There

were wide confidence intervals around the mean

carbon stock estimates for all teams due to high

variability in carbon stocks among plots and rela-

tively low sample size (N = 7): 196.9 (95% confi-

dence interval 63.0–330.8) MgC ha-1 for team 1,

200.7 (80.3–321.1) MgC ha-1 for team 2 and 206.9

(60.9–353.0) MgC ha-1 for team 3. Uncertainty in

plot-level carbon stocks due to all forms of mea-

surement error, expressed as the breadth of the

95% confidence interval around the mean, aver-

aged 51.8 MgC ha-1 (±standard error of

18.2 MgC ha-1) across plots, and was not related to

total carbon stock (linear model F1,5 = 1.08,

P = 0.34). The breadth of the confidence interval

was also independent of the total number of stems,

the total CWD stock, the portion of biomass in trees

>40 cm in diameter, and the mean top height of

the plot (P > 0.10 in all cases); but there was

marginal evidence (F1,5 = 5.13, P = 0.073) that

uncertainties were positively correlated with the

portion of biomass in trees greater than 60 cm.
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The CV in tree diameters among teams was log-

normally distributed with a mean of -4.554 and

standard deviation of 0.829 (Table 1; see Appendix

2—Figure 1 in Supplementary Material for further

details). Diameter errors (in cm) increased in pro-

portion to stem diameter (Figure 2A), with 95% of

stem measurements being within ±5.3% of the

mean diameter value, and this pattern became

stronger and non-linear when errors were ex-

pressed in units of tree biomass carbon (Figure 2C),

due to nonlinearities in the biomass equations

[equations (1)–(3)]. Greater uncertainty was ob-

served for tree height measurements, with the CV

distributed log-normally with a mean of -3.166

and a standard deviation of 0.836 (Table 1; see

Appendix 2—Figure 2). Height errors (m) in-

creased in proportion to stem height (Figure 2B),

with 95% of height measurements being ±21.6%

of the mean height value. When expressed in units

of tree biomass carbon, uncertainty in tree height

was strongly non-linear, more so than for stem

diameter (Figure 2D), again reflecting nonlineari-

ties in the biomass equations [equations (1)–(3)].

Tree species were identified consistently between

pairs of teams 97.8% of the time on average. The

effect of species misidentification on carbon esti-

mates depends on the size of the stem and the

difference in wood density values of the misiden-

tified species pair; with misidentifications involving

large tree species with large wood density differ-

ences between species pairs having the biggest

impact on carbon (Appendix 2—Figure 6). Total

fallen CWD volume varied by ±39% (95% CI)

because of measurement error associated with

length and width estimates for fallen CWD and the

total number of fallen CWD pieces per plot. The

95% CI in the number of standing CWD spars was

±27%. This CI was much higher than the 95% CI

in the number of live stems, which was ±6%.

Some of this variability was due to the uncertainty

in assessing stem status (alive versus dead). Mea-

surement error associated with plot area (Table 1)

had a 95% CI of ±4.6%, or 18.6 m2 per 400-m2

plot.

Model Uncertainty

Model uncertainty in stem volume, tree height and

wood density predictions (Table 1) had significant

effects on biomass carbon estimates for individual

trees (Figure 3). The uncertainty associated with

wood density estimates was greater than the

uncertainty due to tree height allometry and stem

volume allometry combined. The confidence

interval breadth associated with the predicted val-

ues increased with increasing tree biomass in all

cases. For example, the breadth of the 95% quan-

tile for tree biomass of an N. solandri individual of

10-cm diameter was 6.0% due to uncertainty in

stem volume, 6.4% due to uncertainty in height–

diameter allometry and 17.7% due to uncertainty

in wood density. A tree of the same species with a

diameter of 50 cm had 7.7, 10.7 and 27.6%

uncertainty due to stem volume, tree height and

wood density, respectively.

Simulated Effects on Plot-Level Carbon
Stocks and Carbon Stock Change

The aboveground carbon stock estimates (±sam-

pling uncertainty) for the 227 selected LUCAS

natural forest plots were 201.11 ± 18.23 MgC ha-1

for 2002–2007 and 194.99 ± 17.24 MgC ha-1 for

2009–2010. Uncertainty estimates calculated to

include propagation of model uncertainty and

measurement uncertainty in addition to sampling

uncertainty were ±18.42 MgC ha-1 for 2002–2007

and ±17.46 MgC ha-1 for 2009; these uncertainty

Figure 1. Variability in estimates of live and deadwood

(CWD) carbon stock among teams for the seven repeat

measured plots. Note the lack of detectable bias among

teams.
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values are only 1% (0.19 MgC ha-1, 0.09% of the

mean stock estimate) larger than those with only

sampling uncertainty (Figure 4). This small in-

crease in uncertainty in carbon stocks was attrib-

utable mainly to measurement errors, particularly

those associated with missed stems, fallen CWD

and plot area (Figure 4). Model error had little ef-

fect on the overall uncertainty in carbon stock

estimates (Figure 4).

The uncertainty in carbon change estimates was

more sensitive to the measurement uncertainty. The

aboveground carbon change estimates (±sampling

uncertainty) for the 227 selected LUCAS natural

forest plots were -0.86 ± 0.56 MgC ha-1 y-1.

Including both model uncertainty and measurement

uncertainty increased the 95% confidence interval

by 35% to ±0.75 MgC ha-1 y-1. Measurement

error was the primary contributor to the overall

uncertainty estimates for net carbon change, par-

ticularly missed stems, fallen CWD, plot area and

tree height measurements (Figure 4). Model

uncertainty had no significant effect on uncertainty

in carbon change estimates.

The minimum detectable size of carbon change

effect (based on a 7-year measurement interval)

depended on the error scenario used, with the

inclusion of measurement error and model uncer-

tainty increasing the minimum detectable effect size

by 35% (Appendix 2—Figure 7, detectable differ-

ence increased from 0.38 to 0.51 MgC ha-1 y-1

for N = 1,000). The decrease in detectible effect

size obtained by increasing the number of plots

sampled was consistent across all the error

scenarios.

DISCUSSION

Quantification of Measurement Error

Measurement error is influenced by a range of

factors such as tree form and forest structure, field

methodology, the skill of the measurer and the

field conditions under which the data were col-

lected (Keller and others 2001; Butt and others

2013). We quantified measurement error using

realistically well-trained teams under normal field

conditions to ensure that our error distributions

were representative of actual measurement error in

the data used for national-scale carbon analysis.

Relatively large measurement errors occurred at

the individual tree and plot level, especially for tree

height and total CWD volume. Measurement error

was not explained by site, team and environmental

factors (such as the slope of the plot, weather

conditions and the total number of large stems).

Tree-height errors were significantly larger than

stem-diameter errors, as has been observed in other

studies (Phillips and others 2000; Butt and others

2013). The large measurement error associated

Table 1. Sources of Uncertainty in Carbon Estimates and Their Quantified Distributions

Source of uncertainty Parameter Parameter distribution Mean value Standard deviation

Measurement error

Stem diameter (cm) CV Log-normal -4.5543 0.8286

Tree height (m) CV Log-normal -3.1664 0.8356

Species misidentified (N stems) % Normal 2.18% 2.08%

Plot area (m2) CV Normal 0.0238 0.0137

Number of live stems CV Normal 0.0301 0.0184

Number of standing CWD CV Normal 0.1356 0.1838

Total volume of fallen CWD (m3) CV Normal 0.2007 0.1281

Model uncertainty

Wood density (kg m3) CV Normal 0.0881 NA

Stem volume equation (m3) SEM Normal 0.160 NA

Height–diameter allometry2

Angiosperm canopy trees SEM Normal 0.0036 NA

Small trees SEM Normal 0.0034 NA

Conifers SEM Normal 0.0079 NA

Nothofagus SEM Normal 0.0046 NA

Shrubs SEM Normal 0.0084 NA

Species-specific values used in the analysis are provided in supporting information.
SEM, Standard error of the mean estimate of Y at a specified value of X (Yanai and others 2010); CV, coefficient of variation.
1Mean CV across all species (m).
2Height–diameter results presented for growth-form relationships only, based on the average diameter value within each growth form.
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with estimates of CWD wood volume has not been

previously reported, and could have significant

implications for understanding CWD dynamics

such as the longevity and turnover rates of dead-

wood (Richardson and others 2009; Fraver and

others 2013). Measurement errors increased in

proportion to tree size when expressed in the units

used for the measurement (for example, cm

diameter or m height), but when these errors were

propagated through a non-linear model the errors

increased non-linearly with tree size (for example,

cubically when linear measures are used to model

units correlated to volume, like tree carbon). Thus

measurement errors are exacerbated by non-linear

transformations, especially for large trees (Keller

and others 2001). These results suggest that it is

very hard to accurately estimate the carbon stock of

individual trees or small plots, especially for old-

growth forests dominated by large trees.

Our analysis of measurement error uses the

average of the three independent measurements as

the best estimate of the true value, because, like

Djomo and others (2011) and Chave and others

(2004), we consider measurement error to be ran-

dom. Systematic (biased) errors are much harder to

quantify, as this requires knowledge of the true

value. If systematic biases in DBH or height mea-

surements occur, however, they are unlikely to

result in biased carbon stock estimates because the

same measurement techniques are generally used

to develop the allometric equations that convert

these measurements into carbon. Systematic bias is

less important for repeated measures, if the meth-

ods are consistent for the duration of the study.

Systematic changes in accuracy are another source

of error. For example, net carbon change may be

biased upwards by an increase in observer effort

during re-measurement resulting in the inclusion

Figure 2. Uncertainty associated with stem-diameter and tree-height measurements of individual stems. A and B are in

raw measurement units (cm and m, respectively) and are based on the fitted error distribution (Table 1). C and D show

these same errors in units of carbon, assuming generic Nothofagus wood density and allometric relationships. Solid line has

breadth of 95% confidence interval (that is, difference between 2.5 and 97.5% quantiles), dashed line is breadth of 90%

confidence interval, and dotted line is one standard deviation. Error relationships become non-linear when expressed in

units of carbon due to nonlinearity in the biomass equation, and this is more pronounced for tree height than for stem

diameter.
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Figure 3. Predictions of individual-tree biomass for Nothofagus solandri including uncertainty in stem volume relationship,

tree height allometry and wood-density estimate (Table 1). Solid line indicates mean prediction without uncertainty;

shaded area represents 95% confidence interval of the predicted values.

Figure 4. Modelled net effects of different sources of error (Table 1) on uncertainty estimates for total aboveground

carbon stock (2002–2007) and annual net carbon change from a sample of 227 LUCAS natural forest plots. The horizontal

axes represent the increase in uncertainty compared with the scenario of sampling uncertainty only, expressed in absolute

units (top axes) and as a percentage relative to the total sampling uncertainty (bottom axes). Sampling uncertainty was

±18.23 MgC ha-1 (9.1% of the mean) for carbon stock estimates and ±0.56 MgC ha-1 y-1 (65% of the mean) for carbon

change estimates. Error bars are the bootstrapped standard error of the uncertainty estimate. Note the different axes scales.
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of previously missed stems (that is, false recruit-

ment; Wright 2005). Further work is needed to

assess the potential implications of systematic bia-

ses, especially for metrics based on repeated mea-

surements through time.

Uncertainty in Carbon Stock Estimates

Our study reveals that for plot-based forest carbon

assessment in New Zealand, sampling error is by far

the greatest source of uncertainty, with the inclu-

sion of measurement error and model uncertainty

results in a 1% increase in the uncertainty associ-

ated with carbon stock estimates. In other words,

uncertainty in carbon stock estimates is dominated

by natural variability in carbon stocks across the

landscape. This result is to be expected for national-

scale surveys that encompass a range of forest types

(Wiser and others 2011), and similar results have

been found elsewhere. Sampling uncertainty con-

tributed up to 98% of the total uncertainty in

carbon stock estimates in the south-eastern USA

(Phillips and others 2000). In contrast, in a single

50-ha plot located within relatively uniform forest

in Panama, Chave and others (2004) found that

sampling uncertainty contributed only 50% to the

total uncertainty in carbon stocks. Sampling

uncertainty may be reduced through stratification,

increasing plot size or increasing the total number

of plots sampled (Salk and others 2013). Phillips

and others (2000) showed that on per-hectare ba-

sis, it is more efficient to increase the number of

sample plots rather than plot size, and this result is

backed up by recent analyses of techniques for

field-based sampling of biomass (Salk and others

2013).

Model uncertainty contributed relatively little

(<0.1%) to the total uncertainty in carbon stock

estimates in our study. This result contrasts with

reports that model uncertainty accounted for 10–

30% of the total uncertainty in carbon stocks in

tropical rainforests in Panama (Chave and others

2004) and Cameroon (Djomo and others 2011).

Our result may reflect greater confidence in the

allometric models (for example, we had species-

specific wood density data for 96% of the total

biomass, and used a combination of measured tree

heights and species-specific diameter–height rela-

tionships fitted to a dataset of over 44,000 trees).

However, it could also reflect the method used to

quantify model uncertainty. We used SEM (Yanai

and others 2010) whereas Chave and others (2004)

and Djomo and others (2011) used the standard

deviation of the regression, which would tend to

overestimate the uncertainty in the population

mean (Yanai and others 2010).

Uncertainty in Estimates of Carbon
Change

Uncertainty in estimates of net change was more

sensitive, with a 35% increase in uncertainty when

measurement error and model uncertainty were

taken into account. This increase in uncertainty

was again dominated by measurement error, with

the effect of model uncertainty being cancelled out

through using the same allometric models to cal-

culate carbon stock at both time periods (Chave

and others 2004; Yanai and others 2012). The

strong influence of measurement error on uncer-

tainty in carbon change estimates could reflect the

relatively small plot size (0.04 ha), for which

measurements from a single large tree can strongly

influence plot-level net change estimates. It also

could reflect the much smaller sampling uncer-

tainty associated with net change estimates ob-

tained using a repeated-measures design. Relatively

few studies have quantified the effect of both

measurement error and model uncertainty on

carbon change estimates. Phillips and others (2000)

found that measurement error contributed only

0.1% of the total variance in net change estimates,

whereas Clark (2002) and Muller-Landau and

others (2013) found that measurement error

relating to buttressed trees could significantly bias

the resulting net change estimates. Our results

suggest that measurement error is an important

contributor to total variance in estimates of net

carbon change, especially when the plot size is

relatively small.

Programs such as REDD+ are designed to incen-

tivize management of forests for increased carbon

sequestration. Such programs, therefore, depend

on the ability to link management activities to in-

creases in carbon sequestration rates (Holdaway

and others 2012; Pelletier and others 2012). Doing

this linkage in a statistically robust manner requires

full quantification of the uncertainty associated

with carbon change estimates. In our case, inclu-

sion of measurement error and model uncertainty

increased the uncertainty in carbon change by

35%. To counteract these increased confidence

intervals, programs such as REDD+ need to target

situations where large carbon gains are likely (that

is, large effect size), or increase their monitoring

intensity to enhance statistical power to detect

changes.
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Caveats

Some potentially important sources of uncertainty

were not assessed in this study. These include:

uncertainties in wood decay classes and decay

curves, which are likely to influence deadwood

carbon estimates (Fraver and others 2013; Mason

and others 2013); uncertainty in applying wood-

density estimates obtained from intact live stems to

a real-world sample that contains hollow or

decaying stems (Clark and Kellner 2012); uncer-

tainty in the belowground fraction when estimat-

ing total carbon stock (Mokany and others 2006);

uncertainty in the carbon concentration of wood

(Chave and others 2009); and uncertainty in re-

mote sensing techniques used to estimate total

forest area (Gibbs and others 2007; Foody 2010).

We also did not quantify uncertainty associated

with model selection, which is an important addi-

tional source of uncertainty for carbon stock esti-

mates (Djomo and others 2011).

Our power analysis applies to the aboveground

carbon pool for a national-scale sample of only 227

0.04-ha plots measured using standard forest

methodology. New Zealand’s current natural forest

carbon monitoring plot network (LUCAS) contains

a total of 1,256 plots, approximately 900 of which

are measured using the forest methodology de-

scribed here. The remaining plots are located in

shrubland and are measured using shrubland-spe-

cific techniques (Payton and others 2004). Very

little work has been done to assess uncertainty in

shrubland methods but experience has shown that

these are much harder to implement in the field,

and the allometric relationships for predicting car-

bon from shrubland are significantly less developed

than are those for the forest environment (Coomes

and others 2002). Further work is, therefore, re-

quired to quantify uncertainty associated with

shrub plots and its contribution to estimated na-

tional carbon stock and stock change.

Practical Recommendations

Our results identify the key components of uncer-

tainty in forest carbon estimates, and this infor-

mation can be used to assist model development

and allocation of effort in the field. Sampling

uncertainty could be reduced by increasing the

number of plots sampled or increasing plot size

(Phillips and others 2000; Salk and others 2013).

Model uncertainty could be reduced though

increasing the numbers of individuals used to

construct volume, tree height and wood density

models (Chave and others 2005). Of all the sources

of model uncertainty, wood density has the great-

est relative uncertainty (Figure 3) and, therefore,

should be prioritized. Wood density models could

be improved either by increasing the number of

species with species-specific wood densities, or by

reducing uncertainty for species that already have

species-specific estimates by sampling more indi-

viduals (Flores and Coomes 2011). Measurement

error could be reduced by focusing efforts in the

field on measurements that have the greatest

influence on total uncertainty, in particular missed

or double-counted stems (Muller-Landau and

others 2013) and measurements of CWD volume.

Staff allocation to key tasks should also be ran-

domized to avoid measurement bias due to differ-

ences in interpretation and implementation of

methods. Measurement error can never be elimi-

nated, and in practice it is a matter of balancing the

increase in data accuracy achieved through im-

proved sampling strategies and a larger sample with

the inevitable increase in resources (costs) required

to achieve this increase (Butt and others 2013).

Data-cleaning procedures can be used to correct for

measurement errors at the analysis stage, but this

approach may introduce even more bias and

uncertainty and should be used with caution

(Muller-Landau and others 2013). We recommend

that measurement errors be accepted as unavoid-

able, and, therefore, be quantified and explicitly

incorporated into any analysis. This study demon-

strates that robust plot-based estimates of national

carbon stock and carbon change can be obtained

through inclusion of quantified estimates of sam-

pling uncertainty, measurement error and model

uncertainty, providing confidence and support for

the use of plot-based carbon estimates for man-

agement and policy decision making.
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