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Abstract

We show that the distribution of any portfolio whose components jointly follow a
location-scale mixture of normals can be characterised solely by its mean, variance
and skewness. Under this distributional assumption, we derive the mean-variance-
skewness frontier in closed form, and show that it can be spanned by three funds.
For practical purposes, we derive a standardised distribution, provide analytical
expressions for the log-likelihood score and explain how to evaluate the information
matrix. Finally, we present an empirical application in which we obtain the mean-
variance-skewness frontier generated by the ten Datastream US sectoral indices,
and conduct spanning tests.
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1 Introduction

Despite its simplicity, mean-variance analysis remains the most widely used asset

allocation method. There are several reasons for its popularity. First, it provides a

very intuitive assessment of the relative merits of alternative portfolios, as their risk and

expected return characteristics can be compared in a two-dimensional graph. Second,

mean-variance frontiers are spanned by only two funds, which simplifies their calculation

and interpretation. Finally, mean-variance analysis becomes the natural approach if

we assume Gaussian or elliptical distributions, because then it is fully compatible with

expected utility maximisation regardless of investor preferences (see Chamberlain, 1983;

Owen and Rabinovitch, 1983; Berk, 1997; as well as Ross, 1978 for a related discussion).

At the same time, mean-variance analysis also suffers from important limitations.

Specifically, it neglects the effect of higher order moments on asset allocation. In this

sense, Patton (2004) uses a bivariate copula model to show the empirical importance

of asymmetries in asset allocation. Further empirical evidence has been provided by

Jondeau and Rockinger (2006) and Harvey et al. (2002). Unfortunately, it is rather

difficult to obtain general results for mean-variance-skewness frontiers unless one intro-

duces some structure in the N(N + 1)(N + 2)/6 non-redundant third moments, where

N is the cross-sectional dimension. In this sense, Athayde and Flôres (2004) derive

several useful properties of mean-variance-skewness frontiers, and obtain their shape for

some examples by simulation techniques. Similarly, Briec, Kerstens, and Jokung (2007)

propose an optimisation algorithm that, starting from a specific portfolio, obtains the

efficient mean-variance-skewness portfolio along a given direction (see also Jurczenko,

Maillet, and Merlin, 2006).

In this paper, we make mean-variance-skewness analysis fully operational by work-

ing with a rather flexible family of multivariate asymmetric distributions, known as

location-scale mixtures of normals (LSMN ), which nest as particular cases several im-

portant elliptically symmetric distributions, such as the Gaussian or the Student t, and

also some well known asymmetric distributions like the Generalised Hyperbolic (GH )

introduced by Barndorff-Nielsen (1977). The GH distribution in turn includes other

well known and empirically relevant special cases, such as symmetric and asymmetric

versions of the Hyperbolic (Chen, Härdle, and Jeong, 2008), Normal Gamma (Madan
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and Milne, 1991), Normal Inverse Gaussian (Aas, Dimakos, and Haff, 2005) and Mul-

tivariate Laplace distributions (Cajigas and Urga, 2007).1 In addition, LSMN nest other

interesting examples, such as finite mixtures of normals, which have been shown to be

a flexible and empirically plausible device to introduce non-Gaussian features in high

dimensional multivariate distributions (see e.g. Kon, 1984), but which at the same time

remain analytically tractable.

In terms of portfolio allocation, our first result is that if the distribution of asset

returns can be expressed as a LSMN, then the distribution of any portfolio that com-

bines those assets will be uniquely characterised by its mean, variance and skewness

parameter. Therefore, the differences between any two portfolios can be fully explained

by the discrepancies between those three parameters.

Then, we analyse these moments to characterise the feasible investment opportunity

set, and obtain the mean-variance-skewness frontier in closed form. Furthermore, we

will show that the efficient part of this frontier can be spanned by three funds: the two

funds that generate the usual mean-variance frontier, plus an additional fund that spans

the skewness-variance frontier. Moreover, we show that one can replace this last fund

by the portfolio that maximises the Sortino ratio. Lastly, we show that we can continue

to span the frontier with three funds when no risk-free asset exists.

For practical purposes, we study several aspects related to the maximum likelihood

estimation of a general multivariate conditionally heteroskedastic dynamic regression

model whose innovations have a LSMN representation. In particular, we obtain analyt-

ical expressions for the score by means of the EM algorithm. We also describe how to

evaluate the unconditional information matrix by simulation, and confirm the accuracy

of our proposed technique in a Monte Carlo exercise.

Finally, we apply our methodology to obtain the frontier generated by the ten US

sectoral indices in Datastream. Our results illustrate several interesting features of the

resulting mean-variance-skewness frontier. Specifically, we find that, for a given variance,

important gains in terms of positive skewness can be obtained with very small reductions

in expected returns. We also analyse the effect of including additional assets in our

1Barndorff-Nielsen and Shephard (2001) also use the GH distribution to capture the unconditional
distribution of returns on assets whose price dynamics are generated by continuous time stochastic
volatility models in which the instantaneous volatility follows an Ornstein-Uhlenbeck process with Lévy
innovations.
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portfolios. In particular, we formally test whether the Datastream World-ex US index is

able to improve the investment opportunity set in the traditional mean-variance sense,

as well as in the skewness-variance sense. For the sake of robustness, we check our

results using two non-nested members of the LSMN family: the GH distribution, and a

location-scale mixture of two Gaussian vectors.

The rest of the paper is organised as follows. We define LSMN in section 2.1, and

explain how to reparametrise them so that their mean is zero and their covariance matrix

the identity. Then, we analyse portfolio allocation in section 3, and discuss maximum

likelihood estimation in section 4. Section 5 presents the results of our empirical applic-

ation, which are followed by our conclusions. Proofs and auxiliary results can be found

in appendices.

2 Distributional assumptions

2.1 Location-scale mixtures of normals

Consider the following N -dimensional random vector u, which can be expressed in

terms of the following Location-Scale Mixture of Normals (LSMN ):

u = α + ξ−1Υβ + ξ−1/2Υ1/2r, (1)

where α and β are N -dimensional vectors, Υ is a positive definite matrix of order N ,

r ∼ N(0, IN), and ξ is an independent positive mixing variable. As usual, the conditional

normality given the mixing variable could be justified by appealing to the central limit

theorem. For the sake of concreteness, we will denote the distribution function of ξ as

F (·; τ ), where τ is a vector of q shape parameters. For instance, ξ will be a Generalised

Inverse Gaussian variate in the GH case (see Jørgensen, 1982). Since u given ξ is

Gaussian with conditional mean α + Υβξ−1 and covariance matrix Υξ−1, it is clear

that α and Υ play the roles of location vector and dispersion matrix, respectively. The

parameters τ allow for flexible tail modelling, while the vector β introduces skewness in

this distribution.

We will refer to the distribution of u as LSMNN(α, β,Υ, τ ). To obtain a version

that we can use to model the standardised residuals of any conditionally heteroskedastic,

dynamic regression model, we need to restrict α and Υ in (1) as follows:

3
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Proposition 1 Let ε∗ ∼ LSMNN(α, β,Υ, τ ) and πk(τ ) = E
(
ξ−k
)
. If πk(τ ) < ∞ for

k = 1, 2, α = −c(β, τ )β and

Υ =
1

π1(τ )

[
IN +

c(β′β, τ ) − 1

β′β
ββ′

]
,

where

c(x, τ ) =
−1 +

√
1 + 4xc2

v(τ )

2xc2
v(τ )

, (2)

and

cv(τ ) =

√
π2(τ ) − π2

1(τ )

π1(τ )
,

then E(ε∗) = 0 and V (ε∗) = IN .

As expected, the scale of ξ−1, which can be fully characterised by π1(τ ), is arbitrary,

and can be set to 1 without loss of generality. Notice also that the distribution of ε∗

becomes a simple scale mixture of normals, and thereby spherical, when β is zero. Like

any scale mixture of normals, though, this distribution does not allow for thinner tails

than the normal. Nevertheless, financial returns are very often leptokurtic in practice,

as section 5 confirms.

Another important feature of a LSMN is that, although the elements of ε∗ are uncor-

related, they are not independent except in the multivariate normal case. In general, the

LSMN induces “tail dependence”, which operates through the positive mixing variable

in (1). Intuitively, ξ forces the realisations of all the elements in ε∗ to be very large in

magnitude when it takes very small values, which introduces dependence in the tails of

the distribution. In addition, we can make this dependence stronger in certain regions

by choosing β appropriately. Specifically, we can make the joint probability of extremely

low realisations of several variables much higher than what a Gaussian variate can allow

for, as illustrated in Figures 1a-f, which compare the density of the standardised bivariate

normal with those of two asymmetric examples: a particular case of the GH distribution

known as the asymmetric t and a LSMN whose mixing variable is Bernoulli.2 We can

observe in Figures 1c and 1e that the non-Gaussian densities are much more peaked

around their mode than the Gaussian one. In addition, the contour plots of the asym-

metric examples show that we have introduced much fatter tails in the third quadrant

by considering negative values for all the elements of β. This is confirmed in Figure 2,

2Interestingly, the LSMN driven by the Bernoulli mixing variable can be interpreted as a mixture of
two multivariate normal distributions with different mean vectors but proportional covariance matrices.
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which represents the so-called exceedance correlation between the uncorrelated marginal

components in Figure 1. Therefore, a LSMN could capture the empirical observation

that there is higher tail dependence across stock returns in market downturns (see Longin

and Solnik, 2001). In this sense, the examples that we consider illustrate the flexibility

of a LSMN to generate different shapes for the exceedance correlation. However, it is

important to mention that while the GH distribution can display non-zero values at the

extreme tails, any finite LSMN cannot be distinguished from the Gaussian distribution

in terms of its extreme value exceedance correlation, as Figure 2 illustrates.

It is possible to show that the marginal distributions of linear combinations of a

LSMN (including the individual components) can also be expressed as a LSMN :

Proposition 2 Let ε∗ be distributed as a N × 1 standardised LSMN random vector with
parameters τ and β. Then, for any vector w ∈ RN , with w 6= 0, s∗ = w′ε∗/

√
w′w is

distributed as a standardised LSMN scalar random variable with parameters τ and

β(w) =
c (β′β, τ ) (w′β)

√
w′w

w′w + [c (β′β, τ ) − 1] (w′β)2/(β′β)
,

where c(·, ·) is defined in (2).

Proposition 2 generalises an analogous result obtained by Blæsild (1981) for the GH

distribution. Note that only the skewness parameter, β(w), is affected, as it becomes a

function of the weights, w. As we shall see in section 3, this is particularly useful for asset

allocation purposes, since the returns to any conceivable portfolio of a collection of assets

is a linear combination of the returns on those primitive assets. For the same reason,

Proposition 2 is very useful for risk management purposes, since we can compute in closed

form the Value at Risk, Expected Shortfall or Marginal Value at Risk of any portfolio

from the parameters of the joint distribution (see Jorion, 2006, for formal definitions of

these statistics). Finally, Proposition 2 also implies that skewness is a “common feature”

of LSMN, in the Engle and Kozicki (1993) sense, as we can generate a full-rank linear

transformation of ε∗ with the asymmetry confined to a single element.

2.2 Dynamic econometric specifications

Let yt be a vector of excess returns on N risky assets. To accommodate flexible

specifications, we assume that those excess returns are generated by the following con-
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ditionally heteroskedastic dynamic regression model:

yt = µt(θ) + Σ
1
2
t (θ)ε∗

t ,
µt(θ) = µ (It−1; θ) ,
Σt(θ) = Σ (It−1; θ) ,



 (3)

where µ() and vech [Σ()] are N and N(N +1)/2-dimensional vectors of functions known

up to the p × 1 vector of true parameter values, θ0, It−1 denotes the information set

available at t − 1, which contains past values of yt and possibly other variables, Σ
1/2
t (θ)

is some N ×N “square root” matrix such that Σ
1/2
t (θ)Σ

1/2′
t (θ) = Σt(θ), and ε∗

t is a vector

martingale difference sequence satisfying E(ε∗
t |It−1; θ0) = 0 and V (ε∗

t |It−1; θ0) = IN . As

a consequence, E(yt|It−1; θ0) = µt(θ0) and V (yt|It−1; θ0) = Σt(θ0).

In this context, we will assume that the distribution of ε∗
t is a LSMN conditional on

It−1. Importantly, given that the standardised innovations are not generally observable,

the choice of “square root”matrix is not irrelevant except in univariate models, or in mul-

tivariate models in which either Σt(θ) is time-invariant or ε∗
t is spherical (i.e. β = 0), a

fact that previous efforts to model multivariate skewness in dynamic models have over-

looked (see e.g. Bauwens and Laurent, 2005). Therefore, if there were reasons to believe

that ε∗
t were not only a martingale difference sequence, but also serially independent,

then we could in principle try to estimate the “unique” orthogonal rotation underlying

the “structural” shocks. However, since we believe that such an identification procedure

would be neither empirically plausible nor robust, we prefer the conditional distribution

of yt not to depend on whether Σ
1/2
t (θ) is a symmetric or lower triangular matrix, nor

on the order of the observed variables in the latter case. This can be achieved by making

β a function of past information and a new vector of parameters b in the following way:

βt(θ,b) = Σ
1
2

′
t (θ)b. (4)

It is then straightforward to see that the distribution of yt conditional on It−1 will not

depend on the choice of Σ
1
2
t (θ).

3 Portfolio allocation

3.1 The investor’s problem

Consider an investor whose wealth at time t − 1 is At−1. Assuming that a risk-free

asset with returns rt exists (see Appendix A for the no riskless asset case), then her

6
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wealth at t can be expressed as:

At = At−1 (1 + rt + w′
tyt) ,

where wt is the vector of allocations to the risky assets, which together with rt are known

at t − 1. In this context, we can show the following property for any portfolio of LSMN

returns:

Proposition 3 Let yt be conditionally distributed as a N × 1 LSMN random vector with
conditional mean µt(θ), conditional covariance matrix Σt(θ), and shape parameters τ
and b. Then, for any vector wt ∈ RN known at t − 1, the conditional distribution of w′

tyt

can be fully characterised as a function of its mean, variance and skewness parameter
w′

tΣt(θ)b.

Proposition 3 implies that, from an investor’s point of view, the relative attractiveness

of any two portfolios can always be explained by their expected returns, variances and

skewness because the higher order moments depend on the lower ones and the common

tail parameters τ . Hence, we only need to characterise the investment opportunity set

in terms of these moments to fully describe the investor’s available strategies. This

in turn involves studying the mean-variance-skewness frontier, which limits the feasible

combinations of the first three moments of portfolios. In this sense, it is straightforward

to show that the expected return of At can be expressed as At−1[1 + rt + w′
tµt(θ)] while

the conditional variance is A2
t−1w

′
tΣt(θ)wt. As for the third centred moment, we can use

the results in Appendix D to show that it can be expressed as A3
t−1 times

ϕt(θ,b, τ ) = (s1t + 3s2ts3t) [w′
tΣt(θ)b]

3
+ 3s2t [w′

tΣt(θ)wt] [w
′
tΣt(θ)b] , (5)

where

s1t = E
[[

ξ−1 − π1(τ )
]3]

c3[b′Σt(θ)b, τ ]/π3
1(τ ),

s2t = c2
v(τ )c[b′Σt(θ)b, τ ],

s3t = {c[b′Σt(θ)b, τ ] − 1} / [b′Σt(θ)b] .

Since in line with most of the literature we are implicitly assuming that the investment

technology shows constant returns to scale, we can normalise the above moments by

setting At−1 = 1 without loss of generality.

7
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3.2 Mean-variance-skewness frontiers

The mean-variance-skewness frontier is a generalisation of the mean-variance frontier:

µ0t = σ0t

√
µ′

t(θ)Σ−1
t (θ)µt(θ), (6)

which we obtain by maximising expected return µ0t for every possible standard deviation

σ0t. As is well known, the mean-variance frontier (6) can be spanned by just two funds:

the risk-free asset and a portfolio with weights proportional to Σ−1
t (θ)µt(θ).

The efficient section of the mean-variance-skewness frontier yields the maximum

asymmetry for every feasible combination of mean and variance. We can express this

primal problem as follows:

max
wt∈RN

ϕt(θ,b, τ ) s.t.

{
w′

tµt(θ) = µ0t

w′
tΣt(θ)wt = σ2

0t

(7)

Obviously, there are other equivalent approaches to obtain this frontier. For instance,

Athayde and Flôres (2004) maximise expected returns subject to constraints on the vari-

ance and asymmetry. However, we prefer the formulation in (7) because it is straight-

forward to ensure the feasibility of the target expected return and variance. Specifically,

we know that any feasible portfolio must satisfy

µ0t

σ0t

≤
√

µ′
t(θ)Σ−1

t (θ)µt(θ), (8)

since its Sharpe ratio cannot be greater than the Sharpe ratio corresponding to the

mean-variance frontier (6).

We can solve (7) by forming the Lagrangian

L = ϕt(θ,b, τ ) + γ1 [µ0t − w′
tµt(θ)] + γ2

[
σ2

0t − w′
tΣt(θ)wt

]
, (9)

and differentiating it with respect to the portfolio weights, thereby obtaining the follow-

ing first order conditions:

∂L
∂wt

=
{

3(s1t + 3s2ts3t) [b′Σt(θ)wt]
2
+ 3s2t [w′

tΣt(θ)wt]
}

Σt(θ)b

+6s2t [b′Σt(θ)wt]Σt(θ)wt − γ1µt(θ) − 2γ2Σt(θ)wt. (10)

Then, we can explicitly obtain in closed-form the set of portfolio weights that satisfy

these conditions:

8
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Proposition 4 The efficient mean-variance-skewness portfolios that solve (10) can be
expressed as either

w∗
1t =

µ0t + ∆−1
t (µ0t, σ0t)µ

′
t(θ)b

µ′
t(θ)Σ−1

t (θ)µt(θ)
Σ−1

t (θ)µt(θ) − 1

∆t(µ0t, σ0t)
b, (11)

or

w∗
2t =

µ0t − ∆−1
t (µ0t, σ0t)µ

′
t(θ)b

µ′
t(θ)Σ−1

t (θ)µt(θ)
Σ−1

t (θ)µt(θ) +
1

∆t(µ0t, σ0t)
b, (12)

where

∆t(µ0t, σ0t) =

√
(b′Σt(θ)b)

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− (µ′

t(θ)b)2

σ2
0t

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− µ2

0t

. (13)

Thus, there are two potential solutions,3 both of which can be expressed as a linear

combination of the mean-variance efficient portfolio Σ−1
t (θ)µt(θ) and a portfolio with

weights b. This second vector can be interpreted as an asymmetry-variance efficient

portfolio, because we can maximise asymmetry for a given standard deviation by con-

sidering portfolios with weights proportional to b (see Appendix B for details). Hence,

Proposition 4 shows that the efficient region of the mean-variance-skewness frontier can

be spanned by the aforementioned three funds.

In order to obtain an explicit equation for the frontier in mean-variance-skewness

space, let j = −1, +1 and define ϕ0t(j) as the third centred moment that results from

introducing (11) or (12) in (5), respectively. It is straightforward to show that ϕ0t(j)

can be expressed as:

ϕ0t(j) = (s1t + 3s2ts3t)h1t(4h
2
1t − 3h2t)µ

3
0t

+3
{
(s1t + 3s2ts3t)h1t(h2t − h2

1t)
[
µ′

t(θ)Σ−1
t (θ)µt(θ)

]
+ s2th1t

}
µ0tσ

2
0t

+j
√

(h2t − h2
1t){σ2

0

[
µ′

t(θ)Σ−1
t (θ)µt(θ)

]
− µ2

0t}

×
(

(s1t + 3s2ts3t)(4h
2
1t − h2t)µ

2
0t

+
{
(s1t + 3s2ts3t)(h2t − h2

1t)
[
µ′

t(θ)Σ−1
t (θ)µt(θ)

]
+ 3s2t

}
σ2

0t

)
(14)

where

h1t =
µ′

t(θ)b

µ′
t(θ)Σ−1

t (θ)µt(θ)
and h2t =

b′Σt(θ)b

µ′
t(θ)Σ−1

t (θ)µt(θ)
.

It is not difficult to show that (14) satisfies the set of properties obtained by Athayde

and Flôres (2004) for general distributions. The two most important ones are homothecy

and linearity along directions in which the Sharpe ratio remains constant. Homothecy

3In order to assess whether (11) or (12) yields the efficient part of the frontier, we can either check
the second order conditions or simply choose the solution with the highest asymmetry, which can be
computed using (14). But if (8) is satisfied with equality, which only occurs on the mean variance
frontier, then we can show that w∗

1t = w∗
2t and ϕ0t(−1) = ϕ0t(1).

9
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states that if a portfolio with weights w∗
t belongs to the frontier, then kw∗

t will also be

on the frontier. Moreover, if we consider a direction in which σ0t is proportional to µ0t,

σ0t = k′µ0t say, then the cubic root of the asymmetry will also be proportional to |µ0t|
along this direction.

In addition, we can show the convexity of the mean-variance-skewness frontier in

terms of portfolio weights.

Proposition 5 If the conditional distribution of yt is a LSMN, then any linear combin-
ation of two mean-variance-skewness efficient portfolios will also be an efficient mean-
variance-skewness portfolio.

Figure 3 shows the shape of the mean-variance-skewness frontier for an example with

five risky assets. The three dimensional plot of the frontier is displayed in Figure 3a.

In addition, we also compute the three types of contour plots. Figure 3b shows the

well known mean-variance frontier, but it also includes several iso-skewness lines along

which ϕt(θ,b, τ ) is constant. Note that the efficient section of the mean-variance frontier

corresponds to negative skewness in this example.

We focus on the mean-skewness space in Figure 3c, where we plot the iso-variance

lines and include the efficient parts of both mean-variance and asymmetry-variance fron-

tiers, whose linearity on this space is due to the homothecy property discussed above.

Note that the mean-variance frontier is located on the eastern part of the space. In

contrast, the asymmetry-variance frontier, which contains those portfolios that yield

maximum asymmetry for given values of standard deviation and whose weights are pro-

portional to b, is on the northern half. These relative positions hold in general because,

for a given variance, the mean-variance frontier contains the points with highest expected

return, which is displayed on the x-axis, while the asymmetry-variance frontier maxim-

ises skewness (on the y-axis). Finally, we consider the skewness-variance space in Figure

3d, where we can observe the linearity of the skewness-variance frontier (see Appendix

B for details).

We have also plotted in this figure the portfolios chosen by investors who minimise

the second lower partial moment,

S(wt) =
√

Et−1 [min(0,w′
tyt)2],

for any given target return. The portfolios that solve this problem maximise the Sortino

ratio, which is defined as w′
tµt(θ)/S(wt) (see e.g. Pedersen and Satchell, 2002). We
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can span those portfolios by scaling any of them with a positive scalar (see Hogan and

Warren, 1974). In the case of LSMN, we can show the following additional property.

Proposition 6 If the conditional distribution of yt is a LSMN, then the portfolios that
maximise the Sortino ratio will be along a straight line on the mean-variance-skewness
frontier.

By combining Propositions 5 and 6, we can show that the mean-variance-asymmetry

frontier can also be spanned if we combine a portfolio that maximises the Sortino ratio

with the risk-free asset and a mean-variance efficient portfolio. In addition, Proposition

6 implies that we can restrict our attention to the frontier portfolios in Proposition 4 in

order to maximise the Sortino ratio. This feature makes the Sortino ratio maximisation

much easier to handle, since it only requires choosing the free parameter σ2
0t for a given

target expected return µ0t, regardless of N . As we can see in Figure 3c, this type of

investors would choose portfolios with higher (positive) skewness than mean-variance

investors for the same variance.

The departure from the mean-variance solution is even more remarkable in Figure

4, which shows another example with five assets under a more asymmetric parameter

configuration. Notice that in this case the the iso-variance contours have a flat region

with maximum constant skewness. However, we can arbitrarily define the asymmetry-

variance frontier as the line with highest expected returns. Interestingly, it can be

shown that the frontier in terms of the first two moments and the asymmetry parameter

b′Σt(θ)wt is a cone whose iso-variance contours are ellipses.

4 Maximum likelihood estimation

In the previous sections, we have assumed that we know the true values of the para-

meters of interest, φ = (θ′, τ )
′
. Of course, this is not the case in practice. Given that

we are considering a specific family of distributions, it seems natural to estimate φ by

maximum likelihood.

The log-likelihood function of a sample of size T takes the form

LT (φ) =
T∑

t=1

l (yt|It−1; φ) ,

where l (yt|It−1; φ) is the conditional log-density of yt given It−1 and φ. We can generally

express this log-density as

l (yt|It−1; φ) = log [E [f (yt|ξt, It−1; φ) |It−1; φ]] ,

11
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where f (yt|ξt, It−1; φ) is the Gaussian likelihood of yt given ξt, It−1 and φ. Given the

nonlinear nature of the model, a numerical optimisation procedure is usually required

to obtain maximum likelihood (ML) estimates of φ, φ̂T say. Assuming that all the ele-

ments of µt(θ) and Σt(θ) are twice continuously differentiable functions of θ, we can

use a standard gradient method in which the first derivatives are numerically approx-

imated by re-evaluating LT (φ) with each parameter in turn shifted by a small amount,

with an analogous procedure for the second derivatives. Unfortunately, such numerical

derivatives are sometimes unstable, and moreover, their values may be rather sensitive

to the size of the finite increments used. Fortunately, it is possible to obtain analytical

expressions for the score vector of our model, which should considerably improve the

accuracy of the resulting estimates (McCullough and Vinod, 1999). Moreover, a fast

and numerically reliable procedure for the computation of the score for any value of φ is

of paramount importance in the implementation of the score-based indirect estimation

procedures introduced by Gallant and Tauchen (1996).

4.1 The score vector

We can use EM algorithm - type arguments to obtain analytical formulae for the

score function st(φ) = ∂l (yt|It−1; φ) /∂φ. The idea is based on the following dual

decomposition of the joint log-density (given It−1 and φ) of the observable process yt

and the latent mixing process ξt:

l (yt, ξt|It−1; φ) ≡ l (yt|ξt, It−1; φ) + l (ξt|It−1; φ)

≡ l (yt|It−1; φ) + l (ξt|yt, It−1; φ) ,

where l (yt|ξt, It−1; φ) is the conditional log-likelihood of yt given ξt, It−1 and φ;

l (ξt|yt, It−1; φ) is the conditional log-likelihood of ξt given yt, It−1 and φ; and finally

l (yt|It−1; φ) and l (ξt|It−1; φ) are the marginal log-densities (given It−1 and φ) of the

observable and unobservable processes, respectively. If we differentiate both sides of the

previous identity with respect to φ, and take expectations given the full observed sample,

IT , then we will end up with:

st(φ) = E

(
∂l (yt|ξt, It−1; φ)

∂φ

∣∣∣∣ IT ; φ

)
+ E

(
∂l (ξt|It−1; φ)

∂φ

∣∣∣∣ IT ; φ

)
(15)

because E [∂l (ξt|yt, It−1; φ) /∂φ| IT ; φ] = 0 by virtue of the Kullback inequality. This

result was first noted by Louis (1982) (see also Ruud, 1991, and Tanner, 1996, p. 84).

12
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In this way, we decompose st(φ) as the sum of the expected values of (i) the score of a

multivariate Gaussian log-likelihood function, and (ii) the score of the distribution of the

mixing variable.4 In many cases of practical interest, it is straightforward to compute the

required expectations. For example, if the distribution of excess returns is GH, then the

distribution of ξt given the full observed sample will be a Generalised Inverse Gaussian

(GIG) with parameters,

GIG

(
N

2
− ν,

√
γc(b′Σt(θ)b, ν,γ)

Rν (γ)
b′Σt(θ)b + γ2,

√
Rν (γ)

γ
p′

t(φ)Σ∗−1
t (φ)pt(φ) + 1

)
,

where

Σ∗
t (φ) = Σt(θ) +

c(b′Σt(θ)b, ν,γ) − 1

b′Σt(θ)b
Σt(θ)bb′Σt(θ),

pt(φ) = yt − µt(θ) + c(b′Σt(θ)b, ν,γ)Σt(θ)b, c(b′Σt(θ)b, ν,γ) is defined in (2) with

c2
v(ν,γ) = Dν+1 (γ) − 1, Rν (γ) = Kν+1 (γ) /Kν (γ), Dν+1 (γ) = Kν+2 (γ) Kν (γ) /K2

ν+1 (γ)

and Kν (·) is the modified Bessel function of the third kind (see Abramowitz and Stegun,

1965).

Analogously, if ξt is multinomial, then ξt|IT ; φ will also be multinomial, where the

probability for each possible value can be easily obtained using Bayes rule.

4.2 The information matrix

Given correct specification, the results in Crowder (1976) imply that under stand-

ard regularity conditions,5 the score vector st(φ) evaluated at φ0 has the martingale

difference property and consequently the ML estimator will be asymptotically normally

distributed with a covariance matrix which is the inverse of the usual information matrix

I(φ0) = p lim
T →∞

1

T

T∑

t=1

st(φ0)s
′
t(φ0) = E[st(φ0)s

′
t(φ0)]. (16)

In general, though, (16) cannot be obtained in closed form.6 The simplest consistent

4It is possible to show that ε∗′
t ε∗

t /N converges in mean square to 1/[π1(τ )ξt] as N → ∞. This means
that in the limit the latent variable ξt could be fully recovered from observations on yt, which would
greatly simplify the calculations implicit in (15).

5In particular, Crowder (1976) requires: (i) φ0 ∈ int Φ is locally identified, where Φ is a bounded sub-
set of Rp+q+N ; (ii) the Hessian matrix is non-singular and continuous throughout some neighbourhood
of φ0; (iii) there is uniform convergence of the integrals involved in the computation of the mean vec-
tor and covariance matrix of st(φ); and (iv) −E−1

[
−T−1

∑
t ∂st(φ)∂φ

]
T−1

∑
t ∂st(φ)∂φ

p→ Ip+q+N ,
where E−1

[
−T−1

∑
t ∂st(φ)∂φ

]
is positive definite on a neighbourhood of φ0.

6Exact formulas for the conditional information matrix are known, for instance, for the Gaussian
(see Bollerslev and Wooldridge, 1992) and the Student t distributions (see Fiorentini, Sentana, and
Calzolari, 2003).

13



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

estimator of I(φ0) is the sample outer product of the score:

ÎT (φ̂T ) =
1

T

T∑

t=1

st(φ̂T )s′
t(φ̂T ).

However, the resulting standard errors and tests statistics can be badly behaved in finite

samples, especially in dynamic models (see e.g. Davidson and MacKinnon, 1993). We

can evaluate much more accurately the integral implicit in (16) in pure time series models

by generating a long simulated path of size Ts of the postulated process ŷ1, ŷ2, · · · , ŷTs ,

where the symbol ˆ indicates that the data has been generated using the maximum

likelihood estimates φ̂T . This path can be easily generated by exploiting (1). Then, if

we denote by sts(φ̂T ) the value of the score function for each simulated observation, our

proposed estimator of the information matrix is

ĨTs(φ̂T ) =
1

Ts

Ts∑

ts=1

sts(φ̂T )s′
ts(φ̂T ),

where we can get arbitrarily close in a numerical sense to the value of the asymptotic

information matrix evaluated at φ̂T , I(φ̂T ), as we increase Ts. Our experience suggests

that Ts = 100, 000 yields reliable results.

We have compared the finite sample performance of our technique with the accuracy

of other alternative estimators of the sampling variance of the ML estimators. In our

Monte Carlo exercise, we use a trivariate experimental design borrowed from Sentana

(2004), which aimed to capture some of the main features of the conditionally hetero-

skedastic factor model in King, Sentana, and Wadhwani (1994). Specifically, we model

the standardised residuals with the GH distribution, while the conditional mean and

variance specifications are given by:

µt(θ) = µ,
Σt(θ) = cc′λt + Γt,

(17)

where µ′ = (µ1, µ2, µ3), c′ = (c1, c2, c3), Γt = diag(γ1t, γ2t, γ3t),

λt = α0 + α1(f
2
t−1|t−1 + ωt−1|t−1) + α2λt−1, (18)

γit = φ0 + φ1

[
(yit−1 − µi − cift−1|t−1)

2 + c2
i ωt−1|t−1

]
+ φ2γit−1, i = 1, 2, 3, (19)

ft|t = ωt|tc′Γ−1
t (yt − µt(θ)) and ωt|t = [λ−1

t + c′Γ−1
t c]−1. This parametrisation can be

interpreted in terms of a latent factor model where (18) would be the variance of the

latent factor, while (19) would correspond to the idiosyncratic effects. In this sense, note
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that the conditional correlation coefficient between any two elements i and j of yt is

given by

ρijt =
cicjλt√

c2
i λt + γit

√
c2
jλt + γjt

,

which implies that periods when the volatility of the unobservable factor rises are also

those when, ceteris paribus, individual assets exhibit greater intercorrelation (see King,

Sentana, and Wadhwani, 1994).

As for parameter values, we have chosen µi = .2, ci = 1, α1 = φ1 = .1, α2 = φ2 = .85,

α0 = 1 − α1 − α2 and φ0 = 1 − φ1 − φ2.

We assess the performance of three possible ways of estimating the standard er-

rors in GH models, namely, outer-product of the gradient (O), numerical Hessian (H)

and information (I) matrix, which we obtain by simulation using the ML estimat-

ors as if they were the true parameter values, as suggested before.7 Since the pur-

pose of this exercise is to guide empirical work, our target is the sampling covariance

matrix of the ML estimators, VT (φ̂T ), which we estimate as the Monte Carlo cov-

ariance matrix of φ̂T in 30,000 samples of T = 1, 000 observations each (results for

other sample sizes are available on request). Given the large number of parameters in-

volved, we summarise the performance of the estimators of VT (φ̂T ) by looking at the

sampling distributions of the logs of vech′[V E
T (φ̂T ) − VT (φ̂T )]vech[V E

T (φ̂T ) − VT (φ̂T )] and

vecd′[V E
T (φ̂T )−VT (φ̂T )]vecd[V E

T (φ̂T )−VT (φ̂T )], where E is either O, H or I.8 The results,

which are presented in Figures 5a and 5b, respectively, show that the I standard errors

seem to be systematically more reliable than either the O or numerical H counterparts.

Finally, note that our simulation-based approach to evaluate the information matrix is

not only valid under our LSMN assumption, but it can also be applied more generally

to any parametric time series model.

5 Empirical application

We now apply the methodology derived in the previous sections to the ten Datastream

main sectoral indices for the US.9 Specifically, our dataset consists of daily excess returns

7We choose η = .1, ψ = 1 and b = −.1ι as the shape parameters of the GH distribution.
8In the case of a single parameter, the mean of the sampling distribution of these two norms reduces

to the mean square error of the different estimators of its sampling variance.
9Namely, Basic Materials, Consumer Goods, Consumer Services, Financials, Health Care, Industrials,

Oil and Gas, Technology, Telecommunications and Utilities.
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for the period January 4th, 1988 - October 12th, 2007 (4971 observations), where we have

used the Eurodollar overnight interest rate as safe rate (Datastream code ECUSDST).

The model used is a generalisation of the one in the previous section (see (17)), in which

the mean dynamics are captured by a diagonal VAR(1) model with drift, and the covari-

ance dynamics by a conditionally heteroskedastic single factor model in which the condi-

tional variances of both common and specific factors follow GQARCH(1,1) processes to

allow for leverage effects (see Sentana, 1995). We have borrowed this application from

Menćıa and Sentana (2009), who find that these US indices are significantly asymmetric

and leptokurtic even after controlling for volatility clustering. We have estimated this

model by maximum likelihood under the assumption that the conditional distribution

of the innovations is GH. Although this distribution has already been used to model

the unconditional distribution of financial returns (see e.g. Prause, 1998), to the best

of our knowledge it has not yet been used in its more general form for modelling the

conditional distribution of financial time series, which is the relevant one from our per-

spective. In addition, we assess the robustness of our results by considering a LSMN

with a Bernoulli mixing variable as well. In both cases, we derive the score following

the approach described in section 4.1 and compute the standard errors by simulation as

explained in section 4.2.

The first column of Table 1a shows the estimates of the asymmetry parameters for

the GH distribution. Although not all of the asymmetry parameters are individually

significant, symmetry is rejected at conventional levels. In particular, a joint LR test

of symmetric vs. asymmetric GH innovations yields 23.45 (p-value=0.012), while the

result of an analogous score-based symmetry test is 25.35 (p-value=0.005). Note that

the null of this test allows for fat tails in the conditional distribution (see Menćıa and

Sentana, 2009). The first column of Table 1b shows that the discrete mixing variable

yields similar asymmetry parameters, although the overall fit is worse in this case, as

the smaller log-likelihood confirms.

One potential concern is whether we are able to correctly capture the dynamics of

the data. If our model were misspecified, then it could introduce severe distortions in

the results. However, if our specification of the model dynamics is correct, the departure

from normality that we have found should not affect the consistency of the Gaussian

PML estimators of θ. With this in mind, we have compared the estimates of the con-
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ditional variances obtained with a univariate Gaussian AR(1)-GQARCH(1,1) model for

the equally weighted portfolio with the ones obtained from the Gaussian version of our

multivariate model. Reassuringly, the (log) standard deviations of the two series display

a very similar pattern, although the univariate estimates are somewhat noisier. Another

way to check the adequacy of our specification is to compare the multivariate Gaussian

and GH estimates. In this sense, we also find that the (log) standard deviations implied

by the two distributional assumptions for the equally weighted portfolio are extremely

similar (see Menćıa and Sentana, 2009, for further details).

Figure 6 shows the mean-variance-skewness frontier that we obtain for the US indices

with the GH distribution. The results of this figure correspond to a representative day

whose mean vector and covariance matrix are set to their unconditional values. We can

observe in Figure 6c that a mean-variance investor would implicitly choose portfolios with

negative asymmetry. In this sense, the rather vertical shape of the iso-variance contours

around the mean-variance optimal line indicate that, for a given variance, mean-variance

investors could obtain important gains in skewness in exchange for only minor reductions

in expected returns. We have also plotted the line that maximises the Sortino ratio. This

line is located in the sector between the mean-variance and asymmetry-variance frontiers,

although much closer to the first one.

From an investor’s point of view, an important question is whether the addition of

some assets improves the trade-offs that they face. Given that we have only considered

investments in the US so far, it seems natural to test whether the mean-variance-skewness

frontier remains unchanged when we also allow for investments outside the US, which

we proxy by the Datastream World ex-US index. Notice that this test generalises the

usual mean-variance spanning tests, because it also takes into account the effect of the

World ex-US index on the skewness-variance frontier.

As is well known (see e.g. Gibbons, Ross, and Shanken, 1989), the additional asset

does not lead to any change in the mean-variance frontier if and only if the conditional

mean of the additional asset satisfies

µ2t(θ) = d′
12t(θ)µ1t(θ), (20)

where µ1t(θ) and µ2t(θ) denote, respectively, the vector of (conditional) expected ex-

cess returns on the ten US indices, and the expected excess return of the Word ex-US

index, while d12t(θ) denotes the coefficients of the conditional regression of the World
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ex-US index excess returns on those of the US sectoral indices. Therefore, we can follow

Gibbons, Ross, and Shanken (1989), and check (20) by introducing an intercept in this

expression and assessing whether it equals zero in practice.

Similarly, the World ex-US index will only expand the skewness-variance frontier if

its skewness parameter is significantly different from zero (see (11) and (12)). We analyse

these two effects in Table 2 by means of Wald and LR tests for the two distributions that

we consider. While we are unable to reject the mean-variance spanning restriction (20),

the World ex-US index seems to introduce significant additional skewness in the invest-

ment opportunity set of a US investor. These results remain true regardless of whether

we consider the GH distribution or the LSMN with a Bernoulli mixing variable. As a

consequence, we reject the joint null. Hence, for the set of assets that we consider, a

US investor that only cares about mean-variance efficiency will not be willing to invest

outside the US. In contrast, if this investor takes skewness into account in making her

portfolio decisions, then she will find significant gains by investing part of her wealth

outside the US. Intuitively, investors concerned about skewness can probably use the

additional asset to diversify the asymmetry of their US exposures, which is statistic-

ally significant, as we have already mentioned. From a different perspective, though,

these potential benefits of foreign investments would tend to exacerbate the empirically

observed home bias puzzle (see e.g. French and Poterba, 1991).

Figure 6 also shows the changes in the mean-variance-skewness investment oppor-

tunity set before and after considering the additional asset for the GH case.10 We can

observe the differences between the three-dimensional plots of the two frontiers in Figure

6a. We can also observe in Figure 6b that the mean-variance frontier is almost unaf-

fected, which is consistent with (20) being satisfied. Nevertheless, the iso-skewness lines

have moved to the left, which implies that, for given levels of expected return and skew-

ness, we can obtain a lower standard deviation if we invest in the World ex-US index.

Figures 6c and 6d confirm this effect on the iso-variance and the skewness-variance fron-

tiers, respectively. This graphical intuition is confirmed by the formal statistical tests

in Table 2, which explicitly take into account the sampling uncertainty surrounding the

parameter estimates. Finally, note that the third column of Tables 1a and 1b shows that

the estimates of the shape parameters of the GH distribution remain fairly stable when

10This frontier is quantitatively very similar when we consider the Bernoulli mixing variable. We do
not include these results for the sake of brevity, but they are available from the authors on request.
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we include the additional asset.

6 Conclusions

In this paper, we make mean-variance-skewness analysis fully operational by working

with a rather flexible family of multivariate asymmetric distributions, known as location-

scale mixtures of normals (LSMN ), which nest as particular cases several popular and

empirically relevant distributions that account for asymmetry and tail dependence with

a rather flexible and parsimonious structure. Specifically, we assume that, conditional

on the information that agents have at the time they make their investment decisions,

the standardised innovations of excess returns can be expressed as a LSMN.

In this context, we show that the distribution of any portfolio of the original assets

can be fully characterised in terms of its mean, variance and skewness. In this sense, our

result extends previous results by Chamberlain, 1983; Owen and Rabinovitch, 1983 and

Berk, 1997, which justify the use of mean-variance analysis with elliptically distributed

returns. In our case, we are able to obtain analytical expressions for the mean-variance-

skewness frontier, which encloses the feasible investment opportunity set, and show that

its efficient part can always be spanned by three funds: the two funds that span the

mean-variance frontier and a skewness-variance efficient portfolio.

We also study the maximum likelihood estimation of dynamic models for excess

returns with LSMN innovations. In particular, we provide analytical expressions for the

score on the basis of the EM algorithm, and explain how to evaluate the information

matrix by simulation. A detailed Monte Carlo exercise confirms that our method yields

more accurate standard errors than the Hessian matrix or the sample outer product of

the score.

Finally, we estimate the mean-variance-skewness frontier generated by the ten Data-

stream main sectoral indices for the US when the distribution of the standardised in-

novations comes from either the GH distribution or a LSMN with a Bernoulli mixing

variable. We find that by moving away from the traditional mean-variance frontier, we

can increase skewness for a given variance without hardly reducing expected returns.

We also analyse whether including the Datastream World ex-US index can improve the

investment opportunity set of a US investor. For the two members of the LSMN family

that we consider, we find that this additional asset does not have a significant impact
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from a mean-variance perspective, but it does indeed offer substantial improvements

once we take into account its effect on skewness.

It would be interesting to check whether our empirical results are robust to consid-

ering a nonparametric specification for the distribution of the mixing variable ξt. In

particular, we could consider either a semiparametric expansion of some known distri-

bution, such as the Gamma, or a flexible multinomial distribution.

It could also be interesting to introduce dynamic features in higher order moments.

In this sense, at least two possibilities might be worth exploring: either considering time

varying shape parameters τt and bt, in line with Jondeau and Rockinger (2003), or intro-

ducing a regime switching process for ξt, following Guidolin and Timmermann (2007).

These extensions might be helpful for skewness timing (see Jondeau and Rockinger,

2008).

Another fruitful avenue for future research would be to assess the asset pricing im-

plications of our model. In particular, we could relate our framework to the extensions of

the CAPM based on the first three moments of returns (see e.g. Kraus and Litzenberger,

1976; Barone-Adesi, 1985; and Lim, 1989). Similarly, it would be useful to explore the

implications of our model at different time horizons. As a starting point, we could exploit

the properties of specific examples such as the Variance Gamma process, which gener-

ates Asymmetric Normal Gamma returns at any investment horizon (see e.g. Madan

and Milne, 1991; and Madan, Carr, and Chang, 1998). It would also be interesting to

derive a specification test of the “common feature” in skewness implicit in our model,

and, if needed, relax that assumption by allowing for several skewness factors.

Finally, it is important to note that our results are largely driven by the fact that

the third centred moment of a LSMN satisfies (5). However, there are other asymmetric

distributions that satisfy this property. Specifically, Simaan (1993) shows that if one adds

an independent scalar asymmetric variable times a vector to an elliptical random vector,

then (5) holds with s2t = 0 (see also Gamba and Rossi, 1998; Pressacco and Stucchi,

2000). In addition, it is possible to show that (5) would also hold with s1t+3s2ts3t = 0 for

a multivariate Hermite expansion in which asymmetry is a common feature (see Menćıa

and Sentana, 2009, for a formal definition of this density). In this sense, it would be

very helpful to characterise a broader class of distributions that satisfy (5).
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Appendix

A Mean-variance-asymmetry frontier without a risk-

free asset

If rt is not a risk-free asset, then we could understand the analysis in Section 3 as

describing the investment opportunity set of an investor with zero net wealth who can

only invest in arbitrage portfolios. For investors with positive net wealth, consider the

vector of gross returns xt = yt+rtιN , where ιN is a vector of N ones. Then, we can obtain

the portfolios on the mean-variance-asymmetry frontier from the following problem:

max
wt∈RN

ϕt(θ,b, τ ) s.t.





w′
tνt(θ) = ν0t

w′
tΣt(θ)wt = σ2

0t

w′
tιN = 1

(A1)

where νt(θ) = µt(θ)+rt. Compared to (7), we have introduced an additional restriction

to ensure the unit cost of the portfolio. We can solve (7) by forming the Lagrangian

L = ϕt(θ,b, τ ) + γ1 [ν0t − w′
tνt(θ)] + γ2

[
σ2

0t − w′
tΣt(θ)wt

]
+ γ3 [1 − w′

tιN ] ,

and differentiating it with respect to the portfolio weights, thereby obtaining the follow-

ing first order conditions:

∂L
∂wt

=
{

3(s1t + 3s2ts3t) [b′Σt(θ)wt]
2
+ 3s2t [w′

tΣt(θ)wt]
}

Σt(θ)b

+6s2t [b′Σt(θ)wt]Σt(θ)wt − γ1νt(θ) − 2γ2Σt(θ)wt − γ3ιN . (A2)
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Once again, we can explicitly obtain in closed-form the set of portfolio weights that

satisfy these conditions:

Proposition 7 The efficient mean-variance-skewness portfolios that solve (A2) can be
expressed as either

w�
1t =


Cν0t − A

D
+

Cb′νt(θ) − Ab′ιN

D

√
Π2(ν0t, σ2

0t)

Π1


Σ−1

t (θ)νt(θ)

+


B − Aν0t

D
+

Bb′ιN − Ab′νt(θ)

D

√
Π2(ν0t, σ2

0t)

Π1


Σ−1

t (θ)ιN

−
√

π2(ν0t, σ2
0t)

π1

b (A3)

or

w�
2t =


Cν0t − A

D
− Cb′νt(θ) − Ab′ιN

D

√
Π2(ν0t, σ2

0t)

Π1


Σ−1

t (θ)νt(θ)

+


B − Aν0t

D
− Bb′ιN − Ab′νt(θ)

D

√
Π2(ν0t, σ2

0t)

Π1


Σ−1

t (θ)ιN

+

√
Π2(ν0t, σ2

0t)

Π1

b. (A4)

where A = ιNΣ−1
t (θ)µt(θ), B = µ′

t(θ)Σ−1
t (θ)µt(θ), C = ι′

NΣ−1
t (θ)ιN , D = BC − A2,

Π1 = b′Σt(θ)b

− 1

D
( b′ιN b′

tνt(θ) )

[
B −A

−A C

](
b′ιN

b′
tνt(θ)

)
≥ 0, (A5)

and

Π2(ν0t, σ
2
0t) = σ2

0t − 1

D
( 1 ν0t )

[
B −A

−A C

](
1
ν0t

)
≥ 0. (A6)

Hence, there are two potential solutions, both of which can be expressed as a linear

combination of the portfolios with weights Σ−1
t (θ)νt(θ), Σ−1

t (θ)ιN , and b.

It is also interesting to analyse the characteristics of the tangency curve between the

frontiers for xt and yt. In this sense, we can show the following result.

Proposition 8

1. The tangency portfolios between the mean-variance-skewness frontiers with and
without risk-free asset have weights

w?
ι =

µ′
t(θ)b − µ0tb

′ιN

Aµ′
t(θ)b − Bb′ιN

Σ−1
t (θ)µt(θ) − B − µ0tA

Aµ′
t(θ)b − Bb′ιN

b

on the risky assets.
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2. The tangency curve can be expressed as

σ2
0t =

(b′Σt(θ)b) B − (µ′
t(θ)b)2

B[Aµ′
t(θ)b − Bb′ιN ]2

(B − µ0tA)2 +
µ2

0t

B
. (A7)

B Variance-asymmetry frontier

If we ignore expected returns, we can obtain a skewness-variance frontier by maxim-

ising skewness subject to a variance constraint:

Proposition 9 If

s2t

s1t + 3s2ts3t

[
b′Σt(θ)b+

s2t

s1t + 3s2ts3t

]
> 0. (B8)

then the solution to the problem

max
wt∈RN

ϕt(θ,b, τ ) s.t. w′
tΣt(θ)wt = σ2

0t (B9)

will be
[ϕt(θ,b, τ )]1/3 = Λ1(θ,b, τ )σ0t, (B10)

where

Λ1(θ,b, τ ) =
{

(s1t + 3s2ts3t) [b′Σt(θ)b]
3/2

+ 3s2t [b′Σt(θ)b]
1/2
}1/3

, (B11)

which is achieved by

w†
t =

σ0t√
b′Σt(θ)b

b. (B12)

Otherwise the solution to (B9) will be

[ϕt(θ,b, τ )]1/3 = max {Λ1(θ,b, τ ), Λ2(θ,b, τ )} σ0t,

where
Λ2(θ,b, τ ) = 21/3√

s2t [−s1t − 3s2ts3t]
−1/6 , (B13)

which is obtained by portfolios that satisfy

b′Σt(θ)w‡
t = σ0t

√
−s2t

s1t + 3s2ts3t

. (B14)

Hence, we can interpret b as a “skewness-variance” efficient portfolio, since every

portfolio on this frontier will be proportional to b when (B8) is satisfied. However, when

(B8) is not satisfied, (B12) will not necessarily yield maximum skewness. In fact, there

might be an infinite number of portfolios that satisfy (B14), all of them yielding exactly

the same variance and skewness but different expected returns. One way of solving this

indeterminacy is to choose the portfolio with maximum expected return. In this sense,

we can show that:
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Proposition 10 If (B8) does not hold, then the solution to the problem

arg max
wt∈RN

w′
tµt(θ) s.t.





w′
tΣt(θ)wt = σ2

0t

b′Σt(θ)wt = σ0t

√ −s2t

s1t + 3s2ts3t

(B15)

can be expressed as a linear combination of the “skewness-variance” efficient portfolio b
and the “mean-variance” efficient portfolio Σ−1

t (θ)µt(θ).

C Proofs of Propositions

Proposition 1

If we impose the parameter restrictions of Proposition 1 in equation (1), we get

ε∗ = c (β′β, τ ) β

[
ξ−1

π1(τ )
− 1

]
+

√
ξ−1

π1(τ )

[
IN +

c (β′β, τ ) − 1

β′β
ββ′

] 1
2

r (C16)

Then, we can use the independence of ξ and r, together with the fact that E(r) = 0

to show that ε∗ will also have zero mean. Analogously, we will have that

V (ε∗) = c2
v(τ )c2 (β′β, τ ) ββ′ + IN +

c (β′β, τ ) − 1

β′β
ββ′,

Substituting c (β, ν, γ) by (2), we can finally show that V (ε∗) = IN . �

Proposition 2

Using (C16), we can write s∗ as

s∗ = c (β′β, τ )
w′β√
w′w

[
ξ−1

π1(τ )
− 1

]

+

√
ξ−1

π1(τ )

w′
√

w′w

[
IN +

c (β′β, τ ) − 1

β′β
ββ′

] 1
2

r.

But since the second term in this expression can be written as the product of the square

root of the mixing variable times a univariate normal variate, r say, we can also rewrite

s∗ as

s∗ = c (β′β, τ )
w′β√
w′w

[
ξ−1

π1(τ )
− 1

]

+

√
ξ−1

π1(τ )

√
1 +

c (β′β, τ ) − 1

β′β

(w′β)2

w′w
r (C17)

Given that s∗ is a standardised variable by construction, if we compare (C17) with

the general formula for a standardised LSMN in (C16), then we will conclude that
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the parameters τ are the same as in the multivariate distribution, while the skewness

parameter is now a function of the vector w. Finally, the exact formula for β(w) can be

easily obtained from the relationships

c
[
β2(w), τ

]
β(w) = c (β′β, τ )

w′β√
w′w

,

c
[
β2(w), τ

]
= 1 +

c (β′β, τ ) − 1

β′β

(w′β)2

w′w
,

�

Proposition 3

If we introduce the results of Proposition 1 in (3), we can express yt as:

yt = µt(θ) + c(b′Σt(θ)b, τ )Σt(θ)b

[
ξ−1
t

π1(τ )
− 1

]

+

√
ξ−1

π1(τ )

{
Σt(θ) +

c[b′Σt(θ)b, τ ] − 1

b′Σt(θ)b
Σt(θ)bb′Σt(θ)

} 1
2

rt

where ξt ∼ iid F (·; τ ) and rt∼iid N(0, IN) are independent. Hence, w′
tyt can be ex-

pressed as:

w′
tyt = w′

tµt(θ) + c[b′Σt(θ)b, τ ]w′
tΣt(θ)b

[
ξ−1
t

π1(τ )
− 1

]

+

√
ξ−1
t

π1(τ )

{
w′

tΣt(θ)wt +
c[b′Σt(θ)b, τ ] − 1

b′Σt(θ)b
[w′

tΣt(θ)b]
2

} 1
2

rt (C18)

We can observe that w′
tyt is a LSMN that can be characterised in terms of its mean

w′
tµt(θ), its variance w′

tΣt(θ)wt and the bi-linear form w′
tΣt(θ)b. �

Proposition 4

In what follows we maintain the assumption that

3(s1t + 3s2ts3t)[b
′Σt(θ)wt]

2 + 3s2tσ
2
0t (C19)

is different from zero, since the equality case is treated in Propositions 9 and 10. If we

set (10) to zero, we can express the optimal portfolio weights as:

w∗
t =

γ1

6s2t[b′Σt(θ)w∗
t ] − 2γ2

Σ−1
t (θ)µt(θ)

− {3(s1t + 3s2ts3t)[b
′Σt(θ)w∗

t ]
2 + 3s2tσ

2
0t}

6s2t[b′Σt(θ)w∗
t ] − 2γ2

b (C20)
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If we pre-multiply (C20) by b′Σ−1
t (θ), we obtain:

b′Σt(θ)w∗
t =

γ1

6s2t[b′Σt(θ)w∗
t ] − 2γ2

b′µt(θ)

− {3(s1t + 3s2ts3t)[b
′Σt(θ)w∗

t ]
2 + 3s2tσ

2
0t}

6s2t[b′Σt(θ)w∗
t ] − 2γ2

b′Σb (C21)

Hence, we can express (C20) as

w∗
t =

γ1

6s2tz∗ − 2γ2

Σ−1
t (θ)µt(θ) − [3(s1t + 3s2ts3t)z

∗2 + 3s2tσ
2
0t]

6s2tz∗ − 2γ2

b (C22)

where z∗ is the solution of the following equation:

[6s2t + 3(b′Σt(θ)b) (s1t + 3s2ts3t)] z
2

−2γ2z +
[
3s2t(b

′Σt(θ)b)σ2
0t − γ1b

′µt(θ)
]

= 0. (C23)

The equality restrictions of our problem can then be written as:

µ0 =
γ1

6s2tz∗ − 2γ2

µ′
t(θ)Σ−1

t (θ)µt(θ)

− [3(s1t + 3s2ts3t)z
∗2 + 3s2tσ

2
0]

6s2tz∗ − 2γ2

µ′
t(θ)b (C24)

σ2
0t =

γ2
1

[6s2tz∗ − 2γ2]
2µ′

t(θ)Σ−1
t (θ)µt(θ)

+
[3(s1t + 3s2ts3t)z

∗2 + 3s2tσ
2
0t]

2

[6s2tz∗ − 2γ2]
2 b′Σt(θ)b

−2
γ1 [3(s1t + 3s2ts3t)z

∗2 + 3s2tσ
2
0t]

[6s2tz∗ − 2γ2]
2 µ′

t(θ)b (C25)

Thus, we must find z∗, γ1 and γ2 such that (C23), (C24) and (C25) are satisfied. From

(C24), it is straightforward to express γ1 as:

γ1 =
µ0

µ′
t(θ)Σ−1

t (θ)µt(θ)
[6s2tz

∗ − 2γ2]

+
[3(s1t + 3s2ts3t)z

∗2 + 3s2tσ
2
0]

µ′
t(θ)Σ−1

t (θ)µt(θ)
µ′

t(θ)b (C26)

If we introduce (C26) in (C25), we will obtain after some algebraic manipulations that:

[6s2tz
∗ − 2γ2]

2 =
(b′Σb)

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− (µ′

t(θ)b)2

σ2
0t

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− µ2

0t

×
[
3(s1t + 3s2ts3t)z

∗2 + 3s2tσ
2
0t

]2
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From condition (8) σ2
0tµ

′
t(θ)Σ−1

t (θ)µt(θ) − µ2
0t ≥ 0, whereas

(b′Σt(θ)b)
(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− (µ′

t(θ)b)2 is also non-negative because of the Cauchy-

Schwarz inequality. Therefore, we can express γ2 as:

γ2 = 3s2tz
∗

± 1

2

√
(b′Σb)

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− (µ′

t(θ)b)2

σ2
0t

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− µ2

0

[
3(s1t + 3s2ts3t)z

∗2 + 3s2tσ
2
0t

]
,

whence

γ1 =
[3(s1t + 3s2ts3t)z

∗2 + 3s2tσ
2
0t]

µ′
t(θ)Σ−1

t (θ)µt(θ)

×


µ′

t(θ)b ± µ0t

√
(b′Σt(θ)b)

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− (µ′

t(θ)b)2

σ2
0

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− µ2

0


 .

If we introduce these expressions in (C23), we obtain the following “non-trivial” solutions:

z∗ = µ0t
µ′

t(θ)b

µ′
t(θ)Σ−1

t (θ)µt(θ)

∓

√[
(b′Σt(θ)b)

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− (µ′

t(θ)b)2] [σ2
0t

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− µ2

0t

]

µ′
t(θ)Σ−1

t (θ)µt(θ)
(C27)

There are potentially two other solutions characterised by 3(s1t+3s2ts3t)z
∗2+3s2tσ

2
0t = 0.

However, it can be checked that those two solutions belong to the inefficient frontier

mentioned in Proposition 10.

Finally, we obtain the required result by introducing (C27) in (C22). �

Proposition 5

Consider two mean-variance-skewness efficient portfolios with weights

w∗
at =

µ0at + ia∆
−1
t (µ0at, σ0at)µ

′
t(θ)b

µ′
t(θ)Σ−1

t (θ)µt(θ)
Σ−1

t (θ)µt(θ) − ia
∆t(µ0at, σ0at)

b,

w∗
bt =

µ0bt + ib∆
−1
t (µ0bt, σ0bt)µ

′
t(θ)b

µ′
t(θ)Σ−1

t (θ)µt(θ)
Σ−1

t (θ)µt(θ) − ib
∆t(µ0bt, σ0bt)

b,

where ia and ib are either 1 or −1. Then, for any ka, kb ∈ R we can express the linear

combination w∗
ct = kaw

∗
at + kbw

∗
bt as

w∗
at =

µ0ct +
[
kaia∆

−1
t (µ0at, σ0at) + kbib∆

−1
t (µ0bt, σ0bt)

]
µ′

t(θ)b

µ′
t(θ)Σ−1

t (θ)µt(θ)
Σ−1

t (θ)µt(θ)

−
[
kaia∆

−1
t (µ0at, σ0at) + kbib∆

−1
t (µ0bt, σ0bt)

]
b,
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where µ0ct = kaµ0at + kbµ0bt. Hence, we only need to show that we can express

kaia∆
−1
t (µ0at, σ0at) + kbib∆

−1
t (µ0bt, σ0bt)

as ±∆−1
t (µ0ct, σ0ct) for some σ0ct to obtain the required result. In this sense, it is straight-

forward to show that

σ2
0ct =

µ2
0ct

µ′
t(θ)Σ−1

t (θ)µt(θ)

+

[
kaia∆

−1
t (µ0at, σ0at) + kbib∆

−1
t (µ0bt, σ0bt)

]2

µ′
t(θ)Σ−1

t (θ)µt(θ)
[
(b′Σt(θ)b)

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− (µ′

t(θ)b)2]−1 > 0

satisfies this restriction. �

Proposition 6

We can exploit conditional normality of the LSMN family to express the second lower

partial moment as

S(wt) =

∫
E
[
min(0,w′

tyt)
2|ξt

]
dF (ξt; τ ),

where

E
[
min(0,w′

tyt)
2|ξt

]
=
[
µ2

t (ξt) + σ2
t (ξt)

]
Φ

(
− µt(ξt)

σt(ξt)

)

−µt(ξt)σt(ξt)φ

(
− µt(ξt)

σt(ξt)

)
, (C28)

µt(ξt) = µ0t + c(b′Σt(θ)b, τ )z0t

[
ξ−1
t

π1(τ )
− 1

]
,

σ2
t (ξt) =

ξ−1
t

π1(τ )

[
σ2

0t +
c[b′Σt(θ)b, τ ] − 1

b′Σt(θ)b
z2
0t

]
,

µ0t = w′
tµt(θ), σ2

0t = w′
tΣt(θ)wt, and z0t = w′

tΣt(θ)b and Φ(·) is the standard normal

cdf. In addition, it can be shown that

∂S(wt)

∂σ2
0t

=

∫
∂E [min(0,w′

tyt)
2|ξt]

∂σ2
0t

dF (ξt; τ ) > 0,

since
∂E [min(0,w′

tyt)
2|ξt = ξi]

∂σ2
0

= Φ

(
− µt(ξt)

σt(ξt)

)
ξ−1
i

π1(τ )
> 0.

Hence, for any interior point of the feasible mean-variance-skewness opportunity set, we

can always diminish the second lower partial moment by reducing the standard deviation
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keeping constant mean and skewness until we reach the mean-variance-skewness frontier.

Finally, we can show that the portfolios with maximum Sortino ratio will be along

a straight line by combining the homothecy property of the mean-variance-skewness

frontier with the fact that we can span these portfolios by scaling any of them with a

positive scalar . �

Proposition 7

It is not difficult to check that (A3) and (A4) satisfy the first order conditions (A2)

with γ1, γ2 and γ3 such that

γ1

6s2tb′Σt(θ)w∗
t − 2γ2

= − A − Cν0

D
+

Cb′νt(θ) − Ab′ιN

D

√
π2(ν0, σ2

0)

π1

,

γ3

6s2tb′Σt(θ)w∗
t − 2γ2

=
B − Aν0

D
+

Bb′ιN − Ab′νt(θ)

D

√
π2(ν0, σ2

0)

π1

.

and
6s2tb

′Σt(θ)w∗
t − 2γ2

3(s1t + 3s2ts3t) [b′Σt(θ)w∗
t ]

2 + 3s2tσ2
0t

= ±
√

π1

π2(ν0, σ2
0)

,

where the positive (negative) sign corresponds to w�
1t (w�

2t). It is necessary, though, to

show that (A5) and (A6) are both non-negative so that the optimal portfolio weights

are well defined. It can be checked that Π2(ν0t, σ
2
0t) is the difference between σ2

0t and

the variance of a portfolio on the mean-variance frontier that has the same expected

return. Hence, this difference cannot be negative. As for Π1, we can express (A5) as

Π1 = b′Ωt(θ)b, where

Ωt(θ) = Σt(θ)

−( ιN νt(θ) )

[
C A
A B

]−1(
ι′
N

ν ′
t(θ)

)
.

But since Ωt(θ) is the residual variance of the regression of yt on ι′
NΣ−1

t (θ)yt and

ν ′
t(θ)Σ−1

t (θ)yt, it must be positive semidefinite, which ensures that Π1 ≥ 0. Finally, if

there are portfolios such that

3(s1t + 3s2ts3t) [b′Σt(θ)wt]
2
+ 3s2tσ

2
0t = 0,

then there might be other combinations of portfolio weights that satisfy (A2). As in the

frontier with a risk-free asset, though, these portfolios will have the same asymmetry

and standard deviation but different expected returns. It is possible to follow the same
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procedure as in Proposition 10 to show that the portfolio in this set with maximum

expected return can also be expressed in terms of either (A3) or (A4). �

Proposition 8

The tangency portfolios will be such that 1 = w∗′
itιN , for i = 1, 2. If we introduce

this restriction in (11) and (12), we obtain:

∆t(µ0t, σ0t) = ± Aµ′
t(θ)b − Bb′ιN

B − µ0tA
. (C29)

By introducing (13) in (C29), we can obtain (A7). In addition, w?
ι follows directly from

introducing (C29) in either (11) or (12). �

Propositions 9 and 10

We can solve (B9) by forming the Lagrangian

L = ϕt(θ,b, τ ) + γ2

(
σ2

0t − w′
tΣt(θ)wt

)
. (C30)

If we differentiate (C30) with respect to the portfolio weights, we obtain the following

first order conditions:

∂L
∂wt

=
{
3(s1t + 3s2ts3t)[b

′Σt(θ)wt]
2 + 3s2tσ

2
0t

}
Σt(θ)b

+ {6s2t[b
′Σt(θ)wt] − 2γ2} Σt(θ)wt = 0

There are two possible situations. First, assume that (C19) is different from zero. In this

case, we can express the optimal portfolio weights as wt = κb for some constant κ. Then,

if we impose the variance constraint by choosing κ appropriately, we obtain (B12). How-

ever, an additional solution will be obtained if the scalars (C19) and 6s2t[b
′Σt(θ)wt]−2γ2

are both zero. This solution will be characterised by

b′Σt(θ)wt = ±σ0t

√
−s2t

s1t + 3s2ts3t

, (C31)

wtΣt(θ)wt = σ2
0t. (C32)

However, we will choose the positive sign because it is the one that yields positive

skewness. Condition (C31) defines a plane. Thus, this solution will only exist if this

plane intersects the ellipse defined by (C32). We need to find under what conditions
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(C31) and (C32) are both satisfied. If this solution exists, there will be an infinite number

of portfolios with the same asymmetry and standard deviation but different expected

returns. We can consider the one that has maximum expected return by solving (B15).

In this case, the Lagrangian can be expressed as

L = w′
tµt(θ) + γ1

[
σ2

0t − w′
tΣt(θ)wt

]

+γ2

[
σ0t

√
−s2t

s1t + 3s2ts3t

− b′Σt(θ)wt

]
. (C33)

If we differentiate (C33) with respect to wt, we obtain:

wt =
1

2γ1

[
Σ−1

t (θ)µt(θ) − γ2b
]

(C34)

It is straightforward to show that

γ1 = ±
√

µt(θ)Σ−1
t (θ)µt(θ) − 2γ2b′µt(θ) + γ2

2(b
′Σt(θ)b)

2σ0t

(C35)

ensures that (C32) holds. If we introduce (C34) and (C35) in (C31), we obtain the

following restriction:

Σ−1
t (θ)µt(θ) − γ2b√

µt(θ)Σ−1
t (θ)µt(θ) − 2γ2b′µt(θ) + γ2

2 [b
′Σt(θ)wt]

= ±σ0t

√
−s2t

s1t + 3s2ts3t

If we square the above expression, it is straightforward to show that it can be expressed

as a second order equation which will only have real solutions if (B8) does not hold. �

D Third and fourth moments of a LSMN

Consider wt ∈ RN . Then,

E
[
(w′

t(yt − µt(θ))3|It−1; θ, τ
]

= vec′(wtw
′
t)Φt(θ, τ )wt = ϕt(θ,b, τ ),

E
[
(w′

t(yt − µt(θ))4|It−1; θ, τ
]

= vec′(wtw
′
t)Kt(θ, τ )vec(wtw

′
t),

where

Φt(θ, τ ) = E [vec [(yt − µt(θ))(yt − µt(θ))′] (yt − µt(θ))′ |It−1; θ, τ ]

= s1tvec [Σt(θ)bb′Σt(θ)]b′Σt(θ)

+s2tvec [Σ∗
t (θ)]b′Σt(θ)

+s2t (IN2 + KNN) [Σt(θ)b ⊗ Σ∗
t (θ)] ,
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Kt(θ, τ ) =

= E [vec [(yt − µt(θ))(yt − µt(θ))′] vec′ [(yt − µt(θ))(yt − µt(θ))′] |It−1; θ, τ ]

= κ1tvec [Σt(θ)bb′Σt(θ)] vec′ [Σt(θ)bb′Σt(θ)]

+κ2t (IN2 + KNN) (Σ∗
t (θ) ⊗ Σt(θ)bb′Σt(θ)) (IN2 + KNN)

+κ2t [vec [Σt(θ)bb′Σt(θ)] vec′ [Σ∗
t (θ)] + vec [Σ∗

t (θ)] vec′ [Σt(θ)bb′Σt(θ)]]

+κ3t [(IN2 + KNN) (Σ∗
t (θ) ⊗ Σ∗

t (θ)) + vec (Σ∗
t (θ)) vec′(Σ∗

t (θ))] ,

KNN is the duplication matrix, and

κ1t =
E
[
(ξ−1 − π1(τ ))

4
]

π4
1(τ )

c4(b′Σt(θ)b, τ ),

κ2t =
E
[
(ξ−1 − π1(τ ))

2
ξ−1
]

π3
1(τ )

c2(b′Σt(θ)b, τ ),

κ3t =
π2(τ )

π2
1(τ )

,

Σ∗
t (θ) = Σt(θ) + s3tΣt(θ)bb′Σt(θ).
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Table 1
Maximum likelihood estimates of a conditionally heteroskedastic single factor

model for ten Datastream sectoral indices for the US.

Daily excess returns (January 4th, 1988 - October 12th, 2007)

(a) Generalised Hyperbolic distribution

Ten indices Extended model
Asymmetry parameters b SE SE
Basic Materials -0.100 0.038 -0.088 0.040
Consumer Goods 0.068 0.066 0.053 0.070
Consumer Services 0.077 0.091 0.093 0.091
Financials 0.009 0.052 0.048 0.050
Health Care -0.033 0.078 -0.082 0.083
Industrials -0.096 0.084 -0.080 0.089
Oil and Gas 0.116 0.056 0.130 0.058
Technology -0.091 0.066 -0.092 0.066
Telecommunications 0.067 0.074 0.062 0.082
Utilities -0.027 0.037 -0.034 0.042
World ex-US - - -0.163 0.052
Log-likelihood -51997.250 -57588.015

(b) LSMN with a Bernoulli mixing variable

Ten indices Extended model
Asymmetry parameters b SE SE
Basic Materials -0.123 0.041 -0.122 0.063
Consumer Goods 0.095 0.066 0.101 0.110
Consumer Services 0.009 0.089 -0.004 0.138
Financials 0.036 0.061 0.083 0.120
Health Care -0.004 0.078 -0.047 0.121
Industrials -0.156 0.092 -0.125 0.135
Oil and Gas 0.125 0.055 0.139 0.086
Technology -0.055 0.054 -0.063 0.121
Telecommunications 0.088 0.067 0.079 0.121
Utilities -0.009 0.039 -0.016 0.075
World ex-US - - -0.168 0.068
Log-likelihood -52142.065 -57752.316

Note: Extended model denotes the model based on the ten US indices and the World ex-US index.
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Table 2:
Spanning tests. Improvement in the investment opportunity set caused by the

introduction of the World ex-US index.

Daily excess returns (January 4th, 1988 - October 12th, 2007)

(a) Generalised Hyperbolic distribution

Null hypothesis Wald LR
p-value p-value

Mean-variance efficiency 1.00 0.317 1.05 0.306
Skewness-variance efficiency 9.64 0.002 9.79 0.002
Joint 13.57 0.001 13.72 0.001

(b) LSMN with a Bernoulli mixing variable

Null hypothesis Wald LR
p-value p-value

Mean-variance efficiency 0.99 0.320 1.08 0.298
Skewness-variance efficiency 6.12 0.013 8.58 0.003
Joint 10.20 0.006 12.10 0.002

Notes: The mean-variance efficiency test denotes a test of the null hypothesis µ2t(θ) = d′
12tµ1t(θ),

where µ1t(θ) and µ2t(θ) denote, respectively, the vector of expected excess returns of the 10 US
indices and the expected excess return of the World ex-US index, while d12t denotes the coefficients
of the conditional regression of the excess returns of the World ex-US index on those of the 10 US
sectoral indices. The skewness-variance efficiency test denotes a test of the null hypothesis that
the element of the skewness vector b corresponding to the World ex-US index is zero.
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Figure 1a: Standardised bivariate normal
density
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Figure 1b: Contours of a standardised bivari-
ate normal density

Figure 1c: Standardised bivariate asymmetric
Student t density with 10 degrees of freedom
(η = .1) and β = (−3, −3)′
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Figure 1d: Contours of a standardised bivari-
ate asymmetric Student t density with 10 de-
grees of freedom (η = .1) and β = (−3, −3)′

Figure 1e: Standardised bivariate LSMN with
a Bernoulli mixing variable and β = (−3, −3)′
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Figure 1f: Contours of a standardised bivari-
ate LSMN with a Bernoulli mixing variable
and β = (−3, −3)′

Notes: The Bernoulli mixing variable of Figures 1e and 1f is such that it has mean E(ξ) = 1 and
Pr(ξ = 0.6) = 0.04.
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Figure 2: Exceedance correlation for symmetric and asymmetric location-scale mixtures of normals
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2001). Symmetric t distribution with 10 degrees of freedom (η = .1) and Asymmetric t distribution
with η = .1 and β = (−3, −3). Asymmetric Bernoulli denotes a location-scale mixture of normals
with β = (−3, −3) and mixing variable such that it has mean E(ξ) = 1 and Pr(ξ = 0.6) = 0.04.
By construction, corr(ε∗

1, ε
∗
2) = 0 in all cases.
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Figure 3: Mean-Variance-Skewness frontier of a LSMN. Example 1.

(a) Three dimensional representation
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(d) Standard Deviation vs. Asymmetry
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Notes: The mean-variance frontier is plotted with dotted lines. Dash-dot lines are used for the
skewness-variance frontier, which maximises asymmetry for given standard deviations. In this case,
the asymmetry-variance frontier portfolio weights are proportional to −b. Thin solid lines indicate
several iso-asymmetry, iso-variance and iso-mean contours on panels (b), (c) and (d), respectively.
Thick solid lines represent the location of the optimal portfolios that an investor who maximises the
Sortino ratio for different target expected returns would choose. This example has been obtained
with a five-dimensional LSMN with b = −ι5 in which the mixing variable is the Bernoulli variable
ξ = 2, 10, with Pr(ξ = 2) = .1.



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 4: Mean-Variance-Skewness frontier of a LSMN. Example 2.

(a) Three dimensional representation
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(d) Standard Deviation vs. Asymmetry
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Notes: The mean-variance frontier is plotted with dotted lines. Dash-dot lines are used for the
skewness-variance frontier, which maximises asymmetry for given standard deviations. Thin solid
lines indicate several iso-asymmetry, iso-variance and iso-mean contours on panels (b), (c) and (d),
respectively. Thick solid lines represent the location of the optimal portfolios that an investor who
maximises the Sortino ratio for different target expected returns would choose. This example has
been obtained with a five-dimensional LSMN with b = −ι5 in which the mixing variable is the
Bernoulli variable ξ = .1, 10, with Pr(ξ = .1) = .1.
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Figure 5a: Sampling distribution of the log of vech′[V E
T (φ̂T ) − VT (φ̂T )]vech[V E

T (φ̂T ) − VT (φ̂T )]
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Figure 5b: Sampling distribution of the log of vecd′[V E
T (φ̂T ) − VT (φ̂T )]vecd[V E

T (φ̂T ) − VT (φ̂T )]
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Notes: Obtained from a Monte Carlo study with 1, 000 replications of sample size T = 1, 000,
except VT (φ̂T ), which is the sampling variance of the ML estimators in 30,000 samples of the same
size. E refers to the standard errors obtained by either the outer-product of the gradient (O),
numerical Hessian (H), or the simulated unconditional information matrix (I).
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Figure 6: Mean-Variance-Skewness frontier of the the US Datastream indices and change induced by
adding the World ex-US Datastream index

(a) Three dimensional representation
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(b) Mean vs. Standard Deviation
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(c) Mean vs. Asymmetry
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(d) Standard Deviation vs. Asymmetry
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Notes: Frontier of daily excess returns with moments expressed in percent terms. Results based
on the GH distribution, whose parameters have been estimated by maximum likelihood. Thick
lines represent the contours obtained from the ten US indices, while the contours of the frontier
obtained including the World ex-US index are represented with thin lines. The mean-variance
frontier is plotted with dotted lines, while dash-dot lines are used for the skewness-variance frontier.
Asterisks (circle) are used to plot the positions of the individual US indices (World ex-US index).
The results correspond to a representative day whose mean vector and covariance matrix are set
to their unconditional values. Straight lines represent the location of the optimal portfolios that
an investor who maximises the Sortino ratio for different target expected returns would choose,
where the thin (thick) line is based on the 10 US sectoral indices (10 US sectoral indices and the
World ex-US index).


