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Abstract

Motivated by Manski and Tamer (2002) and especially their partial identification
analysis of the regression model where one covariate is only interval-measured, we
present two extensions. Manski and Tamer (2002) propose two estimation approaches
in this context, focussing on general results. The modified minimum distance (MMD)
estimates the true identified set and the modified method of moments (MMM) a su-
perset. Our first contribution is to characterize the true identified set and the superset.
Second, we complete and extend the Monte Carlo study of Manski and Tamer (2002).
We present benchmark results using the exact functional form for the expectation of
the dependent variable conditional on observables to compare with results using its
nonparametric estimate, and illustrate the superiority of MMD over MMM.
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1 Introduction

Weak assumptions or data limitations often lead to incomplete models in econometrics and,
as a consequence, to the failure of point identiﬁcationﬂ In their seminal and well cited
contribution, Manski and Tamer (2002), henceforth MT, study identification regions for
parameters in regressions with interval data on a regressor or the outcomeﬂ In their Monte
Carlo experiments, they focus on illustrating the general approach and therefore do not
dwell on special aspects of their examples. Here we do the opposite and take advantage
of the full knowledge we have of the joint distribution of the regressors to derive exact
results.ﬁ This allows us to complete their study by (i) determining the exact shape of the
identified set in each of their examples, (ii) elucidating some aspects of their MC results,
and (iii) extending these to an alternative approach they present without illustration. We
also compare benchmark results using the exact functional form for the expectation of the
dependent variable conditional on observables with results using a nonparametric estimate.
The bulk of the rapidly growing literature on the estimation of partially identified models
is extremely technical. By contrast we use an ad hoc estimation procedure which is easily
understood but also performs sufficiently well in terms of consistency and precision to fulfill
our purpose in the limited framework of this paper.

MT consider partial identification of the regression model

Y =m0+ 7T+ 73+, E(e|z,v) =0, (1)

where only the integer interval [vg,v1] to which v belongs is observed. We focus on the
special case with v; = vg + 1, which corresponds to their Monte Carlo study. The data

generating processes (DGP) MT consider have v = (1, —1, 1), € standard normal given x and

1See Manski (2003, 2007) for a background on partial identification and Tamer (2010) and Molchanov
and Molinari (2014) for recent surveys of applications in econometrics.

2By the end of July 2014, Google Scholar reports 256 citations.

3This does not mean that we explicitly use that information in the identification strategy, as e.g. Pollmann
(2014) suggests. Indeed, we use the criteria proposed by MT to characterize the identified sets, and these
depend on this joint distribution, even though its knowledge is not assumed.



v (and thus independent of x and v) while the latter are independent and either normally
or uniformly distributed. More precisely, z ~ N (1,4) , v ~ N (0,2), resp. = ~ U|[0,5] ,
v~ Ul-2, 3}E| We refer to these two cases as “the normal case” and “the uniform case”,
respectively. For further reference, we need to define functions n (z, v, v1) = E[y|z, vo, v1]
and f (z,v,v) = Ely|z,v].

Note that with the assumptions listed above, 1 (z,vp,v1) = 710 (vg) + Yex + 73, with

v (vg) = E[v|vg] = vo + 1/2 in the uniform case and

_ . ¢(U0/\/§) - ¢(Ul/\/§)
O ) =V o V) — SV

in the normal case.
Our first focus is on obtaining the true identified set, C*, for each of these two cases. As

discussed in Section 2, C* is a polyhedron defined by an infinite set of pairs of inequalities

c1vg + T + ¢3 < (2,v9,v1) < cv1 + Cox + 3, (3)

expressed at all possible arguments of 7, where (¢, ¢q, ¢3) is observationally equivalent to the
true v. We show that the model is point identified in the normal case, while in the uniform
case the four pairs of inequalities expressed at the four combinations of the bounds for z
and vy suffice to characterize C*. The solution is found by obtaining the intersections of all
triples of planes in R? defined by these eight inequalities, and taking the convex hull of the
intersections which satisfy all inequalitiesﬂ In a similar way, we characterize a (sequence of)
superset(s) based on the choice of a (sequence of ) moment(s), as will be explained in Section
4.

The second focus of the paper is on revisiting and extending the Monte Carlo study of

4The second parameter in the normal distribution stands for the variance, as in MT (on p. 533 they
state: “The intervals [vg,v1] [...] have width one. This is 1/v/2 of the standard deviation of v under the
normal design [...]”.

SFaster algorithms for vertex enumeration for a polyhedron exist, see for instance Fukuda et al. (1997).



MT in the uniform case. We do not deal with the normal case because there the model is
point identified. MT are almost silent on the practical details concerning their “modified
minimum distance” (MMD) estimation of the identified set. They merely state (p. 533)
“The MMD estimates are obtained using the method of simulated annealing.” While the
literature now offers sophisticated estimation procedures with well documented asymptotic
properties (see e.g. Chernozhukov et al. (2007) and Bontemps et al. (2012)), here we use
the same simple geometric approach in estimation as for computing the true C*, using the
fact that in the uniform case OLS estimation of the regression of y on x and vy gives us
access to a consistent estimator of 7 (the details are given in the beginning of Section 5)E|
We proceed by replacing bounds with min and max over the sample. Manski and Pepper
(2000) and Chernozhukov et al. (2013) warn against this in general, but our Monte Carlo
study shows that these concerns do not apply in our particular framework.

Using the exact functional form for n(z, vy, v1) = E[y|x, vo, v1] as a benchmark illustrates
the gain of having this information over having to resort to nonparametric estimation. The
latter still yields very good results, at least in the larger samples, and this is important as the
exact functional form of 7 is in general unknown. In the benchmark, some characteristics
of C* are estimated very fast in terms of sample size. This is the case for the number
of vertices and the slopes of the sides, that is, the shapes of the projected sets. In most
cases, the geometric approach clearly outperforms MT in estimating the bounds. We also
produce results for the binary response model (BRM) based on the latent linear model,
and (numerically) document the importance of considering the polyhedron rather than the
rectangular parallelepiped corresponding to the Cartesian product of the intervals for each
coefficient [

We summarize the general characterization of the identified set in MT in Section [2

Section |3 shows that parameters are point identified at infinity in the normal case, Section

6Note that the ability to consistently estimate the parameter v used in the DGP does not imply point
identification of the latter.
"R code for all computations discussed in the paper is available from the authors upon request.



M] discusses the characterization of the true identified set in the uniform case, and Section

presents the Monte Carlo evidence.

2 Definition of the Sharp Identified Set in MT

In their Proposition 4, calling C' the set of possible parameter constellations, MT show
that under conditions that are satisfied hereﬁ the set C* of parameter values observationally
equivalent to the true parameter 7 is (in a slightly altered form) C* = {c € C': P [V (¢)] = 1},
with V (¢) = {(z,vo,v1) : f (z,v0,¢) <7 (z,00,01) < f (7,01,¢)} F| Here we have f (z,v,¢) =
C1V + Ccox + c3.

A simplified presentation of the MMD approach is based on their Lemma 2: C* =

arg mingec Q (¢,n), with Q (¢,n) = Q1 (¢,n) + Qo (¢, 1),
1 (Ca 77) = E{w (f (.1‘,1)1,0) » 1 (xvvlbvl)) 1 [f (33"”1?0) <n <x>vo>vl)]}>

QO (Ca 77) = E{w (f (.Z‘,UU,C) )Tl (xvvﬂavl)) 1 [f ($7U07C) > (xav(hvl)]}:

where the function w : R?> — R is any function with properties w(s,s) = 0 and w(s,t) > 0
if t # s. The simplification adopted here consists in specifying w such that w(s,t) = 1 for all
(s,t). This does not satisfy the first property but this is innocuous for exact identification
because for all ¢, P[f (z,v1,¢) = n(z,v9,v1)] = P[f (x,v0,¢) =1 (x,v9,v1)] = 0, due to the
continuity of variable z and functions f and 7.

Clearly, P [V (c)] =1 amounts to Q1 (¢,n) = Qo (¢, n) = 0, and thus

C* ={ceC:[Qi(c,n) =0 A[Qo(c,n) = 0]} (4)

8These conditions (MT, p. 520) are P(vo <v<w) =1, E(ylr,v) exists, is weakly increasing in v, and
coincides with E (y|z, v, vp,v1). The set V (¢) is the complement of the set V (¢) defined in their equation
(16).

9Note that, as € is independent of (x,v), its distribution plays no role in the definition of C*, as the
probability involved in that definition only depends on the joint distribution of (x, v, vg,v1) .




The analogy principle then suggests estimating C* by the set

Oy ={ceC:[Qn(c,1n) = 0] A [Qon (c,7n) = 0]} (5)

where 7y denotes a consistent estimator of function n, and

Qv (¢,0n) = Ex1[f (z,v1,¢) < Ny (2,09, v1)] (6)

with Qon (¢, ) defined accordingly, and Ey the sample mean. Since the sample mean of

the indicators will only be 0 if each one is, this is equivalent to

CN:{CGC:f<InJUOTL7C> SﬁN(anUOvaln) Sf(xTL?U:lTL?C)J n:177N}

A weakened version which is needed to avoid empty solutions is, given a sequence of positive

numbers ay = o(N),

ccE C : f (:Una Von, C) S ﬁN ($na UOnyvln) + an,
Cy = - (7)

NN (Zn, Von, V1n) — an < f(Zn, V1n,¢), n=1,...,N

MT show that if function f has the monotone-index property, which is the case in all
instances we consider here, C* will be convex (corollary to Proposition 4).

Two remarks seem in order before closing this section. First, we would like to stress that
our theoretical characterization of the true identified set is identical to the characterization
in MT, and that the identified set only depends on « and on the joint distribution of (z,v)
— given how vy and v; are defined here. Second, while the lack of smoothness in our version
of the MMD criterion would make it difficult to derive the asymptotic distribution of an

estimator based on that criterion, this is not our focus here, as it was not in MT either.



3 Point Identification at Infinity in the Normal Case

The inequalities (3) which characterize V (c) can be written
C10g “+ o + C3 S ’}/117 (Uo) + Yol + Y3 S C10g “+ o + C3 —+ Cy, (8)

for all values (vg,x) in the support of their distributions, or equivalently, by subtracting

Y1Vo + Yo + 73 everywhere and denoting d; = ¢; — v,
d1U0 + dgﬂ? + d3 < Y1 [Z_J (UO) — Uo] < d1U0 + dg&l + dg +Cy. (9)

Proposition 1. Point identification of the coefficient of . Whatever the values of
vg, di and d3 are, as the support of z is R, if dy # 0, there will be a set of values of x large
enough in absolute value to violate one of the inequalities and this set will have positive

probability, contradicting P [V (c)} = 1. Thus ~, is point identiﬁed

Proposition 2. Point identification of the coefficient of v. As vy is the largest
element of Z below v, the support of vy is Z and by the same argument as in Proposition 1
~1 is identified. Note that this extends also to the case where f has the single index property
of Proposition 4 of MT (p. 544): in point (b) of their proof of the corollary to Proposition
4, we have, with our notation P [V (¢)] > P [—dyx < d3 + dyvg — 1], or, since dy = 0 if ¢ is

in C*, PV (¢)] > P|—dyvy < d3 — ], and this probability is strictly positive if d; # 0.

Proposition 3. Point identification of the coefficient of the constant. Given that
v and 7, are point identified, the inequalities become d3 < 1 [0 (vg) — vo] < d3 + ¥, or
equivalently:

v [0 (vg) —vg — 1] < dg < 41 [0 (vg) — vg] - (10)

10This result holds more generally, as shown in point (b) of the Corollary to Proposition 4 in MT.




Since inequality holds for all values of vy, it implies

1 sup [0 (vg) —vg — 1] < ds <y inf [0 (vg) — vo] -
vo€EZ VoEZL

Restricting attention to unimodal distributions symmetric around 0, Figure [1 plots standard
normal, Cauchy and logistic conditional densities of v given v in [vg, vy + 1]. It shows that,
while in the Cauchy case the density becomes flat as vy goes to —oo, in the normal case the
distribution places more weight on values near vy + 1 for vy < 0 and by symmetry near vgy

for vy > 0, so that{]]

Sue% [0 (vg) —wo — 1] = vioréfz [0 (vg) — vo] = 0. (11)

Thus in the normal case, and for any other distribution satisfying (but we have not
attempted to characterize the set of these distributions), ds = 0, so that ~ is point identified,

even though v is interval-measured.

Figure 1: Standard normal, scaled logistic and Cauchy conditional densities on intervals of length 1

UFormal proof: let ty = vo/v/2. Then @ (vy) = V2 [(ﬁ(to) — ¢(to + 1/\/5)] / [fb(to +1/V2) — @(to)}.
When vy — 400 the leading term in the numerator is tp¢(tp), while in the denominator it is ¢(to)/\/§,
so that the limit of @ (vg) is then tgv/2 = vy.



4 Set Identification in the Uniform Case

Now the middle term in @ is 71/2. Thus for d given an upper bound for dyvy + dox + d3
over the values of (v, z) is obtained for the extreme values, depending on the signs of d; and
ds. Then the vertices of the C* polyhedron are found as intersections of three of the eight
planes in R? corresponding to the two inequalities in @ written for each of the four pairs

combining min and max of x and v. For the uniform DGP in MT, the vertices of C* are

1 Co Cs

1.000 —1.000 0.500
1.000 —0.800 0.500
1.000 —1.000 1.500
1.000 —1.200 1.500
0.800 —1.000 1.100
1.333 —1.000 0.833

and this completely characterizes the set C*. Figures [2a] and [2b] show the true polyhedron

for this case, and its projections on the planes (¢, ¢2), (c1, ¢3), and (cz, ¢3).

MT propose another approach, MMM, to estimate a superset but do not provide MC re-
sults for illustration. MMM is based on the fact that the inequality f (x, vo, c) < 1 (z,vo,v1) =
Ely|z,vg,v1] is equivalent with E[y — f (z,vo, ¢) |z, v9,v1] > 0, which in turns implies that
for any vector of H positive functions w (x, v, v1) (the arguments of w are omitted in the
sequel), Flw{y — f (z,vo,¢)}] > 0. Every point in C* thus satisfies both this inequality and
Elw{y — f (z,v1,¢)}] <0, and by choosing a specific vector function w, MT define a set C:*

which contains C*:

Co ={ceC: Elwly = f(z,01,0)}] <0< Elw{y - f(x,00,0)}]}
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(a) Complete polyhedron (b) Projections of the true polyhedron

Figure 2: True polyhedron

With f(z,v,¢) = c;v + cox + ¢z, CF is thus defined by a system of 2H linear inequalities

involving moments

Ewy] < ¢ Ewv] + o [wz] + 3 E [w], (12)

Ewy] > ¢1 E [wvg] + o F [wz] + c3E [w] .

Each additional row in w gives two more inequalities, which leads to a reduction of the set.
In this way one can construct a decreasing sequence of sets C;*, all admitting C* as a subset.

Again, the analogy principle leads to characterizing Cy,ny as the set of points ¢ satisfying

EN [wy] — €N S ClEN [U}Ul] + CQEN [wx] —+ C3EN [w] s

En [wy] + eny > 1 En [wvg] + o En [wz] + c3EN [w]

given a sequence of positive numbers ey = o (N) . An advantage of MMM over MMD is that

it does not require estimating 7. The obvious drawback is that the set it estimates is larger



than C* and that its definition depends on the choice of w[?|
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Figure 3: Projections of C* with 2 (resp. 500) powers of z/E(x)

We can compute the exact inequalities corresponding to MMM in the uniform case and
the details are given in [Appendix Al We approximate the limit of a sequence of C sets,
where the list of “instruments” w (z, vy, v1) contains a complete set of indicators for all pos-
sible values of vy and powers of x/FE (x). Figure |3| reports projections of the set for 2 and
500 powers. We were surprised to find that such a large number of moments proved informa-
tive, but Menzel (2014) documents an important difference between moment equalities and
moment inequalities: if an infinity of moment inequalities apply, no finite subset of these
inequalities will define the true identified set. Comparing C;;* with C* we obtain the same
bounds on the coefficient of v, slightly larger bounds on the coefficient of z, and much larger

bounds on the intercept, with a width about 3 instead of 1. The volume of C* (.1119)

12An interesting open question is then whether and under which conditions there exists an increasing
sequence of functions w such that the limit of C}* coincides with C* (a place to start would be the case
where + is point identified, that is C* = {v}). Andrews and Barwick (2012), Andrews and Soares (2010), and
Andrews and Shi (2013) consider inference in settings with moment inequalities using generalized moment
selection procedures. However, as already stated, we do not consider inference here.

10



is more than three times the volume of C* (.0356), as reported in Tables and in

5 Monte Carlo Evidence for the Uniform Case

We estimate the identified set C* with simulated data, using sample analogues and following
the geometric approach proposed in Section [4] to characterize the true identified set. We
investigate the impact of estimating n(x, vg, v1) nonparametrically, as proposed in MT, by
comparing the respective results to benchmark results using the exact functional form for
n(x,vg,v1). In the sequel, we will refer to the former as ‘nonparametric 7’ and to the latter
as ‘exact n’.

As mentioned in the introduction, we use the same simple geometric approach in estima-
tion as for computing the true C*, using the fact that OLS estimation of the regression of
y on x and v gives us access to a consistent estimator of 4 and replacing bounds with min

and max over the sample. Indeed

Y1V + Y2 + Y3 + € = 110 + 2T + Y3+ €+ 71 (v — o),

and since E (v — vglx,v9) = 1/2, the OLS estimator converges to (71,72, 73 + 71/2) and this
allows to retrieve a consistent estimator of ~.

For the exact n case, the complete set of inequalities corresponding to @D with ~ replaced
by its estimate and written for all observations in the sample is exactly equivalent, by the
argument of the previous section, to the set of eight inequalities corresponding to the maxima
and minima of (x,v).

For the nonparametric 7, this is no longer the case, and by restricting attention to those
eight inequalities as a short-cut approximation, we estimate a superset of the set we would
obtain using all inequalities. As the MC study shows, this short-cut appears to work quite

well. Estimation proceeds in two steps (not counting the OLS step). In the first step,

11



we estimate 1 nonparametrically. We do this without using any information on the joint
distribution of (x,vg) not even independence or bounded support. We use product kernels
involving a normal kernel for the continuous variable. For practical reasons we treat vy as an
ordered factor using a Wang and Van Ryzin kernel (see Hayfield and Racine, 2008) [ In the
second step, the estimated set is found by obtaining the intersections of all triples of planes
in R3 defined by the two inequalities in @D written for each of the four pairs combining
min and max of x and v and taking the convex hull of the intersections which satisfy all
inequalities. In principle this last operation should not be needed, since the set C* is convex,
but it is useful in eliminating spurious vertices resulting from rounding errors.E We report
results for sample sizes N = 100, N = 200, N = 800, and N = 20,000, as well as the true
identified set. In all cases, we use 100 Monte Carlo replications. It might be desirable to
consider a larger number of replications. However, here we follow MT and find that our
main results show sufficient stability to generate meaningful insights.

In the MC study illustrating MMM, we use the 2H inequalities from Equation to
estimate sequences of the sets C*. We replace the moments by their sample analogues and
proceed by obtaining the intersections of all triples of planes defined by the inequalities and
taking the convex hull of the intersections which satisfy all inequalities. In each sequence,
we gradually increase the number of powers of scaled |z|, denoted by k, in the function w.
The numbers of powers we report are k = 2, 5,20, 30. We further include a set of indicators

for all possible values of vy.

13n all cases we use least-squares cross validation (LSCV). In several experiments, computing the band-
width for every replication is too burdensome computationally. To reduce this burden, we perform cross
validation only for the first replication in a small sample design. For subsequent replications in the same
experiment, we adjust the bandwidths for the continuous variable x by taking differences in the sample stan-
dard deviations into account. The bandwidth for vy found for the first replication is used without adjustment
for the other replications. In experiments with large N, we import the bandwidths from experiments with
smaller N and rescale them by (NO/N)l/5 for x and (NO/N)2/5 for vg treated as an ordered factor, where Ny
is the small sample size used to compute the initial bandwidth and N the large sample size. The estimates
with nonparametric 7 could clearly be improved by performing LSCV for each Monte Carlo replication. See
Hayfield and Racine (2008) and the online documentation for the R function npregbw in the package np.

14Some tolerances have to be set here (see Equation ), and we chose 1078 for the inequalities, and the
default precision for the R function rankMatriz, used to check the existence of the intersection of three given
planes.

12



We then investigate the performance of MMM as compared to the MMD method. It is
a priori unclear which should perform better in small samples. MT note that we need to
weigh the advantage of MMM over MMD, where MMM relies only on a ‘continuous function
of unconditional sample moments’ but does not use ‘the full identification power of [MT’s]
Proposition 4.” The latter results in the true C* being a subset of any C}*.

We construct ‘confidence intervals’ around the means of the estimated bounds such that
they include the estimated bounds of 90% of the MC replications["”| Figures [4] to [6] show
selected projections of the true polyhedral set, the overall Minkowski averages, and the
Minkowski averages of quantiles based on Hausdorff distances from the true polyhedral setm
The fat grey line delineates the true set, the thin grey lines show the estimates, and the solid
black line the Minkowski average of all estimated sets. The dotted set is the Minkowski
average of estimated sets with the 25% smallest Hausdorff distances to the true set. The
dashed and dotted set is the Minkowski average of estimated sets with the 25% largest

Hausdorff distances to the true set.

5.1 Findings: Modified Minimum Distance

Table |1 reports MT’s MMD results including their confidence regionsm and our MMD
results for both exact and nonparametric . We obtain several main findings. Using the
exact 1 as a benchmark illustrates the gain of having this information over having to use its
nonparametric estimate. The latter still yields very good results, which is important as the
exact functional form of 7 is a priori unknown to the econometrician. Some characteristics
of C* are estimated very fast (in terms of sample size). This is the case for the number of

vertices and the slopes of the sides, that is, the shapes of the projected sets. In most cases,

15The quotation marks emphasize the fact that we merely summarize the results of the Monte Carlo
experiments. We leave the issue of inference aside in this paper.

16We adapted Matlab code in Beresteanu and Molinari (2008) to R to compute Hausdorff distances and
Minkowski averages. For reasons of presentation we have delegated the full set of Figures to an Online
Appendix available at http://hannesullrich.com/mcappendix_note.pdf

"MT define as confidence region the shortest interval covering 95% of the estimated intervals. Note that
this is consistent with our choice of 90% because we interpret their intervals as one-sided.

13
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the geometric approach outperforms MT in estimating the bounds. Finally, we find that in
many cases a sample size of 20,000 is not sufficient to approximate the true set. We also
produce results for the binary response model based on the latent linear model.

Let us consider these results in more detail. First, the results confirm the expected gain in
precision using the exact 1 over its nonparametric estimate. Even with the smallest sample
considered, N = 100, the mean estimated bounds using the exact n are very close to the true
bounds. The absence of pattern in the means for different sample sizes is compatible with
absence of bias in the estimation of these bounds. The main benefit from increased sample
sizes is tighter confidence intervals over the estimated bounds due to lower sampling impre-
cision. With nonparametric 1, sample sizes of 800 or even 20,000 are needed to approach the
true bounds comparatively closely. Now a clear pattern appears, with a decreasing overesti-
mation of the lower bound and a decreasing underestimation of the upper bound, translating
into a decreasing underestimation of the width of the identified interval. The bias in the
nonparametric estimation of 7 translates into a bias on the estimation of the bounds. As
expected, when the intervals cover the true values, the lower bound increases with N, and

the upper bound decreases. The few exceptions reported in the tables are most probably

related to the smallish number of Monte Carlo replications. Table [B.1]in [Appendix B|shows

that the volume of the estimated polyhedron approaches the true value of .0356 very fast
for exact n. With N = 100, the average estimated volume is .0362. For nonparametric 7, it
comes comparatively close with a volume of .0334, using N = 20,000, but there is substantial
underestimation for the smaller sample sizes.

Second, Table [1] shows fast convergence of the MMD estimate to the bounds of the
true set. The only instance in which a confidence interval fails to cover the true bound is
with a sample size of 100 and nonparametric 7, for the upper bound of the v coefficient.
In comparison with the criterion function approach in MT, where the latter requires 20,000
observations for several estimated bounds to approach the true bounds, our estimates mostly

achieve this with 800 observations. The lower bound of the coefficient of v and the bounds
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of the intercept even do with as few as 100 observations. Figure 4] and to a lesser extent
Figure [5| with nonparametric 1, demonstrate how well the MMD estimate picks up the shape
of the true set even with very small sample sizes.

Third, compared to MT, the geometric approach is more successful in recovering the
bounds of the true set in most cases. This is to some extent expected because we explicitly
obtain the vertices of the polyhedron and thus directly find the extreme points of the identi-
fied set. The bounds reported by MT for the uniform distribution are too narrow and even
their confidence intervals fail to cover the true bounds. We observe the largest differences
between MT and the geometric approach in the estimates for the intercept, where MT’s
mean estimates and confidence intervals fail to cover the true bounds. Hence, MT appear
to be successful in finding interior points of C* but not its boundary.

We further make the observation that reporting one-dimensional intervals may omit im-
portant information. This is increasingly the case with higher dimensions of partially iden-
tified parameters. Table shows that the estimated and true polyhedra cover only about
17% of the volume of the Cartesian product of the corresponding intervals in our experiments.
Considering the true shape of the identified set instead of the intervals hence significantly
reduces the set of relevant parameter constellations.

In the last group of columns of Table [T}, we present results for the binary response model
(BRM)

y=1[mv+yr+y+e>0],

based on the linear latent model studied previously, with the same stochastic assumptions.
We now have E (y|x,v) = @ (710 + 722 + 73), where ® denotes the cdf of the standard normal
distribution. Since & is strictly increasing, MT note that the inequalities ® (x,v,c) <
n(z,vo,v1) = Ely|lz,ve,v1] < P (x,v1,¢) are equivalent with the (linear in ¢) inequalities
c1v9 + o + 3 < D7 (z,v9,v1)] < c1vp + T + 3.

Here we do not consider the exact functional form of n (x,vg,v1) for the BRM since we
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have already documented the difference between exact and nonparametric 7 in the LM.E

As do MT, overall we find wider confidence regions for the bounds in the BRM than in the
LM. Also, the clear patterns that we found for the LM are now more blurred: the estimates for
the BRM are clearly noisier. As in the LM, several of M'T’s estimated bounds and confidence
intervals do not include the true bounds. Our estimated intervals always include the true
bounds, except for the x coefficient with smaller sample sizes and for N = 800 for the lower
bound of the intercept (an irregularity that may well be due to the low number of Monte Carlo
replications). Note also that here the decreasing lower bounds are necessary to eventually
cover the true value. While not as apparent as in the LM, our results seem to converge
faster to the true bounds in the BRM than MT’s. Comparing the results for N = 800, the
mean estimated bounds for the v coefficient are much closer using the geometric approach
than MT. The same comparisons for the x coefficient and the intercept yield ambiguous
results. Our estimates with N = 20,000 come close to the true bounds, including all of
them. However, comparison with MT is difficult as they report only one replication for that
sample size.

In discussing the results, we share the apparent presumption of MT that the exact iden-
tified set for the BRM model coincides with its pendant for the LM. This seems plausible,
as apart from the non-identification of the scale of the latent variable, if v were observed, ~
would be point identified in both models (recall the variance of € is 1). This is at odds with
the results in Magnac and Maurin (2008), who find exact identification if and only if the
distribution of v given x, vy, and v; is uniform. However, their identification results hinge
on the hypothesis of complete variation (Assumption NP.2, p. 838), which is not satisfied in
the DGPs used here.

18Tn estimating 1 nonparametrically, we experimented with simple nonparametric regression, ignoring the
dichotomous character of y (R function npreg in package np), nonparametric conditional density estimation
(R function npedens), and the Ichimura and Klein-Spady versions of the semiparametric index model (R
function npindez), using the same approach as for the LM as regards kernel and bandwidth choices. We
obtained plausible results with npreg only. The local logit approach in Frélich (2006) might yield better
results.
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5.2 Findings: Modified Method of Moments

Table [2| reports MMM results for alternative values of k, the highest power of scaled = used
in w. We consider £ = 2,5,20,30. As a shortcut we take as reference for k& = 2 the values
of the true bounds for that value of k, whereas for the other values of k& considered, the
reference bounds are those for £k = 500. This is of no relevance for the coefficient of v, as
the bounds for this are invariant to the choice of k. The fact that for £ = 30 all bounds are
covered for all sample sizes supports our choice of not going beyond that value of £[] In
general, we find that the convergence of the estimated bounds to the true bounds is improved
as the sample size increases. As with MMD, we find that a sample size of N = 20,000 is not
always enough to obtain the true bounds. Finally, we find that MMD outperforms MMM,
even considering the efficiency cost of estimating 1 nonparametrically.

More specifically, Table [2| shows the estimation of the bounds. For k = 2, the estimated
bounds for the coefficient on v converge to the true bounds for £ = 2 as the sample size
increases. The only case where the true value is not covered is for the upper bound for
the intercept and N = 100. The confidence interval for each estimated bound shows they
are precisely estimated with large sample sizes. The setup with £ = 30 and N = 20,000
yields tight confidence intervals that contain the true bounds for £ = 500. This is reassuring
given the considerable computational cost of estimation with large k. Overall, the results
for v suggest absence of bias for the bounds for that coefficient. For the other coefficients
we find the same tendency to a decreasing overestimation of the identified interval width as
with the MMD estimates. Observing Figure @, which shows projections on the (¢, ¢2) plane
for k = 30, we see that the shape of the true C;* set is not estimated well. Using MMD,
the shape of the true set was recovered even with the smallest sample sizes considered, see
Figures [4 and

Table [B.2] in [Appendix B| shows that the volume of the estimated superset approaches

9Limited experiments, not reported here, confirmed that estimated bounds do not vary much as k is
increased to 40 or 50.
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and, for large N and large k, is nearly identical to, the true value computed with k& = 500:
1119. With N = 100 and k = 2, the average estimated volume is .1348. As in the discussion
of the MMD estimation results, we make the observation in Table that the volumes of
the identified and estimated supersets are only fractions of the product of the corresponding
one-dimensional interval lengths. This fraction is below 10% for the MMM estimates which
is even smaller than for the MMD estimates. We hence reiterate that considering the true
shape of the identified set instead of the intervals significantly reduces the set of relevant

parameter constellations.
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Table 2: Monte Carlo Analysis — MMM — One-dimensional Bounds

Coefficient Lower/Upper bound k=2 k=5 k=20 k=30
True: .800, .800
N = 100 .806 [.686, .910] 811 [.688, .910] 817 [.694, .911] .820 [.694, .912]
N = 200 .795 [.738, .868] .798 [.744, .870] .801 [.745, .870] .801 [.745, .870]
N = 800 794 [.752, .831] 797 [.754, .835] .798 [.755, .836] .799 [.757, .836]
v N = 20000 .798 [.791, .806] .799 [.792, .807] .799 [.792, .807] .799 [.792, .807]
True: 1.333, 1.333
N = 100 1.366 [1.149, 1.563] 1.351 [1.146, 1.552] 1.341 [1.146, 1.531] 1.338  [1.146, 1.531]
N = 200 1.359  [1.213,1.492] 1.349 [1.208, 1.481] 1.344 [1.203,1.473] 1.343 [1.202, 1.473]
N = 800 1.363  [1.300, 1.445] 1.355  [1.297, 1.424] 1.351  [1.296, 1.414] 1.351 [1.294, 1.414]
N = 20000 1.337  [1.324,1.351] 1.336  [1.323,1.350] 1.335  [1.323,1.349] 1.335 [1.323, 1.349]
True: -1.800, -1.402
N = 100 -1.620 [-1.855,-1.409] -1.449 [-1.637,-1.287] -1.346 [-1.599,-1.087] -1.323 [-1.574, -1.008]
N = 200 -1.701 [-1.888,-1.531] -1.506 [-1.632,-1.375] -1.402 [-1.557,-1.219] -1.385 [-1.555, -1.190]
N = 800 -1.736 [-1.831, -1.633] -1.521 [-1.608, -1.439] -1.412 [-1.495,-1.319] -1.398 [-1.494, -1.292)
. N = 20000 -1.787 [-1.804, -1.767] -1.552 [-1.565, -1.536] -1.434 [-1.450, -1.419] -1.421 [-1.439, -1.402)
True: -.200, -.598
N =100 -.335 [-.582,.009] -.518 [-.714, -.274]  -.626 [-.864, -.337]  -.647  [-.918, -.337]
N = 200 -.314 [-.440, -.130]  -.513 [-.633,-.377] -.619 [-.796, -.462] -.635  [-.818, -.462]
N = 800 -.249 [-.335,-.160]  -.468  [-.537, -.403] -.580 [-.664, -.491]  -594  [-.696, -.495]
N = 20000 -.213 [-.236, -.193]  -.447  [-.466, -.432] -566  [-.583, -.549] -.579  [-.600, -.561]
True: -1.500, -.504
N = 100 -.963  [-2.110, -.124] -.522 [-1.476, .106] -.260 [-1.218, .455] -.208  [-1.210, .558]
N = 200 -1.074  [-1.634, -.574] -.589 [-.986, -.149] -.332 [-.820, .228] -.291 [-.807, -.299]
N = 800 -1.312 [-1.614, -1.035]  -.774 [-1.041, -.587] -.497 [-.775,-.231]  -.463 [-.765, -.202]
N = 20000 -1.450 [-1.516,-1.377] -.866  [-.923, -.807] -.572 [-.629, -.511] -539  [-.597, -.472)
Intercept
True: 3.500, 2.504
N =100 2,775 [2.147, 3.438] 2.378  [1.791,2.950] 2.131  [1.399, 2.802] 2.075 [1.291, 2.798]
N = 200 3.077  [2.534, 3.639] 2.604 [2.140, 3.012] 2.350 [1.871, 2.832] 2.306 [1.836, 2.822]
N = 800 3.238  [2.913, 3.564] 2.714  [2.487,2.979] 2.447  [2.175,2.712] 2.413 [2.137, 2.712]
N = 20000 3.449  [3.382,3.515] 2.864 [2.815, 2.907] 2.570 [2.521, 2.624] 2.538 [2.487, 2.594]

Notes: We report two sets of ‘confidence intervals’, one for the lower bound and one for the upper bound of the estimated interval.
The first set of true bounds corresponds to the true set with k = 2 and the second to k = 500. Italicized entries indicate the failure
to cover the true value of the corresponding bound. For k = 2 the reference is the true bound for k = 2, for other values of k
we take as reference the true bounds for £ = 500. The few exceptions with a lower bound decreasing in N or an upper bound
increasing are shown in bold.
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Appendix A True MMM inequalities

We compute the exact form of the following inequalities in the uniform case
A0 (C) - E{U} <I7U07U1) [y - f (.T,UO,C)}} >0

Ay (c) = E{w (2, v0,v1) [y — f (,v1,0)]} <0

where
f(z,v,¢) = c1v + cox + 3,
y=f(z,v,7) +¢
with 74 = —y2 = 73 = 1, and ¢ independent of all other variables and with zero mean, so

that its distribution does not matter for the computation here. z ~ U [0, 5] and v ~ U [-2, 3]
so that vy takes the integer values {—2, —1,0, 1,2} with equal probabilities 1/5.

The “instruments” w are defined as w' = (w), w’,), with w, a complete set of indicators
for the values of vy, and w, a vector of the first K powers of z: w}, = (z,2?,...,25)

Dropping the arguments of w for simplicity, we can rewrite A; (¢),j = 0,1, as

AJ' (C> = E{U} [f (x,’l],”)/) - f (‘%UJWC)]}

=1E (wv) — 1 E(wvj) + (72 — ¢2) E (wz) + (73 — ¢3) E (w).

Note that, because = and v are independent, E (w,x) = E (w,) E (z), E (w,v) = E (w,) E (v)
and E (wyv;) = E (w,) E (v;). Thus all we still need are the eight quantities £ (v), E (z),

E (vj), E(wy,), E(w,), E(w,w), E(w,v;) and E (w,x) .
1. E(v)=5/2—-2=1/2.

2. E(z) =5/2.

20Normalizations can be useful to avoid numerical problems: for instance use powers of x/FE(x) or of
x/o(z), with o?(x) = V().
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. E(vg) = 0, since vy takes the integer values {—2,—1,0, 1,2} with equal probabilities
1/5, and E (vy) = 1.

. E (w,) : this is a vector with 5 components E (1[vyg = n]) = P[vy =n] = 1/5.
. E(w,) : this is a vector with K components E (z¥) = (5%) /(k+1), k=1,..., K.

. E (w,v) : this is a vector with 5 components

E(vljvg=n])=E(E(lvo=n)1llvg=n]), n=-2,...,2,

— B (v + 1/2)1 [vp = n]) = (n+1/2) /5,

since F (vjvg =n) =n+ 1/2.

. E (wyp) : this is a vector with 5 components

E(volfvg =n])=n/5, n=-2,...,2,

and E (w,v1) = E (w, (vo + 1)) has components (n + 1) /5.

. E (w,x) : this is a vector with K components E (¢"*1) = (581) /(k+2), k=1,..., K.

Finally, a choice of w, that greatly simplifies computations in the normal case, but that

we also may want to try out here to solve numerical problems, is to take a K-vector of

indicators with w, the indicator of the k-th quantile out of K. Then E (wy;) = 1/K for all

k, and

E (wppx) = E Wy, B (x]rp—1 <z < xp)]
= E [war, (211 + 71) /2]

where ;1 = 0 and xx = 5.
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Computational details The two sides of all inequalities are scaled in order to avoid nu-
merical problems. The solution is found by obtaining the intersections of all triples of planes
in R? defined by the 2H inequalities in (12)) and taking the convex hull of the intersections
which satisfy all inequalities. In principle this last operation should not be needed, since the
set C¥ is convex, but it is useful in eliminating many spurious vertices resulting from round-
ing errors. Again some tolerances have to be set here, and we chose 1078 for the inequalities,

and the default precision for rankMatriz.

26



Appendix B Monte-Carlo Study: Volumes

Table B.1: Monte Carlo Analysis — MMD — Volumes

true n np n
Volume
True: .0356
N = 100 0362 [.0232, .0510] .0131 [.0004, .0364]
N = 200 0361 [.0287,.0457] .0192 [.0011, .0383]
N = 800 0360 [.0319, .0412] .0273 [.0124, .0363]
N = 20000 0355 [.0348, .0365] .0334 [.0268, .0392]
Volume / Volume “Cube”
True: .167
N = 100 164 [.158, .167] 170 [.099, .208]
N = 200 165 [161,.167] 172 [.100, .211]
N = 800 .166 [.165, .167] .186 [.168, .211]
N = 20000 167 [.167, .167] 185 [.170, .203]
Table B.2: Monte Carlo Analysis — MMM — Volumes
Volume
True, k = 2: .2228, k = 500: .1119
N =100, k = 2 1348 [.0465, .2435]
N =200,k =5 1236 [.0587, .1717]
N =800, k = 20 1171 [.0980, .1345]
N = 20000, k = 30 1183 [.1151, .1219]
Volume / Volume “Cube”
True, k = 2: .052, k = 500: .087
N =100,k =2 .048 [.028, .066]
N =200,k =5 .069 [.052, .084]
N = 800, k = 20 .087 [.077, .098]
N = 20000, k = 30 .085 [.083, .088]
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