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absent in mouse models of Aβ deposition, α-synucleinopathy 
or Huntington’s disease. Though tau pathology showed con-
siderable overlap with cytoplasmic, phosphorylated TDP-43, 
tau pathology generally preceded TDP-43 pathology. Bio-
chemical analysis confirmed the presence of TDP-43 abnor-
malities in the tau mice, which showed increased levels of 
high molecular weight, soluble TDP-43 and insoluble full-
length and ~35 kD TDP-43. These data demonstrate that the 
neurodegenerative cascade associated with a primary tauopa-
thy in tau transgenic mice can also promote TDP-43 abnor-
malities. These findings provide the first in vivo models to 
understand how TDP-43 pathology may arise as a secondary 
consequence of a primary proteinopathy.

Keywords  Tau · TDP-43 · Mouse · Transgenic · 
Neuropathology, tauopathy · TDP-43 proteinopathies

Introduction

The major classes of frontotemporal lobar degeneration 
(FTLD) are those characterized by the presence of neuronal 

Abstract  Frontotemporal lobar degeneration (FTLD) has 
been subdivided based on the main pathology found in the 
brains of affected individuals. When the primary pathology 
is aggregated, hyperphosphorylated tau, the pathological 
diagnosis is FTLD-tau. When the primary pathology is cyto-
plasmic and/or nuclear aggregates of phosphorylated TAR-
DNA-binding protein (TDP-43), the pathological diagnosis 
is FTLD-TDP. Notably, TDP-43 pathology can also occur in 
conjunction with a number of neurodegenerative disorders; 
however, unknown environmental and genetic factors may 
regulate this TDP-43 pathology. Using transgenic mouse 
models of several diseases of the central nervous system, we 
explored whether a primary proteinopathy might secondarily 
drive TDP-43 proteinopathy. We found abnormal, cytoplas-
mic accumulation of phosphorylated TDP-43 specifically 
in two tau transgenic models, but TDP-43 pathology was 
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and glial inclusions composed of either tau protein (FTLD-
tau) or TAR DNA-binding protein of 43  kDa (TDP-43; 
FTLD-TDP) [27, 40]. Familial forms of FTLD-tau are 
associated with mutations in the MAPT gene that encodes 
the tau protein, whilst mutations in Granulin (GRN), Valo-
sin Containing Protein (VCP), or C9ORF72 genes can 
cause FTLD-TDP or amyotrophic lateral sclerosis [3, 10, 
22, 54]. Neurodegenerative conditions such as Alzheimer’s 
disease (AD), Huntington disease (HD), as well as Parkin-
son disease (PD) and dementia with Lewy bodies (DLB) 
are proposed to be “secondary” TDP-43 proteinopathies in 
which TDP-43 pathology occurs in the context of the dis-
tinctive hallmark pathology of each of these disorders [1, 
21, 37, 47, 51]. Furthermore, TDP-43 pathology has been 
reported in the tauopathies argyrophilic grain disease [14] 
and corticobasal degeneration [51], but it is sparse in pro-
gressive supranuclear palsy [59]. The mechanistic connec-
tion between primary and secondary TDP-43 proteinopa-
thies is unclear, but it is possibly related to unknown 
environmental or genetic factors.

One common feature in most human TDP-43 proteinopa-
thies is the presence of cytoplasmic phosphorylated TDP-43 
(pTDP-43), while normally TDP-43 is readily detected in the 
nucleus. Several studies have shown that antibodies specific 
for phosphorylated S403/404 and S409/410 TDP-43 recog-
nize TDP-43 proteinopathies in humans [17, 38] and in trans-
genic mice overexpressing TDP-43 [7, 24, 57]. We sought 
to address the possible association between TDP-43 aggre-
gation and other proteinopathies through the neuropatho-
logical analysis of mouse models of amyloidosis, tauopathy, 
α-synucleinopathy, and HD. This approach attempts to iso-
late the effect of each model’s defining genetic trigger and 
proteinopathy on TDP-43 aggregation, thereby eliminating 
parallel mechanisms that may cause TDP-43 pathology in 
humans (i.e., unrelated genetic or environmental factors). We 
discovered significant age-dependent accumulation of cyto-
plasmic, phosphorylated TDP-43 in two independent mouse 
models of tauopathy, but not in mouse models of amyloido-
sis, α-synucleinopathy, or (HD). As such, we demonstrate 
that tau-driven mechanisms can drive abnormal TDP-43 
pathology in tau transgenic in vivo models.

Materials and methods

Transgenic mouse models

To study TDP-43 in the context of amyloidosis, we utilized 
TgCRND8 mice that overexpress a double mutant (K670N/
M671L and V717F) form of human amyloid precursor pro-
tein (695 amino acid isoform—APP695) leading to age-
dependent cognitive deficits and Aβ amyloid pathology [8]. 
We also studied Tg2576 mice that express human amyloid 

precursor protein with the Swedish double mutation K670N/
M671I and that develop amyloid plaques [20] and Tg2576 
mice crossed onto a P264L PS1 knock-in background that 
potentiates amyloid plaque formation [13, 48]. As models of 
tauopathy, we utilized the rTg4510 and the JNPL3 transgenic 
mouse models that express P301L (0N4R) human tau. The 
bigenic rTg4510 model uses a CaMKIIα-dependent tetra-
cycline transactivator transgene [36] to drive the conditional 
expression of mutant human tau, and the resultant tauopathy 
is primarily found in the forebrain [46]. The JNPL3 mouse 
model utilizes the mouse prion promoter [5] to drive mutant 
human tau expression [31]. JNPL3 mice develop tauopathy 
in the spinal cord and hindbrain with less in forebrain, result-
ing in progressive motor dysfunction. M83 and M47 trans-
genic mouse models of α-synucleinopathy express A53T 
and E46K mutant forms of human α-synuclein, respectively, 
driven by the mouse prion protein promoter. These mice 
develop age-dependent severe motor impairments leading to 
death and widespread α-synuclein neuronal inclusions [11, 
15]. To model HD, we utilized the N586-82Q-C63 mouse 
model expressing 586 amino acids of an N-terminal frag-
ment of huntingtin containing 82 glutamine repeats, hereaf-
ter termed HD586-82Q. These mice develop robust cytoplas-
mic inclusions containing huntingtin [50].

Antibodies

Anti-TAR-DNA-binding protein 43 (TDP-43) rabbit poly-
clonal antibody was purchased from ProteinTech Group 
(Chicago, IL). Rabbit anti-phospho Ser409/410 TDP-43 
antibody is from CosmoBioUSA (Carlsbad, CA). Rab-
bit anti-phospho Ser410 TDP43 antibody is from Sigma-
Aldrich (St. Louis, MO). pSer129 is a mouse monoclonal 
antibody that specifically recognizes phosphorylation of 
α-synuclein at S129 [55]. AT8 (Thermo-Fisher) is specific 
toward phosphorylation sites S202 and T205 in tau [16]. 
CP13 (provided by Dr. Peter Davies, Albert Einstein Col-
lege of Medicine, New York, NY) recognizes phosphoryl-
ated tau at Ser202 site. PHF1 (generously provided by Dr. 
Peter Davies, Albert Einstein University, New York, NY) 
is specific towards phosphorylation sites S396 and S404 in 
tau [43]. AT100 (Thermo-Fisher) is specific toward phos-
phorylation sited S212 and T214 in tau. Anti-huntingtin 
mouse monoclonal antibody 2B4 (Millipore) was used to 
detect huntingtin aggregates. Anti-total Aβ antibody 33.1.1 
was previously characterized [28]. Anti-β-actin rabbit poly-
clonal and anti-GAPDH rabbit polyclonal antibodies were 
purchased from Sigma-Aldrich (St. Louis, MO).

Immunohistochemistry (IHC)

Mice were humanely euthanized. Fixed brains were paraf-
fin embedded and sectioned. Intact spinal columns were 



41Acta Neuropathol (2013) 126:39–50	

1 3

immersion fixed, followed by fine dissection to remove 
vertebrae and subsequent post fixation. Sections were 
deparaffinized in xylene and rehydrated by immersion in 
a descending series of ethanols and steamed for 30  min. 
Peroxidase activity was quenched by incubation in an 
80  % methanol/2  % H202 solution for 10  min. Sections 
were incubated with primary antibodies in 0.1 M Tris pH 
7.6/2 % FBS overnight at 4 °C and subsequently incubated 
with biotinylated anti-rabbit or anti-mouse (Vector) for 1 h. 
To detect signal, a standard peroxidase ABC system (Vec-
tor) was used with a DAB reagent kit (KPL). Sections were 
counterstained with hematoxylin, rehydrated by an ascend-
ing series of ethanols and xylene, and cover slipped with 
Cytoseal (Thermo Scientific).

Electron microscopy

Post-embedding immunogold electron microscopy (IEM) 
is essentially the same as previously described [33]. 
Rabbit polyclonal antibody to phosphorylated TDP-43 
(S409/410) generated by LP was used. This antibody was 
produced by immunizing a rabbit with the peptide antigen 
CSMDSK[pS][pS]GWGM-COOH, representing amino 
acid residues 404–414 of full-length TDP-43 with S409 
and S410 phosphorylation.

Immunofluorescence staining

Sections were deparaffinized in xylene, rehydrated by 
immersion in a descending series of ethanols, steamed for 
30  min, incubated with blocking solution (1  % fish skin 
gelatin/1 % BSA/2 % FBS/0.1 M Tris pH 7.5) for 2 h, incu-
bated with primary antibodies in 0.1 % fish skin gelatin/5 % 
BSA/0.2  % FBS/0.1  M Tris pH 7.6 with azide overnight, 
and subsequently incubated with Alexa Fluor 594 goat anti-
mouse and Alexa Fluor 488 goat anti-rabbit (Invitrogen) for 
1 h. Sections were post-fixed with 10 % phosphate buffered 
formalin, immersed in amino-black to quench lipofuscin 
auto-fluorescence, and counterstained with DAPI (Pierce). 
Sections were mounted and cover slipped with Fluoromount 
G (Southern Biotech). Pictures were obtained using an 
Olympus BX51 fluorescent microscope with FITC, Texas 
Red, and DAPI filters. To visualize co-localization, images 
from each filter were layered in Photoshop.

Western blotting

Sagittal half forebrains of rTg4510 and NT mice were 
frozen on dry ice and then fractionated as previously 
described [45]. 10 μg (soluble fraction, the protein concen-
tration measured by BCA protein assay) or 10 μl (sarkosyl-
insoluble fraction derived from 10 mg wet-weight of tissue) 
of protein was run on 10 % tris-glycine gel, transferred to 

nitrocellulose membrane and blocked in 5  % milk-TBST 
prior to probing with antibodies described above.

Results

Accumulation of phosphorylated, cytoplasmic TDP‑43  
in transgenic mouse models of tauopathies

Immunohistochemistry to visualize pTDP-43 (S409/410) 
was performed on mouse models of Aβ amyloidosis 
(TgCRND8, Tg2576, and Tg2576/P264L PS1), tauopa-
thy (rTg4510 and JNPL3), α-synucleinopathy (Lines 
M47 and M83), HD (HD586-82Q), and non-transgenic 
(NT) controls at time points when each model has robust 
aggregates of their primary pathologic protein (e.g., tau in 
rTg4510 and α-synuclein in M83 mice). For rTg4510 mice, 
mice expressing the tTA activator in the absence of the tau 
responder were also used as a control.

In control mice, low levels of pTDP-43 (S409/410) were 
observed in the nucleus of some neurons (Fig. 1a, b). The 
normal nuclear localization of pTDP-43 is not altered by 
the presence of Aβ plaques in TgCRND8, Tg2576 and 
Tg2576/P264L PS1 mice, α-synuclein pathology in M47 
and M83 mice or huntingtin inclusions in HD586-82Q 
mice (Electronic Supplementary Material 1; Supplemen-
tary Table 1). Normal nuclear localization of pTDP-43 was 
also observed in young rTg4510 mice (Fig. 1c). In contrast, 
we observed significant accumulation of pTDP-43 in the 
neuronal perikarya of older rTg4510 tau transgenic mice 
(Fig. 1d, arrows). The regional distribution of neurons with 
abnormal pTDP-43 cytoplasmic immunoreactivity was in 
multiple areas of the forebrain of the rTg4510 model, con-
sistent with the region that normally develops robust tauop-
athy [46].

To validate our results from the rTg4510 model and to 
begin to understand the mechanisms that lead to the abnor-
mal cytoplasmic redistribution of phosphorylated TDP-43, 
we sought to determine the extent of overlap between TDP-
43 and tau pathology, and the order in which it occurred. 
JNPL3 tau transgenic mice develop tauopathy in their spi-
nal cord and have an age-progressive motor dysfunction 
[31]. The spinal cords of young and middle-aged JNPL3 
mice that lacked motor dysfunction (Fig.  2a, b) showed 
normal nuclear localization of pTDP-43; however, the 
spinal cords of JNPL3 mice that had motor dysfunction 
showed striking cytoplasmic redistribution of pTDP-43 
(Fig. 2c). We then immunostained serial sections of these 
animals with AT8 to visualize phosphorylated tau pathol-
ogy (Fig. 2d–f). Initial tau pathology could be observed in 
young JNPL3 mice; however, striking tau pathology was 
not observed until JNPL3 mice developed motor dysfunc-
tion, similar to our previous reports [31, 60]. Using serial 
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sections (Fig. 2c, f), we identified neurons containing both 
cytoplasmic pTDP-43 (Fig. 2c, arrows) and abnormal phos-
phorylated tau (Fig.  2f, arrows); neurons that had normal 
nuclear localization of pTDP-43 (Fig.  2c, asterisk) in the 
presence of tau pathology (Fig.  2f, asterisk); and neurons 
that had normal nuclear localization of pTDP-43 (Fig. 2c, 
square) without aggregated, phosphorylated tau protein 
(Fig.  2f, square). The majority of neuronal cell bodies 
with accumulations of pTDP-43 in the cytoplasm showed 
some degree of tau pathology (Fig. 2c, f). These data show 
that tau pathology can occur without the redistribution of 
pTDP-43 from the nucleus; however, pTDP-43 accumula-
tion within the neuronal cytoplasm generally only occurs 
after tau pathology begins.

To confirm the association of phosphorylated TDP-
43 with the tau aggregates, we performed ultrastruc-
tural analysis on spinal cord from a JNPL3 mouse with 
robust neurofibrillary tau pathology. As we have pre-
viously reported [34], tau filaments in the JNPL3 mice 
often assume a herring-bone order within the cell body 
(Fig.  3a, b). Gold labeling (Fig.  3b, arrows) indicated 

the presence of phosphorylated TDP-43 (S409/410) 
within the tau herring-bone structures, supporting our 
immunohistochemical data. Minimal gold particles were 
observed in regions of the neuron with low levels of tau 
filaments (Fig. 3c).

To determine the overlap between tau pathology and 
cytoplasmic accumulation of pTDP-43, we performed dou-
ble immunofluorescence on rTg4510 brains with antibodies 
to hyperphosphorylated tau [(AT8; Fig.  4a, red), (AT100; 
Fig.  4d, red), (PHF1; Fig.  4g, red)] and phosphorylated 
TDP-43 (S409/410); Fig. 4b, e, h; green). Using this tech-
nique, we only observed cell body accumulation of pTDP-
43 within neurons containing tau inclusions that were 
immunoreactive for hyperphosphorylated tau (Fig. 4c, f, i; 
yellow). Since the pTDP-43 (S409/410) antibody detects 
phosphorylation at a dual epitope, we sought to determine 
if an antibody that detected phosphorylation at only one 
of these epitopes (S410) would show similar overlap with 
phosphorylated tau. As with the dual phosphorylated TDP-
43 epitope, there was a high degree of overlap between 
phosphorylated (S410) TDP-43 and phosphosphorylated 

Fig. 1   Phosphorylated TDP-43 
progressively accumulates 
within the cytoplasm of fore-
brain neurons in the rTg4510 
mouse model of tauopathy. 
Phosphorylated TDP-43 
(pTDP-43; S409/410) is located 
within the nucleus in NT mice 
at 1.6 months (a) and tTA mice 
at 7.7 months (b). pTDP-43 is 
initial found in the nucleus of 
1.6-month rTg4510 mice (c), 
and transitions into the cyto-
plasm of rTg4510 mice (d) by 
7.8 months. Cortex is shown for 
all mice. Bar indicates 35 μm
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tau (AT8, AT100, PHF-1) (Electronic Supplementary Mate-
rial 2) in rTg4510 mice.

TDP‑43 is biochemically altered in rTg4510 mice

To validate immunohistochemical findings, we per-
formed Western blot analysis of TDP-43 in soluble and 
sarkosyl-insoluble fractions of forebrains of 10-month-
old rTg4510 mice, an age in which tau pathology is pre-
sent, as well as of NT control mice. Within the soluble 
fractions, levels of full-length TDP-43 were equivalent 
between rTg4510 and NT mice (Fig.  5a, arrow). Inter-
estingly, rTg4510 mice had a higher molecular weight 
smear that was immunoreactive for TDP-43 (HMW; 
~120–170 kDa) (Fig. 5a). Levels of these HMW species 
were ~2.5-fold higher in rTg4510 compared to NT mice 
(p  =  0.03; Fig.  5b). β-Actin was utilized as a loading 
control.

As in human tauopathy, rTg4510 mice progressively 
accumulate hyperphosphorylated, aggregated tau within 
the detergent insoluble fraction (Electronic Supplementary 
Material 3) [46]. Given that tau and TDP-43 appeared to 

co-aggregate in a substantial proportion of forebrain neu-
rons of rTg4510 mice, we sought to determine if rTg4510 
mice contained elevated TDP-43 within the sarkosyl-insol-
uble fractions. We found an approximately 25 % increase 
in full-length 43  kDa TDP-43 in the sarkosyl-insoluble 
fraction from the forebrain of 10-month-old mice rTg4510 
compared to NT mice (p = 0.03; Fig. 6a, b). Interestingly, 
we also observed an increase in ~35  kDa immunoreac-
tive species of TDP-43, hereafter termed TDP-35, within 
the sarkosyl-insoluble fraction (p = 0.0001; Fig. 6a, c) of 
rTg4510 mouse forebrain. Although our N =  3 per geno-
type is low, these data were consistent and support our neu-
ropathological analysis.

Discussion

TDP-43 aggregation, cytoplasmic redistribution, phos-
phorylation and misprocessing characterize the pathol-
ogy found in FTLD-TDP, associated with mutations in 
the GRN, VCP, and C9ORF72 genes [3, 10, 54]. In con-
trast, a second form of frontotemporal lobar degeneration, 

Fig. 2   Tau pathology generally precedes the cytoplasmic accumula-
tion of phosphorylated TDP-43 in the JNPL3 mouse model of tauopa-
thy. Serial sections of spinal cord tissue from (a, d) 3.5, (b, e) 8.5 and 
(c, f) 10-month-old JNPL3 mice was immunostained for (a–c) TDP-
43 phosphorylated at S409/410 and (d–f) tau phosphorylated at S202/
T205 (AT8 antibody). JNPL3 mice at 3.5  months of age show (a)  
normal nuclear localization of pTDP-43 and (d) minimal tau pathol-
ogy. (b) pTDP-43 remains localized in the neuronal nuclei as (e) tau 
pathology slowly accumulates in the spinal cord of 8.5-month-old 

JNPL3 lacking a motor phenotype. (c) Serial sectioning of a JNPL3 
mouse with motor phenotype shows neurons with cytoplasmic relo-
calization of pTDP-43 (c, arrows) that also show prominent tau 
pathology (f, arrows). In addition, normal nuclear localization of 
pTDP-43 (c, asterisk) can be seen in cells with prominent tau pathol-
ogy (f, asterisk). A healthy neuron without (c, square) cytoplasmic 
pTDP-43 or (f, square) tau pathology can also be seen. The central 
canal (cc) has been noted. The bar indicates 100 μm
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FTLD-tau, is characterized by hyperphosphorylated, 
aggregated tau pathology, and many of the familial forms 
are caused by mutations in the MAPT gene that encodes 
tau protein [22]. Recently, Bieniek et  al. [4] reported tau 
pathology in brains of individuals with FTLD associated 
with the C9ORF72 expansion mutation, but similar eleva-
tion of tauopathy were not observed in FTLD associated 
with GRN mutations suggesting that an overlap of FTLD-
TDP and FTLD-Tau may occur in the context of C9ORF72. 
Interestingly, King et al. [29] reported an individual with an 
A239T sequence variant in the MAPT gene as well as the 
C9ORF72 expansion. This individual presented with domi-
nant Pick-like tau pathology as well as the TDP-43 and p62 
pathology that characterizes C9ORF72 carriers; however, 
her siblings lacked this tau variant and developed typical 
pathology associated with the C9ORF72 hexanucleotide 
repeat. Surprisingly, we were unable to find publications 
in which the authors clearly screened FTLD-tau cases with 
known pathogenic MAPT mutations for the level and/or 
distribution of phosphorylated TDP-43. TDP-43 pathology 
has been identified in a subset of different proteinopathies 
including tauopathies that occur in the absence of MAPT 
mutations [2, 19, 37]. The importance of this pathological 
overlap has been unclear. In the current study, we sought 
to utilize mouse models of Aβ amyloidosis, tauopathy, 
α-synucleinopathy, and a polyglutamine disorder (HD) to 
determine if any aspect of TDP-43 pathology can be driven 
in vivo by an independent primary pathological aggregate 
(e.g., tau) caused by a defined genetic event (e.g., mutant 
tau).

In healthy neurons, TDP-43 is primarily localized within 
the nucleus, and the redistribution and aggregation of TDP-
43 within the cytoplasm are thought to be critical events in 
TDP-43-proteinopathies [40]. Much of the TDP-43 found 
within these aggregates is phosphorylated at serine residues 
(409/410) [38]. In the current study, we demonstrated the 
association of pTDP-43 within the cytoplasm of neurons 
burdened with pathological tau aggregates—a tauopathy 
triggered solely by the expression of mutant human tau in 
transgenic mice. These findings are consistent with a recent 
report showing the partial cytoplasmic redistribution of 
TDP-43 in JNPL3 mice during the course of tau inclusion 
formation using a non-phospho-specific TDP-43 antibody, 
although they did not show that this was directly associated 
with tau pathology [52].

In order to determine if the accumulation of pTDP-43 
is directly related to the aggregation of hyperphosphoryl-
ated tau or simply the expression of high levels of human 
mutant tau protein, we examined brain and spinal cord 
from young rTg4510 and JNPL3 mice, respectively, with 
high levels of transgenic tau expression and minimal levels 
of hyperphosphorylated, aggregated tau protein. No change 
in TDP-43 phosphorylation or cytoplasmic distribution 

Fig. 3   Immunogold EM demonstrates that TDP-43 is associated with 
tau fibrils in JNPL3 spinal cord neurons. Large filamentous aggregates 
in a spinal motor neuron of JNPL3 Tg mouse (a). Many mitochondria 
were pushed to the periphery. Boxed area is enlarged in the (b). Bar, 
1  μm. Filamentous aggregates in herring-bone formation are labeled 
with pTDP-43 (b). Arrows point to gold particles. In the region directly 
adjacent to the boxed area, the mitochondria (arrowheads) serve as 
a marker of the area and there is no labeling on these and other orga-
nelles (c). Only few loose filaments are labeled (arrows). Bar, 0.2 μm
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was observed in young tau mice. In contrast, cytoplasmic 
pTDP-43 was observed in both rTg4510 and JNPL3 mice 
after they developed overt tau pathology and, in the case of 
JNPL3, motor dysfunction. These results strongly support 
the idea that mutant tau expression alone does not induce 
pTDP-43 accumulation within the cytoplasm and that 
aggregation of tau is also critical.

The distribution of neurofibrillary tau pathology and 
neuronal loss in rTg4510 and JNPL3 mouse models of 
tauopathy closely correlated with the distribution of the 
neurons containing cytoplasmic accumulations of pTDP-
43 protein. Hyperphosphorylated tau and pTDP-43 protein 
co-localized within many of the affected neurons; how-
ever, the overlap was incomplete since hyperphosphoryl-
ated tau aggregates could be found in some neurons in the 

absence of cytoplasmic pTDP-43. Rarely, the converse was 
observed. This data suggests that tau pathology precedes 
the redistribution of TDP-43 into the neuronal cytoplasm. 
Interestingly, pTDP-43 was present within the neurites of 
rTg4510 mice in the absence of AT8 immunopositive neu-
ritic tau, suggesting that TDP-43 cytoplasmic accumulation 
may develop in other cellular domains after cytoplasmic 
redistribution is initiated by tau aggregation or other fac-
tors in the perikarya. Another interpretation is that neuritic 
pTDP-43 may co-localize with tau that is not phosphoryl-
ated at S202 or S202/T205, the phospho-tau epitopes rec-
ognized by CP13 and AT8 in the current study, respectively. 
Since most remaining cortical and hippocampal (CA1) 
neurons in the rTg4510 mice examined had tau pathol-
ogy within the neuronal cell body, it seems likely that the 

Fig. 4   Cytoplasmic, phosphorylated TDP-43 (S409/410) co-local-
izes with tau pathology in cell bodies of the cortex of rTg4510 mice. 
Immunofluorescence shows pre-tangles and neurofibrillary tangles 
composed of hyperphosphorylated tau recognized by the antibody 
AT8 (a), AT100 (d), and PHF-1 (g) which co-localizes with cytoplas-
mic aggregation of pTDP-43, recognized by the S409/410 antibody 

(b, e, h; green). Co-localization between pTDP-43 (S409/410) and 
AT8 (c), AT100 (f), and PHF-1 (i) is shown in yellow. Nuclei were 
stained with DAPI (blue). Neurons shown are from the frontal cortex 
of an 8-month-old rTg4510 mouse at ×20 magnification. White bar 
indicates 50 μm
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pTDP-43 positive neurites originate from these affected 
cells; however, the methods utilized in this paper cannot 
exclude other origins of pTDP-43 localization within the 
neurites. Nevertheless, tau is a microtubule binding and 
stabilizing protein and it is possible that its aggregation 
perturbs normal microtubule function leading to the cyto-
plasmic accumulation of TDP-43 that might normally be 
transported to the nucleus or the presynaptic domains [35]. 
The notion that perturbation of microtubule function can 
lead to this cytoplasmic redistribution of TDP-43 is consist-
ent with the observation of TDP-43 pathology in Perry syn-
drome, a rare parkinsonian disorder [56]. Perry syndrome is 
caused by mutations in DCTN1, the large p150glued subunit 
of the dynactin complex [12] and cell culture studies show 
that the disruption of dynein-mediated microtubule trans-
port can promote TDP-43 cytoplasmic aggregation [44].

To determine if the association between pTDP-43 and 
hyperphosphorylated tau altered the biochemical profile of 
TDP-43, we performed protein fractionation from brains 

of rTg4510 tau transgenic and NT mice. There was no 
change in total levels of TDP-43 in the soluble tau fraction 
across genotypes; however, rTg4510 mice did have a sig-
nificant increase in a higher molecular weight smear that 
was immunopositive for TDP-43. The nature of these high 
molecular weight species is unclear; however, similar high 
molecular weight species have been identified in affected 
human brains although these tend to be found in insolu-
ble, not soluble, fractions [1, 25, 39, 40]. It is unlikely that 
the TDP-43 in the HMW species is aggregated since it was 
localized in the soluble fraction, but it could reflect vari-
ous post-translational modifications such as ubiquitina-
tion or oxidative modifications [9, 40]. Given that tau in 
human tauopathy and in the tau transgenic mice utilized in 
this study becomes hyperphosphorylated and aggregated, 
thereby shifting into the detergent insoluble fraction, we 
sought to determine if TDP-43 similarly shifted into the 
sarkosyl-insoluble fraction in association with the tauopa-
thy in rTg4510. Indeed, we saw a significant increase of 
full-length TDP-43 within the sarkosyl-insoluble fraction 
when compared to NT mice, supporting the close associa-
tion between the tau pathology observed in these mice and 
the cytoplasmic accumulation of pTDP-43. Intriguingly, 
we also observed a significant increase in a low molecu-
lar weight species of TDP-43 which we termed TDP-35 
for its migration of ~35 kDa. The exact nature of TDP-35 
and its relevance to the tauopathy observed in our models 
is unclear. In humans, it has been suggested that a simi-
lar 35  kDa species observed in TDP-43 proteinopathies 
may be generated from alternative translational or splic-
ing pathways or may be the result of cleavage by caspase 
activity [41, 53, 61]. Indeed, caspase activation is a feature 
of the mouse models of tauopathy utilized in this study 
[49, 60].

The association between cytoplasmic pTDP-43 and tau 
appears specific since we saw no evidence of cytoplasmic 
relocalization of pTDP-43 in mouse models of Aβ amyloi-
dosis, α-synucleinopathy or polyglutamine disease (HD), 
regardless of the broad spectrum of ages and stages of pri-
mary proteinopathy examined. A number of papers report 
TDP-43 pathology in AD with estimates ranging from 23 
to 56 % [1, 2, 19, 21, 30, 51]. Many of the inclusions in 
human brains display close overlap between tau and TDP-
43 [1, 2], similar to that observed in the tauopathy mice 
here. Lin and Dickson [32] also previously reported that 
in human AD brains, TDP-43 also can associate with tau 
within neuronal inclusions at the ultrastructural level.

The amyloid models that we utilized in the current study 
do not develop tauopathy similar to that observed in AD; 
therefore, it is possible that amyloidosis and tauopathy act 
in concert in AD to produce TDP-43 pathology. Caccamo 
et al. [6] reported that the 3XTg-AD amyloid model [42], 
which express mutant amyloid precursor protein, mutant 

Fig. 5   Higher molecular weight species of TDP-43 is elevated in 
the soluble fraction of rTg4510 compared to non-transgenic mice. 
(a) 10-month-old rTg4510 (Tg) and non-transgenic (NT) mice have 
equivalent expression of full-length TDP-43 protein (arrow). (a, b) 
rTg4510 mice have increased levels of high molecular weight TDP-
43 protein (line, TDP-43 HMW) in the soluble fraction compared to 
NT mice (p = 0.03, unpaired t-test). β-Actin was used as a loading 
control. RU stands for relative units
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presenilin 1, and P301L mutant tau protein, have increased 
full-length and ~35 kDa TDP in the low salt fraction and 
cytosolic fraction at 6 months of age, but not at 2 months 
or 12 months. Caccamo et al. [6] suggested that high lev-
els of soluble amyloid beta oligomers positively correlated 
with TDP-43 changes, but they did not report an associa-
tion with tau. Since the tauopathy in the 3XTg-AD model 
is much later and more modest than the amyloid pathology, 
it is not clear if the impact of tauopathy would have been 
observed by Caccamo et al. in the ages of mice examined. 
Herman et al. [18] also reported increased TDP-43 expres-
sion, cleavage and aggregation in association with intracel-
lular amyloid beta 1–42 using lentiviral expression of amy-
loid beta 1–42 in rat motor cortex. Neither study reported 
an association of TDP-43 with the extracellular plaques 
that we examined in this report.

TDP-43 pathology is frequently observed in the brains 
(18–60 %) of patients with DLB [2, 19, 37], however, tau, 
α-synuclein and Aβ amyloid deposits often coexist in these 
brains making it difficult to assess which of these primary 
insults may trigger TDP-43 inclusion formation. In the cur-
rent study, we used transgenic mice that primarily develop 
each specific type of these three inclusions to provide a use-
ful indication of which one is more likely to contribute to 
TDP-43 cytoplasmic aggregation. The association between 
tau aggregation and pTDP-43 cytoplasmic aggregation 
in these tau transgenic mice could suggest that tau is the 
most critical factor driving TDP-43 aggregation in human 

DLB. Alternatively, that the co-occurrence of α-synuclein, 
tau and amyloid pathology in DLB could trigger an alter-
native mechanism which drives TDP-43 aggregation. Our 
currently available mouse models would not allow us to 
explore this scenario.

Our group has also shown that constitutive overexpres-
sion of wild-type and less so mutant TDP-43 can cause 
aggregation of hyperphosphorylated tau protein at S202, 
one of the two epitopes that is recognized by the AT8 anti-
body used in the current study [58]. This data also sug-
gested that activation of PKC in the TDP-43 mice led to the 
hyperphosphorylated tau providing another link between 
tau and TDP-43. More recently, Jinwal et al. [26], reported 
that clearance of TDP-43 protein via a Cdc37/Hsp90 com-
plex is impaired by the accumulation of tau. This recent 
finding also could underlie our in vivo findings in the tau 
transgenic mice that show robust aggregation of hyperphos-
phorylated tau protein.

Our results show a clear link between tau pathology and 
cytoplasmic accumulation of phosphorylated TDP-43 in the 
controlled in vivo systems of tau transgenic mice. It is cur-
rently unknown if this association between tau and TDP-
43 can affect the disease course in either the mouse models 
or in human tauopathies. Our studies lay the groundwork 
for such investigations. Certainly, our data would suggest 
that groups with large cohorts of MAPT mutation carriers 
should assess their autopsy tissue for overlapping tau and 
TDP-43 pathology; however, such screens are generally 

Fig. 6   Full-length and ~35 kDa 
TDP-43 show increased insolu-
blity in rTg4510 compared to 
NT mice. (a) 10-month-old 
rTg4510 (Tg) mice show 
significant increases in (a, b) 
full-length TDP-43 protein 
(p = 0.03) and (a, c) lower 
molecular weight ~35 kDa 
TDP-43, termed TDP-35 
(p = 0.0001), within the sarko-
syl-insoluble fraction compared 
to NT mice. AU stands for 
arbitrary units. Analyzed using 
unpaired t-test
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precluded by the availability of tissue from known MAPT 
carriers. Functional studies which exploit the capabilities of 
the in vivo model systems utilized in this report could com-
pliment these human studies. For example, the rTg4510 
model of tauopathy can now be crossbred with conditional 
TDP-43 models created by our group and others [7, 24] to 
determine if the two pathologies act in concert to accelerate 
the FTLD-like neurodegeneration of these models. Further-
more, we can now suppress tau expression in the rTg4510 
mice and determine if the TDP-43 pathology is reversible 
and if any reversion of TDP-43 pathology tracks with the 
cognitive recovery observed in tau suppressed rTg4510 
mice [46]. In addition, seeding and spreading techniques 
[23] that are proving informative for the tau field could be 
expanded into TDP-43 transgenic mice (and vice versa) 
to help determine the cross talk between tau and TDP-
43. Clarification of the disease relevance between tau and 
TDP-43 will ultimately allow us to determine if therapeu-
tic efforts aimed at one molecule may hold promise against 
diseases characterized by the other protein.
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