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Abstract An answer to the question how random variations of design parameters affect the static structural
response is presented in the paper. A variational approach for structural statics is formulated in the context
of the finite element method, and stochastic sensitivity of static response is described in terms of the adjoint
system technique. When compared with the conventional perturbations, the suggested technique seems to
be original, as being completely second-order accurate. Illustrative examples are dealt with beam and shell
elements. Numerical results are given for the first two probabilistic moments of displacement sensitivity
gradients with respect to random design parameters. Concluding remarks point out to the need for stochastic
sensitivity analysis for a better description of real objects, indicating that dynamic stochastic sensitivity analysis
as worthy forthcoming work.

Keywords Stochastic · Sensitivity · Finite element · Completely second-order accuracy

1 Introduction

It is known that the most effective computational tool in civil engineering nowadays is the finite element
method (FEM) [1–3], as the basis of almost all structural analysis computer codes. On the other hand, in
modern design, sensitivity analysis cannot be avoided, since it makes it possible to determine the so-called
starting point (or design point), leading to the optimal solution. Recently, the sensitivity issues are discussed
extensively in the literature. Background of the design sensitivity analysis is presented in [4,5], for instance.
The sensitivity analysis can be carried out with respect to local design variables, such as cross-sectional area,
element thickness, Young’s modulus, Poisson’s ratio, loading [6–8], or global design variables, e.g., structural
member length, overall geometry, overall shape with such more sophisticated mathematic tools as directional
and/or topological derivatives [9,10].

In accordance with developments of the computational technique, uncertainties of the design variables
appear to be necessarily needed in the state-of-the-art methodologies in computer terms. Besides the traditional
Monte Carlo simulation, we may mention the spectral approach [11] and, seeming more effective, perturbational
approach [12–15]. In the latter, all the functions of random variables are expanded exponentially. By using
the first two probabilistic moments for random variables on input, the first two probabilistic moments of
the structural response are obtained on output; the expectations are second-order accurate, while the cross-
covariances are first-order accurate [16,17]. Formulations for the stochastic sensitivity are followed naturally,
[16,18,19], based upon the perturbation coefficients.
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In this paper, a modified version of the perturbation schemes presented so far in the literature is proposed
for linear elastic structural systems. With the same input data as for the conventional perturbational techniques,
in the suggested scheme, both the two output moments are with second-order accuracy. This is the goal of the
paper.

After the introduction, in the second section, a variational basis of FEM is given. Starting from the Hamil-
ton’s principle, the total energy balance is formulated, and the equilibrium equations are obtained in the context
of FEM. In the next section, the stochastic static sensitivity is described. In the fourth section, analysis results
are presented for three structural systems, modeled with different types of finite elements—truss, beam and
shell ones, suggesting remarks finish the paper.

2 Stochastic finite element model of statics

It is known that the variational Hamilton’s principle states that among all permissible displacement fields,
satisfying boundary and initial conditions at times t1, t2 in the volume Ω , the real field makes stationary the
functional of the total energy. In statics, the total energy is the sum of potential energy V and external forces
work W , leading to a specific form—the minimum potential principle. That is

δ(V − W ) = 0 (1)

with

V =
∫

Ω

1

2
εTσ dΩ (2)

W =
∫

∂Ω

t̂ Tu d(∂Ω) (3)

where u = {ui }, ε = {ε11, ε22, ε33,
√

2ε12,
√

2ε13,
√

2ε23}, σ = {σ11, σ22, σ22,
√

2σ12,
√

2σ13,
√

2σ23} and
t̂ = {̂ti }, i = 1, 2, 3, are the displacement, strain, stress and the boundary force vectors, respectively. By the
engineering character of the paper, in Eq. (3), the body forces are neglected.

Implementing the finite elements setting, the FEM equilibrium equation system is obtained as

K q = Q (4)

where K = [Kαβ ], q = {qα} and Q = {Qα} , α = 1, 2, . . . , N , are the system stiffness matrix, nodal
displacement and load vectors, respectively, with N being the system number of degrees of freedom. The
explicit forms of the stiffness and nodal load matrices for specific types of the finite elements can be found in
[1–3], for instance.

Equation (4) may be rewritten in the residual form, where twice repeated indices implying summation as

Qα − Kαβ qβ = 0 (5)

and this indicial notation will be used from now on.

3 Stochastic sensitivity of static response

The structural response of a multi-degree-of-freedom system can be defined by the function

Φ = Φ [qα(h, b), h] (6)

satisfying the equilibrium condition (4) and being an explicit and implicit function of the vector of design
variables h = {hd}, d = 1, 2, . . . , D, and the vector of random variables b = {br }, r = 1, 2, . . . , R, i.e.,

Qα(h, b) − Kαβ(h, b) qβ(h, b) = 0, α, β = 1, 2, . . . , N (7)

The random variables br can be defined via the first two probabilistic characteristics—expectations b
r

and
cross-covariances Cov(br , bs) as
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b
r = E

[
br ] =

+∞∫

−∞
br p(br )dbr (8)

Cov(br , bs) = E
[
(br − br

0)(b
s − bs

0)
] = R(br , bs)

√
Var(br )Var(bs) (9)

with

R (br , bs) =
+∞∫

−∞

+∞∫

−∞
br bs p(br , bs)dbr dbs (10)

Var = α2E2[br ] (11)

where R(br , bs), Var(br , bs), p(br , bs) andα denote functions of correlation, variance, joint probability density
and the coefficient of variation, respectively.

The functions of random variables qα, Kαβ and Qα can be handled with the finite difference technique or
by the leas square fit method, cf. [20], for instance. In this paper, a perturbation scheme will be employed.
Suppose that Kαβ, qβ and Qα are twice differentiable with respect to hd . Using the chain rule of differentiation
leads to

Φ;d = Φ.d + Φ.αq;d
α (12)

where (·);d is the first ordinary derivative with respect to the dth design variable, while (·).d and (·).α are
the first partial derivatives with respect to the dth design variable and αth nodal displacement, respectively.
Because Φ is an explicit function of its arguments, the components Φ.d and Φ.α are known. The derivatives
q;d
α must be determined, since qα are implicit with respect to hd . Differentiating the equilibrium Eq. (7) with

respect to hd yields

Kαβq;d
β = Q.d

α − K .d
αβqβ (13)

To eliminate q;d
α from (12), the adjoint system method is used. The adjoint vector λα may be defined so that

the adjoint equations system takes the form
Kαβλβ = Φ.α (14)

that, substituted (14) into (12) and on account of (13), implies

Φ;d = Φ.d + λα

(
Q.d

α − K .d
αβqβ

)
(15)

As mentioned above, the functions of random variables Kαβ, Qα, Φ,α, qβ, λα, K .d
αβ, Q.d

α and Φ.d are now

expanded around the expectations b
r

via the second-order perturbation, with a given small parameter θ ,
symbolically written as

(·)(h, b) = (·)0 + θ(·);rΔbr + 1

2
θ2(·);rsΔbrΔbs, r, s = 1, 2, . . . , R (16)

in which Δbr denotes the perturbational increment of br with respect to br
0, and (·)0, (·);r and (·);rs describe

the zeroth, first and mixed (second) ordinary derivatives with respect to br .
Substituting the expansions of Kαβ, Qα, Φ.α, qβ and λα into (7) and (14) and equating the coefficients of

the parameter θ to zeroth, first and second power, we obtain

– 1 pair of the zero-order equations
K 0

αβq0
β = Q0

α

K 0
αβλ0

β = Φ0
.α

(17)

– r pairs of the first-order equations

K 0
αβq;r

β = Q;r
α − K ;r

αβq0
β

K 0
αβλ

;r
β = Φ;r

.α − K ;r
αβλ0

β

, r, s = 1, 2, . . . , R (18)
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– 1 pair of the second-order equations

K 0
αβq(2)

β = ( 1
2 Q;rs

α − K ;r
αβq ,s

β − 1
2 K ;rs

αβ q0
β

)
Cov(br , bs)

K 0
αβλ

(2)
β = ( 1

2Φ;rs
.α − K ;r

αβλ
,s
β − 1

2 K ;rs
αβ λ0

β

)
Cov(br , bs)

(19)

where
q(2)
α = 1

2 q;rs
α Cov(br , bs)

λ
(2)
α = 1

2 λ;rs
α Cov(br , bs)

, r, s = 1, 2, . . . , R (20)

Having solved for q0
β, q;r

β and q(2)
β in (17)1, (18)1 and (19)1, the first two probabilistic moments for qα can

be computed by using the expansion (16) with θ = 1, i.e.,

qα(h, b) = q0
α + q;r

α Δbr + 1

2
q;rs
α ΔbrΔbs, r, s = 1, 2, . . . , R (21)

The expectation vector for qα can then be obtained as

qα = q0
α + q(2)

α (22)

To compute the cross-covariance matrix, we note that, cf. (21) and (22),

Δqα = qα − E [qα] = q;r
α Δbr + 1

2
q;rs
α ΔbrΔbs − q(2)

α (23)

with q(2)
α being a deterministic quantity so that Cov

(
qα, qβ

) = E
[
Δqα Δqβ

]
can be expressed as

Cov
(
qα, qβ

) = q;r
α q;s

β Cov(br , bs) − q(2)
α q(2)

β (24)

It should be pointed out here that both the solutions (22) and (24) are second-order accurate, when compared
with the ‘conventional’ ones, [12,13,16], in which only the expectation vector is second-order accurate, while
the cross-covariance matrix is first-order accurate.

When q0
α and λ0

α from (17) are known, the functions q;r
α , λ;r

α , q(2)
α and λ

(2)
α can be solved by (18) and (19)

in a sequential manner. In this way, it is possible to calculate the probability distribution of sensitivity. The
expectations and cross-covariances of the sensitivity gradient are then written as, cf. [17]

E
[
Φ.d

]
= G0.d + 1

2
G .d;rs Cov(br , bs) + Ad

α

(
λ0

α + λ(2)
α

)

− k0.d
αβ q(2)

β λ0
α + (Bdr

α λ;s
α + Cdrs

α λ0
α

)
Cov(br , bs) (25)

and

Cov(Φ.d , Φ.e) = [
G .d;r G .e;s + (

G .d;rAe
α + G .e;rAd

α

)
λ;s

α

+ (
G .d;rBes

α + G .e;rBds
α

)
λ0

α

+ Ad
αAe

βλ;r
α λ

;s
β + (Ad

αBer
β + Ae

βBdr
α

)
× λ;s

α λ0
β + Bdr

α Bes
β λ0

αλ0
β

]
Cov(br , bs)

−[
Φ

.d(1

2
G .e;rs + Ber

α λ;s
α + Cers

α λ0
α

)

+ Φ
.e(1

2
G .d;rs + Bdr

α λ;s
α + Cdrs

α λ0
α

)]
Cov(br , bs)

− [
Φ

.d(Ae
αλ(2)

α − k0.e
αβ q(2)

β λ0
α

)
+ Φ

.e(Ad
αλ(2)

α − k0.d
αβ q(2)

β λ0
α

)]
(26)
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Fig. 1 Clamped–clamped beam

where

Ad
α = Q0.d

α − K 0.d
αβ q0

β

Bdr
α = Q.d;r

α − K 0.d
αβ q;r

β − K .d;r
αβ q0

β (27)

Cdrs
α = 1

2
Q.d;rs

α − K .d;r
αβ q;s

β − 1

2
K .d;rs

αβ q0
β

with d, e = 1, 2, . . . , D; r, s = 1, 2, . . . , R; α, β = 1, 2, . . . , N . Also, the cross-covariance matrix (26) is
obtained with the second-order accuracy, and not the first-order one as in [16,17].

4 Numerical results

Numerical illustrations discussed below are first concerned with the well-known examples considered already
in [17]. The significant difference, however, is that the numerical results are given as completely second-order
accurate for both the expectation vector and cross-covariance matrix. Analysis results are also presented for a
real-scale complex structure described in [21,22].

The static sensitivity of displacement to random change of design parameters for two different structural
systems is analyzed. Two groups of random variables, geometrical and material parameters, are considered.
They are cross-sectional areas of the truss or beam elements, thickness of the plate or shell elements, and
Young’s modulus of all the elements. The stochastic analysis are carried on by using a modified version of the
computer code POLSAP [23].

In Example 1, the displacement and slope responses of the clamped-clamped beam are considered, Fig. 1.
The beam is of length L = 10 m and constant cross-sectional area A = 0.005 m2 and is subjected to a uniformly
distributed load q = 5 kN/m. The moments of inertia Iy = Iz = A2/6, Ix = Iy + Iz are adopted. The material
is characterized by Poisson’s ratio ν = 0.3 and Young’s modulus er , r = 1, 2, . . . , 100, which are the random
design variables with the means er

0 = E
[
er

] = 0.2 GPa. The correlation function is described as

R(er , es) = exp
[− abs(xr − xs)/λ

]
(28)

λ = 0.1 and the coefficient of variation α = 0.07.
The response function is defined as

Φ =
1∫

0

δ(x − x∗)y(x) dx (29)

where δ(x) is the Dirac delta that equals zero to x �= 0, in this case x = x∗, with x∗ being a given x-ordinate.
We assume that both the allowable displacement and slope at the mid-point of the beam are 0.02.

It is shown from the obtained results that the maximum displacement of the beam does not exceed 1.56 cm,
and extremal value of slope is close 5 × 10−2. The obtained expectations differ from the deterministic values
about 1 %, cf. [17].

The numerical results of the displacement sensitivity at the mid-point of the beam to the change of the
Young’s modulus value are shown in Fig. 2. Clearly, the most sensitive results are received with elements
being located at the clamps and at the mid-point of the beam, and the smallest sensitive response is at places
where the bending moment is zero, x ∼= 0.22 L and x ∼= 0.78 L. The values of the standard deviations
are about 15–25 % of the expectations for the given parameters. The differences between the expected and
deterministic sensitivities are about 3 %, not as small as those of the displacements. The differences between
the second-order accurate variances obtained here and the first-order accurate ones in [17] are about 1 %.
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Fig. 2 Displacement sensitivity—Young’s moduli as random design variables

Fig. 3 Slope sensitivity—Young’s moduli as random design variables

In the analysis of the slope sensitivity to the change of the Young’s modulus value, Fig. 3, the most sensitive
elements are located, like in the previous case, at the mid-point of the beam and at the clamps. The elements
almost insensitive when x ∼= 0.2 L and x ∼= 0.8 L should be caused by round-off computer errors and the FEM-
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Fig. 4 Cylindrical shell—FEM model

Fig. 5 Expectations of displacement sensitivity—shell thicknesses as random design variables

based inaccuracy. The standard deviation is about 17–25% of the expectations, and the differences between
the excepted and deterministic values are about 3%.

Example 2 concerns the displacement response of a thin shell structure, which is a quarter of a cylinder of
radius r = 4.0 m and length L = 4.8 m, Fig. 4. The boundary conditions are adopted as follows:: along the
bound AB, the x-displacements and y- and z-rotations are zero; BC is entirely free; CD is fixed; along the bound
DA, the y-displacements and x- and z-rotations are zero. The material is characterized by Young’s modulus
e = 10 GPa and Poisson’s ratio ν = 0.3. The response function takes also the form (29). The admissible
z-displacement at the node A is 0.01 m. The random design variables are defined as the shell thicknesses tr ,
with the expectations tr

0 = E[tr ] = 0.1 m. The correlation function is given as

R(tr , t s) = Θ exp
{ − abs

[
(xr − xs)(yr − ys)

]
/λ

}
(30)

where Θ = 1.5/(rL), λ = 2.5r2L2 and the coefficient of variation α = 0.1. The finite element mesh of the
shell incudes 60 equally rectangular elements.

Figure 5 shows the expectations of displacement sensitivity of the node A to the change of element thick-
nesses. It is known that the most sensitive results are obtained with the shell elements being around node A. In
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Fig. 6 Standard deviations of displacement sensitivity—shell thicknesses as random design variables

contrast to the beam previously considered, the curves of shell sensitivities are characterized by high irregular-
ity. We observe that some sensitivity values obtained here are positive. In general cases, in the static response
of simple structures, the more massive system is, the lesser displacement is obtained. In this case, the dis-
placement response is more complicated at places of the lower part, resulting in those nonnegative values of
sensitivity. This means that to decrease the displacement at the considered point A, decreasing thickness of
shell’s elements in appropriate domains should be required in an alternative design point. The standard devi-
ations of displacement sensitivity with respect to the shell thicknesses is about 10–30 % of the expectations,
Fig. 6. Comparing the stochastic and deterministic results, it can be concluded that they differ by no more
than 3%.

The numerical results of sensitivity analysis of the beam, Figs. 2, 3, and of the shell, Figs. 5, 6, are similar
to those presented in [17] at first glance. However, we note some differences, especially in the results of the
displacement sensitivity analysis of the shell, Fig. 5. Significant differences are shown in the expectations of
displacement sensitivity on the unclamped edge of the shell.

In Example 3, displacement response of a complex structure is considered. The structure is modeled by
a FEM mesh with 216 different elements. Three element types are employed—36 truss-, 80 beam- and 100
shell-elements, Fig. 7, resulting in 990 degrees of freedom. As for boundary conditions, nodes 1–4 located at
the base of the structure are fixed. The truss and beam elements are designed with steel profiles, characterized
by Young’s modulus e = 210 GPa and Poisson’s ratio ν = 0.3. The random design variables are defined as
the cross-sectional areas ar , with the expectations ar

0 = E
[
ar

] = 4.324 × 10−3 m2. Clearly, for the sake
of simplicity in the sensitivity terms, moments of inertia of the truss and beam elements are considered as
a measure of the cross-sectional areas squared, with Iy = Iz = 0.7552 a2 and Ix = 1.2644 a2. The shell
elements are designed with concrete, which is characterized by Young’s modulus e = 30 GPa and Poisson’s
ratio ν = 0.2. The random design variables are defined as the shell thicknesses ar , with the expectations
ar

0 = E
[
ar

] = 0.1 m. The correlation function is described as

R(ar , as) = exp
{ − abs

[
(xr − xs)(yr − ys)(zr − zs)

]
/λ

}
(31)

where λ = 0.05 and the coefficient of variation α = 0.04 are adopted. As before, the response function takes
the form (29).

The system is uniformly vertically loaded on the plate, with q = 10 kN/m2. The allowable displacements
are assumed as: ux = 0.01 and uz = 0.03, separately for each of the two cases. The respective two displacement
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(a) (b)

(c) (d)

Fig. 7 Complex structure: a truss-beam-shell FEM model and its b truss-, c beam- and d shell-elements

Table 1 Displacement sensitivity—cross-sectional areas of truss elements as a random design variables

El. no. Constr. (1) Constr. (2)

Deterministic value Expected value SD Deterministic value Expected value SD

1 −17.92494 −18.37723 3.23539 −2.25746 −2.31200 0.39954
2 −7.07349 −7.25539 1.31947 −0.39619 −0.40644 0.07629
3 10.83438 11.10148 1.94797 −2.20266 −2.25445 0.38236
5 3.61791 3.73139 0.78627 −2.25746 −2.31200 0.39954
11 6.37701 6.51905 1.10961 −1.18967 −1.21743 0.20666
12 2.28362 2.33703 0.41083 0.10139 0.10295 0.02030

Table 2 Displacement sensitivity—cross-sectional areas of beam elements as a random design variables

El. no. Constr. (1) Constr. (2)

Deterministic value Expected value SD Deterministic value Expected value SD

25 −53.19560 −56.09343 13.60375 −0.74295 −0.75953 0.11421
29 −49.42492 −51.987880 12.31199 −1.27611 −1.30509 0.19950
37 95.89997 102.17179 27.44810 −2.77865 −2.84255 0.43877
43 −28.32681 −28.97225 4.81574 −5.01730 −5.12153 0.78468
48 5.57682 5.69576 0.91009 0.89267 0.91146 0.16085
53 4.15635 4.13444 0.17614 −5.01730 −5.12153 0.78468

constraints are specified as: constr. (1)—ux at node 29 (−5.0, −5.0, 7.0), constr. (2)—uz at node 77 (−2.0,
−2.0, 10.0). Static sensitivity with respect to the changes, the selected elements are presented in Tables 1, 2
and 3.

It is seen that the most sensitive results for the two displacement constrains are obtained with the truss
element No. 1, Table 1. Some truss elements, for example, Nos. 3, 5, 11 and 12, are characterized by positive
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Table 3 Displacement sensitivity — thicknesses of shell elements as a random design variables

El. no. Constr. (1) Constr. (2)

Deterministic value Expected value SD Deterministic value Expected value SD

2 −2.31283 −2.36126 0.36072 −0.23886 −0.24177 0.02060
18 0.20451 0.20675 0.02094 −0.02050 −0.02005 0.00297
38 0.19709 0.19845 0.01538 0.08189 0.08229 0.00552
46 −0.61009 −0.61401 0.04329 −1.28169 −1.28377 0.05302
48 0.18716 0.18854 0.01471 0.09070 0.09108 0.00533
68 0.08461 0.08510 0.00574 0.09417 0.09434 0.00403

sensitivity values. This means that increasing their cross-sectional areas enlarges the displacement at the
considered nodes. The standard deviations of displacement sensitivity with respect to the truss cross-sectional
areas is about 15–25 % of the expectations. Stochastic and deterministic results differ by about 3 %.

Also, some beam elements, Nos. 37, 48 and 53, for instance, have ‘positive’ sensitivity, Table 2. For the
constraint (1), the most sensitive results are obtained around node 29. The standard deviations of displacement
sensitivity with respect to the beam cross-sectional areas are about 15–25 % of the expectations, and stochastic
and deterministic results differ by about 3–5 %.

The results of displacement sensitivity for the shell elements are less than for the truss and beam elements.
Some shell elements, Nos. 18, 38, 48 and 68, for example, are characterized by the positive sensitivity values.
The standard deviations of displacement sensitivity with respect to the shell thickness is about 5–20 % of the
expectations. Stochastic and deterministic results differ by about 1–3 %.

5 Concluding remarks

Clearly, sensitivity of stochastic systems is an important topic in the structural analysis, as it allows us to find
out the appropriate design point, taking into account random variations in design parameters that reflect the
real structural response. Exemplary static sensitivity analysis gives the answer how the design variables affect
the response of the system. Apart from the static response and sensitivity results obtained in the deterministic
context, the probabilistic setting gives significant information at an uncertain level, i.e., supplying additional
results—inaccuracy quality of the obtained solutions.

With the same two probabilistic moment on input, in the suggested perturbation scheme, both the two
probabilistic moments are obtained on output, and not the second-order accurate expectations and first-order
accurate cross-covariances given by traditional perturbation schemes. The improvement is a few percent,
though.

A formulation presented in this paper requires the double summation and, consequently, o(R2) matrix
operations. It is advisable to reduce these operations to o(R) operations by transforming the set of correlated
random variables to a set of uncorrelated random variables through a standard eigenproblem, cf. [17]. This
approach and a stochastic formulation of dynamic sensitivity are the object of the forthcoming paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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