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Abstract Within a microscopic approach we show that in the case of an ideal quantum gas
enclosed in a slit the Casimir force can be simply expressed in terms of the bulk one-particle
density matrix. The corresponding formula, which holds both for bosons and fermions, allows
to relate the range of the Casimir force to the bulk correlation length. The low-temperature
behavior of the Casimir forces is derived.

1 Introduction

The Casimir forces acting on planar walls immersed in a perfect quantum gas (the slit geome-
try) have been the object of numerous studies [1–17]. However, a microscopic explanation of
the remarkable similarity in the behavior of the range of the Casimir forces and the bulk cor-
relation length remained on open problem. Our aim here is to clarify this physically important
and intriguing point.

We will show that although the Casimir forces depend on the boundary conditions imposed
by the confining walls, they can be simply expressed in terms of the one-particle density matrix
[1,18] calculated in the thermodynamic limit

< r1|ρ̂1|r2 >≡ ρ1(r12) (1)

which itself does not depend on the boundary conditions. Here r12 = |r1 − r2| denotes the
distance between two space points r1 and r2. The number density ρ of a homogeneous gas
is given by ρ = ρ1(0).

The two-particle number density ρ2(r12) of pairs of particles separated by distance r12 is
given by diagonal elements of the two-particle reduced density matrix [1,6,18]

< r1, r2|ρ̂2|r1, r2 >≡ ρ2(r12) (2)
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Relation Between Casimir Forces and Bulk Correlations 1137

The deviation of ρ2 from ρ2 defines the pair correlation function

χ2(r) = ρ2(r) − ρ2. (3)

In the case of a perfect Bose gas the correlation function χ B
2 (r) can be expressed exclu-

sively in terms of ρB
1 (r) [1]

χ B
2 (r) =

{ [
ρB

1 (r)
]2

if ρ < ρc[
ρB

1 (r)
]2 − (ρ − ρc)

2 if ρ ≥ ρc,
(4)

where ρc denotes the critical density of the Bose-Einstein condensation. Note that the form
of the function ρB

1 (r) is different for ρ < ρc and for ρ > ρc.
Even a simpler relation holds for a perfect Fermi gas [18]

χ F
2 (r) = −[ρF

1 (r)]2. (5)

The explicit expressions for ρB
1 (r) and ρF

1 (r) will be discussed later on.
The derivation of an exact analytic relation between the one-particle function ρ1(r)

describing an infinite system and the Casimir forces is presented in Sect. 2. The derived
formula forms the basis of the subsequent analysis. Most importantly, it permits to establish
an explicit relation between the pair correlation function χ(r) and the Casimir forces. Indeed,
the fact that the Casimir forces can be expressed in terms of the one-particle density matrix
implies their direct relation to the correlation function through Eqs. (4) and (5) (when writing
these equations we do not display their spin dependence). Consequently, the analogy in the
behavior of the range of the forces and the bulk correlation length can be clearly explained
within a microscopic approach (Sect. 3). Our analysis permits to recover in a concise way
various specific results derived elsewhere by different techniques.

2 Relation Between Casimir Forces and the One-Particle Density Matrix

We consider a perfect gas composed of identical particles of mass m contained in L × L × D
rectangular box of volume V = L2 D. We choose the coordinate frame whose axes indexed
by x, y, z are perpendicular to the walls of the box. In particular, the z axis is oriented
perpendicularly to the square walls.

In the case of bosons the grand canonical free energy �B(T, L , D, μ) at temperature T
and chemical potential μ is given by the series

�B(T, L , D, μ) = kB T
∑

k

ln

{
1 − z exp

(
− λ2

4π
k2

)}
(6)

whereas for fermions

�F (T, L , D, μ) = −kB T
∑

k

ln

{
1 + z exp

(
− λ2

4π
k2

)}
. (7)

Here λ = h/
√

2πmkB T denotes the de Broglie thermal wavelength, z = exp(μ/kB T ), and
kB is the Boltzmann constant. The summation in the above equations spreads over the wave
vectors k allowed by the boundary conditions. As already mentioned in the Introduction, to
simplify the notation we do not take into account the spin of the particles.

We adopt periodic boundary conditions in x and y directions so that the wave vector
components kx and ky take the values 2πn/L , where n = 0,±1,±2, .... Dividing then
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1138 M. Napiórkowski, J. Piasecki

Eq. (6) by L2, and taking the limit L → ∞ of infinitely extended square walls we get the
formula for the total grand canonical free-energy density per unit wall area

ωB(T, D, μ) = lim
L→∞

�B(T, L , D, μ)

L2

= kB T
∑
kz

∫∫
dkx dky

(2π)2 ln

{
1 − z exp

[
− λ2

4π
(k2

x + k2
y + k2

z )

]}
. (8)

The corresponding formula for fermions reads

ωF (T, D, μ) == −kB T
∑
kz

∫∫
dkx dky

(2π)2 ln

{
1 + z exp

[
− λ2

4π
(k2

x + k2
y + k2

z )

]}
. (9)

The Dirichlet boundary conditions are appropriate for hard walls. However, for complet-
ness, we will consider three types of boundary conditions in the z− direction:

1. periodic, kz = 2πn/D n = 0,±1,±2, ...

2. Dirichlet, kz = πn/D, n = 1, 2, ...

3. Neumann, kz = πn/D, n = 0, 1, 2, ....

There exist simple relations between the energy densities corresponding to the above bound-
ary conditions. It can be readily checked that

ωB
per (T, 2D, μ) = σ B(T, μ) + 2ωB

Dir (T, D, μ) = −σ B(T, μ) + 2ωB
Neu(T, D, μ)

(10)

where

σ B(T, μ)=kB T
∫∫

dkx dky

(2π)2 ln

{
1−z exp

[
−λ2

4π
(k2

x +k2
y)

]}
=−kB T

λ2 g2(e
μ/kB T )

(11)

corresponds to the contribution from kz = 0 in the series appearing in Eq. (8). The Bose
function g2 is defined in the standard way: g2(z) = ∑∞

l=1 z
l/ l2. We note that σ B(T, μ)/4 =

γ B
Neu = −γ B

Dir (T, μ), where γ B
Neu,Dir (T, μ) denotes the coefficient of surface tension of an

ideal Bose gas corresponding to the Neumann or Dirichlet boundary conditions, respectively
[13].

Similarly, for fermions we find

ωF
per (T, 2D, μ) = σ F (T, μ) + 2ωF

Dir (T, D, μ) = −σ F (T, μ) + 2ωF
Neu(T, D, μ) , (12)

where

σ F (T, μ) = −kB T
∫∫

dkx dky

(2π)2 ln

{
1 + z exp

[
− λ2

4π
(k2

x + k2
y)

]}
= kB T

λ2 g2(−eμ/kB T ) .

(13)

As in the bosonic case we identify the expressions for the coefficients of the surface tension
of an ideal Fermi gas : γ F

Dir (T, μ) = −γ F
Neu(T, μ) = −kB T g2(−eμ/kB T )/4λ2.

We now turn to the derivation of the formula for the Casimir force F(T, D, μ) (or Casimir
pressure) relating it to the one-particle density matrix. By definition

F(T, D, μ) = − ∂

∂ D
ωs(T, D, μ) , (14)
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Relation Between Casimir Forces and Bulk Correlations 1139

where ωs(T, D, μ) is the excess free energy density

ωs(T, D, μ) = ω(T, D, μ) − Dωb(T, μ) (15)

equal to the difference between the total grand canonical free energy density per unit wall
area ω(T, D, μ) and the bulk free energy density ωb(T, μ) (evaluated in the thermodynamic
limit) multiplied by D.

We begin by evaluating the density ωB(T, D, μ), see Eq. (8), under the periodic boundary
conditions

ωB
per (T, D, μ)= kB T

+∞∑
n=−∞

∫∫
dkx dky

(2π)2 ln

{
1−z exp

(
−λ2

4π

[
k2

x +k2
y +

(
2πn

D

)2
])}

= σ B(T, μ)+ 2kB T
+∞∑
n=1

∫∫
dkx dky

(2π)2 ln

{
1−z exp

(
−λ2

4π

[
k2

x +k2
y +

(
2πn

D

)2
])}

.

(16)

At this point we will use the non-expanded form of the Euler-Maclaurin formula [14]

N∑
n=1

f (n) =
N∫

0

f (x) dx + 1

2
[ f (N ) − f (0)] +

N∫
0

(
x − [x] − 1

2

)
f ′(x)dx, (17)

where [x] denotes the largest integer not exceeding x , and f ′(x) is the derivative of f (x). The
function (x − [x] − 1/2) appearing in the integrand above is periodic and has the following
Fourier series representation

x − [x] − 1

2
= − 1

π

∞∑
p=1

sin(2pπx)

p
. (18)

Using Eqs. (17) and (18) we find

ωB
per (T, D, μ) − Dωb(T, μ)

= 2kB T
∫∫

dkx dky

(2π)2

∞∫
0

dx

(
x − [x] − 1

2

)
∂

∂x
ln

{
1 − z exp

(
− λ2

4π

[
k2

x + k2
y +

(
2πx

D

)2
])}

= λ2kB T
∫∫∫

dk
(2π)3

(
Dkz

2π
−

[
Dkz

2π

]
− 1

2

)
kz

z−1 exp
(
λ2k2/4π

) − 1

= − h2

2π2m

∞∑
p=1

∫∫∫
dk

(2π)3

sin(pDkz)

p
kzρ

B(k) = h2

2π2m

∞∑
p=1

∂

∂ D

∫∫∫
dk

(2π)3

cos(pDkz)

p2 ρB(k)

(19)

where dk = dkx dkydkz , and ρB(k) ≡ ρB(k), k = |k|, is the mean occupation number of
the one-particle state k.

The inverse Fourier transform of ρB(k) is equal to the one-particle density matrix

ρB
1 (r) =

∫∫∫
dk

(2π)3 eik·rρB(k) =
∫∫∫

dk
(2π)3 cos(k · r)ρB(k) . (20)

We thus get from (19) the relation

ωB
per (T, D, μ) − Dωb(T, μ) = h2

2π2m

∂

∂ D

∞∑
p=1

ρB
1 (pD)

p2 . (21)
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1140 M. Napiórkowski, J. Piasecki

Finally, using the defining Eq. (14) we arrive at the basic formula

F B
per (T, D, μ) = − h2

2π2m

∂2

∂ D2

∞∑
p=1

ρB
1 (pD)

p2 (22)

which relates the Casimir force to the one-particle density matrix. Although the above basic
formula has been derived for the ideal Bose gas we expect a similar formula to hold for the
imperfect Bose gas [13,15,17,19,20], where the interparticle repulsion is taken into account
in the mean-field way. On the other hand, one should not expect such simple relation to
hold between the Casimir force and the one-particle density matrix when fluctuations of the
interacting Bose gas are taken into account.

Similar calculation performed for a perfect Fermi gas leads to an identical relation between
the Casimir force and the one-particle density matrix ρF

1 (pD)

F F
per (T, D, μ) = − h2

2π2m

∂2

∂ D2

∞∑
p=1

ρF
1 (pD)

p2 . (23)

Before ending this section we notice that Eqs. (10) and (12) immediately lead to relations
between the Casimir forces corresponding to different boundary conditions:

FDir (T, D, μ) = FNeu(T, D, μ) = Fper (T, 2D, μ) . (24)

The above equalities hold both for bosons and fermions. We note here that in the case of
non-planar walls the dependence of the Casimir forces on the boundary conditions becomes
more involved, see [5,21–23].

3 Range of Casimir Forces and Bulk Correlation Length

The large-distance behavior of the one-particle density matrix of a Bose gas in the absence
of condensate (μ < 0, or ρ < ρc) is governed by an exponential law [1]

ρB
1 (r) ∼ 1

rλ2 exp

[
−2r

λ

√
π(−μ)

kB T

]
. (25)

The basic Eq. (22) implies thus an exponential decay of the attractive Casimir force, see
Fig. 1, with the range—in the case of periodic boundary conditions—given by

κ B
per = λ

2

√
kB T

π(−μ)
= h̄√

2m(−μ)
. (26)

Using Eq. (24) we readily get the ranges corresponding to the Dirichlet and Neumann bound-
ary conditions

κ B
Dir = κ B

Neu = 1

2
κ B

per = h̄

2
√

2m(−μ)
. (27)

Equations (26) and (27) show that upon approaching the phase containing the condensate
(μ → 0) the range of the force diverges with the critical exponent ν = 1/2.

In the two-phase region (μ = 0) there appears an off-diagonal long range order, and the
one-particle density matrix ρB

1 (r) approaches for r → ∞ a nonzero value (ρ−ρc) following
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Fig. 1 The Casimir force for the ideal Bose gas as function of the distance bewteen the walls. The Casimir
force is evaluated in 2h̄2λ−2κ−3m−1 units. The distance is expressed in κ units

the power law [1]

ρB
1 (r) − (ρ − ρc) ≈ 1

rλ2 . (28)

According to Eq. (22) the corresponding decay of the Casimir force for D 
 λ is given by

F B
per (T, D, 0) = − h2

2π2m

∂2

∂ D2

⎡
⎣ ∞∑

p=1

1

p3 Dλ2

⎤
⎦ = −2kB T ζ(3)

π D3 , (29)

where ζ(3) = ∑∞
p=1 p−3 is the Riemann zeta function. We note that in the two-phase

regime the ratio of the Casimir force F B
per (T, D, 0) to the bulk pressure of the ideal Bose gas

p = kB T ζ(5/2)/λ3 is for large distances D 
 λ proportional to (λ/D)3 and thus small.
Using Eq. (24) we also readily find [8,9]

F B
Dir (T, D, 0) = F B

Neu(T, D, μ) = −kB T ζ(3)

4π D3 . (30)

The behavior of the correlation function follows directly from Eq. (4). In the one-phase
region (μ < 0) the correlation function χ B

2 (r) is equal to [ρB
1 (r)]2. Correlations are thus

exponentially damped with the bulk correlation length ξB such that

ξ B = κ B
Dir = κ B

Neu = 1

2
κ B

per (31)

The correlation length ξ B is exactly equal to the range of Casimir forces under Dirichlet
and Neumann boundary conditions.1 Our basic Eq. (22) sheds light on the origin of this
remarkable agreement. When μ → 0, both ξ B and the range of Casimir forces diverge
with the same critical exponent 1/2. In Ref.[15] analogous results have been derived for the
imperfect Bose gas [19,20] which belongs to a different universality class than the ideal Bose
gas [17].

In the case of a Fermi gas, although there is no phase transition, both correlations and
Casimir forces are characterized by decay lengths which diverge for T → 0. Equation (23)

1 In Ref. [15] we stated that ξ B was equal to κ B
per instead of κ B

per /2.
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1142 M. Napiórkowski, J. Piasecki

permits to establish a clear connection between the correlation length and the range of the
forces.

The one-particle density matrix of a perfect Fermi gas is given by the formula [18]

ρF
1 (r) = − 1

λ3

∞∑
j=1

(−z) j

j3/2 exp

[
−πr2

jλ2

]
. (32)

We are interested in the properties of ρF
1 (r) at low temperatures where the following asymp-

totic formula holds [18]

ρF
1 (r)

∣∣∣
T →0

= − 1

λ2kF r

∂

∂r

{
sin(kFr)

sinh
(
2π2 r/λ2kF

)
}

(33)

with the Fermi wavenumber kF = (6π2ρ)1/3. The large r behavior involves thus exponen-
tially damped oscillations with the characteristic decay length λ2 kF .

Equations (23) and (24) allow to find the relation between decay lenghts corresponding
to different boundary conditions with the result

κ F
Dir = κ F

Neu = 1

2
κ F

per = λ2kF

4π2 . (34)

Taking into account that for T > 0 the correlation function χ F
2 (r) = −[ρF

1 (r)]2, we conclude
that also correlations decay via exponentially damped oscillations with the correlation length

ξ F = λ2kF

4π2 = κ F
Dir = κ F

Neu . (35)

We find here a complete analogy with the Bose gas, where ξ B = κ B
Dir = κ B

Neu .
At zero temperature Eq. (33) takes the following form [18]

ρF
1 (r)

∣∣∣
T =0

= sin(kFr) − kFr cos(kFr)

2π2 r3 . (36)

Upon inserting this formula into (23) we find that for D → ∞ the dominant contribution to
the Casimir force takes the following form

F F
per (0, D, μF ) = − h̄2k3

F

mπ2

∞∑
p=1

cos(pkF D)

(pD)2 (37)

= − 1

D2

(
h̄2k3

F

m

) [
1

6
−

(
kF D

2π
−

[
kF D

2π

])
+

(
kF D

2π
−

[
kF D

2π

])2
]

.

The Casimir force displays a typical for fermions oscillatory behavior which is super-
imposed on the power-law decay, see Fig. 2. Note that the damped oscillations imply the
change of sign of the Casimir force: upon increasing the distance between the walls the
force becomes in turn attractive and repulsive, with the infinite set of stability points. The
amplitude of these oscillations increases with decreasing temperature. In the T = 0 limit the
oscillations are generated by the periodic function

D →
(

kF D

2π
−

[
kF D

2π

])
.
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Fig. 2 The Casimir force for the ideal Fermi gas as function of the distance bewteen the walls for three
different temperatures. The Casimir force is evaluated in 2h̄2k5

F π−2m−1 units. The distance is expressed in

k−1
F units. The dimensionless quantity t = 2 ∗ π2λ−2k−2

F m−1 ∼ T is used as the measure of temperature.
The dotted (blue) line corresponds to t = 0.5, the dashed (green) line—to t = 0.2, and the solid (red)—to
t = 0. (Color figure online)

In order to get the corresponding formulas for Dirichlet and Neumann boundary conditions
it suffices to replace in (37) the distance D by 2D.

At T = 0 the correlation function equals

χ F (r) = − 1

(2π2)2

[
sin(kFr)

r3 − kF cos(kFr)

r2

]2

(38)

and decays ∼ r−4 with oscillations.

4 Concluding Comments

We have discussed the relation between the decay lengths characterizing the Casimir forces
and the bulk correlation lengths in the case of ideal quantum gases enclosed in a slit with two
infinite parallel walls separated by distance D. Both bosons and fermions were considered
under different boundary conditions (periodic, Dirichlet, and Neumann) imposed at the walls.

Within a microscopic approach we have derived a basic formula relating the Casimir force
to the one-particle density matrix. Its structure is the same for bosons and for fermions, Eqs.
(22) and (23). In the case of ideal quantum gases the one-particle density matrix is directly
related to the correlation function. It is well known that the choice of the boundary conditions
influences the Casimir force while the bulk correlation function remains insensitive to this
choice. The general structure of our basic formula does not depend on the boundary conditions
which, however, dictate the choice of the arguments of the functions involved in it. That is
how the influence of the boundary conditions on Casimir forces is reflected in Eqs. (22) and
(23).
The case of the ideal Bose gas is particularly interesting due to the Bose-Einstein condensation
which takes place at μ = 0. For thermodynamic states corresponding to the phase containing
no condensate and in the limit μ → 0 the Casimir force decays exponentially with the decay
length κ B depending on the chosen boundary conditions. We checked that κ B

Dir = κ B
Neu =

κ B
per/2 = ξ B ∝ (−μ)−1/2, where ξ B denotes the correlation length of an ideal Bose gas and
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1144 M. Napiórkowski, J. Piasecki

the proportionality to (−μ)−1/2 holds at fixed temperature T < Tc.
Analogous relations hold for ideal Fermi gas. Although in this case there is neither phase
transition nor critical point, the Casimir force and the bulk correlation function display
exponentially damped oscillations whose amplitude increases in the limit T → 0. These
oscillations correspond to the change of sign of the Casimir force: upon increasing the
distance between the walls it becomes in turn attractive and repulsive. One can identify the
corresponding decay length κ F and its relation to the fermionic bulk correlation length ξ F .
It turns out that these relations are the same as in the case of bosons, i.e., κ F

Dir = κ F
Neu =

κ F
per/2 = ξ F ∝ T −1, where the proportionality to T −1 holds at fixed density ρ.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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