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accumulate and get fixed over time. This review considers 
genome-scale evidence on ancient Y chromosome diver-
sity that has recently started to accumulate in geographic 
areas favourable to DNA preservation. More specifically 
the review focuses on examples of regional continuity and 
change of the Y chromosome haplogroups in North Eurasia 
and in the New World.

Background

Until recently, ancient DNA studies of human remain 
focused primarily on variation embedded in mitochon-
drial DNA (mtDNA). For decades, mtDNA had been a 
target of choice in population genetic studies because of 
its high mutation rate and high density of polymorphic 
markers (Wilson et al. 1985). Also, because for any unique 
sequence in the autosomal, X or Y chromosome locus there 
are many hundreds or even thousands of copies of mtDNA 
means that this maternally inherited locus was more likely 
to work in cases where only a very small number of mol-
ecules had survived (Krings et al. 1997). HTS technologies 
have significantly increased the rate at which sequence data 
can be generated and make accessible surviving chunks of 
DNA that are shorter than the size of a PCR (polymerase 
chain reaction) amplicon (Orlando et al. 2015). They have 
reduced the costs of sequencing and opened the prospects of 
assessing the variation of human populations, both modern 
and ancient, at the scale of entire genomes (Genomes Pro-
ject et al. 2012; Gilbert et al. 2008; Green et al. 2010; Ras-
mussen et al. 2010). These technological advances (Orlando 
et al. 2015) have also made it possible now to study ancient 
Y chromosome (aY) variation in human populations at the 
scale of the entire accessible length of the male-specific and 
non-recombining regions of human Y chromosome.

Abstract  High throughput sequencing methods have com-
pletely transformed the study of human Y chromosome 
variation by offering a genome-scale view on genetic vari-
ation retrieved from ancient human remains in context of 
a growing number of high coverage whole Y chromosome 
sequence data from living populations from across the 
world. The ancient Y chromosome sequences are providing 
us the first exciting glimpses into the past variation of male-
specific compartment of the genome and the opportunity to 
evaluate models based on previously made inferences from 
patterns of genetic variation in living populations. Analy-
ses of the ancient Y chromosome sequences are challenging 
not only because of issues generally related to ancient DNA 
work, such as DNA damage-induced mutations and low 
content of endogenous DNA in most human remains, but 
also because of specific properties of the Y chromosome, 
such as its highly repetitive nature and high homology with 
the X chromosome. Shotgun sequencing of uniquely map-
ping regions of the Y chromosomes to sufficiently high 
coverage is still challenging and costly in poorly preserved 
samples. To increase the coverage of specific target SNPs 
capture-based methods have been developed and used in 
recent years to generate Y chromosome sequence data from 
hundreds of prehistoric skeletal remains. Besides the pros-
pects of testing directly as how much genetic change in a 
given time period has accompanied changes in material 
culture the sequencing of ancient Y chromosomes allows 
us also to better understand the rate at which mutations 
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Ancient DNA presents us the opportunity to directly 
examine which Y chromosome single nucleotide poly-
morphisms (SNPs) and haplotypes were present at dif-
ferent time periods in regions that support long-term 
survival of ancient DNA. It is perhaps not surprising that 
archaeological sites from high latitude areas (Hofreiter 
et  al. 2015) have yielded the largest number of success-
fully sequenced samples in recent genome-scale studies 
that have reported on aY. These studies, as reviewed in 
further detail below, have provided us the first glimpses 
of the dynamics of aY haplogroup composition and fre-
quency changes in transects of time and allow us to test 
hypotheses based on earlier phylogeographic inferences 
made from the Y chromosome data of presently living 
populations. In this review, ‘haplogroups’ and ‘clades’ 
are terms that are interchangeably used to refer to groups 
of closely-related Y chromosome sequences that share 
a common ancestor. While there is a general agreement 
in the definition of the basic haplogroups (A, B, C, etc.) 
multiple parallel nomenclatures are in use for sub-clades 
(e.g. see http://www.phylotree.org/Y/, http://isogg.
org/tree/, https://www.yfull.com/tree/). For clarity, the 
names of sub-clades used here are suffixed by the defin-
ing SNP-marker name, as suggested previously (Karmin 
et al. 2015; van Oven et al. 2014). Similarly to the extent 
to which our earlier views on peopling of continental 
regions such as Europe based on inferences made from 
extant mtDNA variation have changed in the light of new 
ancient mtDNA evidence (Bollongino et  al. 2013; Bra-
manti et  al. 2009; Brandt et  al. 2013; Haak et  al. 2015; 
Posth et al. 2016; Thomas et al. 2013), it can be seen that 
models linking the spread of specific Y chromosome hap-
logroups with the spread of material culture may require 
substantial revision in the light of new aY evidence.

In this review, methodological aspects of ancient Y chro-
mosome work will be first discussed with a focus on recent 
HTS research based on shotgun and capture approaches. 
Challenges common to all ancient DNA studies include 
those related to calling human polymorphic variants from 
short and damaged sequence reads that are derived from a 
mix of different organisms. Highly repetitive nature of the 
Y chromosome combined with its high sequence homol-
ogy with the X chromosome (Skaletsky et  al. 2003) fur-
ther complicates variant calling from short ancient DNA 
sequence reads. These issues, together with the pater-
nal inheritance of Y chromosome, its haploid nature and 
high linkage between physically distant SNPs, impact on 
choices of the bioinformatics methods of downstream data 
analysis. They define the restrictions and specifics how the 
aY sequence data should be processed and what are the 
limitations for the interpretations made from such data. 
Finally, the demographic histories European and North 
American populations will be briefly reviewed in the light 

of recently emerged Y chromosome evidence from ancient 
DNA studies.

Methodological issues in dealing with aY

Two different approaches, shotgun and hybridization cap-
ture-based sequencing, have been used in recent ancient 
DNA studies to assess the variation of ancient Y chromo-
somes. In all genome-scale studies, shotgun sequencing 
is typically used firstly in the screening phase. In case of 
high percentage (~>10%) of reads mapping uniquely to 
the human reference genome combined with low clonal-
ity of the reads, further shotgun sequencing of the sample 
to a higher coverage can be generally considered to be an 
efficient and relatively cost-effective strategy. However, in 
cases where the content of human genome mapping reads 
is low (~1 to 10%), enrichment methods that target specifi-
cally human-specific DNA have been considered to be a 
practical solution for getting improved coverage of SNPs 
that are considered informative in downstream analyses 
(Haak et  al. 2015; Lazaridis et  al. 2016; Mathieson et  al. 
2015). Having sufficient coverage of the Y chromosome 
SNP data in ancient samples is important for mapping them 
correctly to the phylogenetic tree and for examining the 
relationship among multiple ancient samples in parallel. 
First, low coverage of data can have an undesirable effect 
on the inferences of the positioning of ancient samples in 
a tree in relation to high coverage modern Y chromosome 
sequence data, and, in particular, for the estimation of 
branch lengths of the phylogeny as exemplified in Fig. 1. 
Besides the coverage (a measure of how many sites of the 
reference genome are covered by data in a given sample), 
it is also the sequencing depth (the number of reads cover-
ing a site) at each given site that contributes to the branch 
length estimates as sites covered by only one or two reads 
tend to have a high rate of false positive sequencing errors. 
Second, when pooling from many ancient samples, data 
analysis methods that rely on allele frequency comparisons 
of individual SNPs require reasonable number of overlap-
ping sites covered by data in multiple samples. Predictably, 
the more low coverage samples are included in the analyses 
the less overlapping SNPs remain available for downstream 
data analyses.

A number of Y chromosome sequences covered in 
this review have been generated with shotgun sequenc-
ing approach. These include the four oldest genomes of 
individuals dated to late Pleistocene as well as a number 
of remains from Europe and Americas dated to the Holo-
cene period. A substantial proportion of the European and 
Middle Eastern Neolithic and Bronze Age remains have 
been sequenced, however, with hybridization-based cap-
ture technique. Capture-based methods focus on specific 
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targets in the genome with the aim to raise their relative 
coverage in the resulting data. The human origins (HO) 
genome-wide SNP array (Patterson et  al. 2012) has been 
used to genotype more than 600 K SNPs in more than two 
thousand living individuals from 203 populations (Laza-
ridis et al. 2014). A subset of 390 K SNPs from this array, 
including 2258 Y chromosome markers, were targeted later 
(Haak et al. 2015) in a hybridization-based capture design 
to assess variation in 69 Europeans living 8–3 thousand 
years ago. The extended panel of the HO hybridization 
design now targets 1240  K SNPs genome-wide including 
32,681 from the Y chromosome (Mathieson et  al. 2015). 
This approach has been used to assess at a high molecu-
lar resolution the phylogenetic affiliation of a large number 
of 110 ancient Y chromosomes from Europe and Near East 
(Lazaridis et al. 2016).

Several aspects of the capture-based data need to be 
considered when interpreting the phylogenetic reconstruc-
tions based on genotype rather than sequence data. First, 
the advantage of the capture approach, as mentioned above, 
is that it allows for the generation of data with higher cov-
erage and higher overlaps among large number of indi-
viduals for a given set of SNPs (Pickrell and Reich 2014). 
This means that even in case of poorly preserved samples, 
robust haplogroup inferences, supported by multiple phy-
logenetically equivalent SNPs, can be made. The generic 
limitation of the approaches that focus on the enrichment-
targeted SNPs is the ascertainment bias towards previously 

discovered variants and that the capture approach does not 
enable the user to discover novel variants and clades that 
have either become extinct or that have been not presented 
in the ascertainment set used for the design of the panel of 
SNPs to be captured (Fig. 2). Although the 32,681 Y-SNPs 
of the HO-1240K design include a large number of Simons 
Genome Diversity Project (Mallick et al. 2016) and ISOGG 
(International Society of Genetic Genealogy, http://isogg.
org/tree/) catalogued variants these would entail, by design, 
predominantly annotations of the clades that are common 
in present day populations.

Because most personal genomes that have been anno-
tated by ISOGG come from individuals of European or 
North American descent the capture enriched for ISOGG 
SNPs is best suited for the study of European Y chromo-
some diversity while being less efficient for the study of 
other regions. But also in Europe it should be noted that 
clades that have become infrequent or extinct over time due 
to extensive admixture or population replacement would 
have less chance to be recognised with the SNP-targeting 
capture approach. If the parental clade of an extinct branch 
has extant sister-clades that have been characterised in 
the annotated databases the aY sequence from that extinct 
clade will be characterised at the level of the parental clade 
(Fig.  2). While the most common Y chromosome haplo-
groups in Europe are represented in the HO-1240K SNP 
array by many phylogenetically equivalent SNPs they can 
be robustly recognised and called even in samples with 

Fig. 1   Effect of low coverage 
of the data and post-mortem 
damage on the inferences of 
branch lengths and on the phy-
logenetic mapping of mutations 
to the tree. A general example 
of phylogenetic relationships 
between one high coverage 
modern (M1) and two low 
coverage ancient (A1 and A2) 
samples is shown. The number 
of mutations mapping to each 
branch is shown on both trees. 
The change in numbers of 
mutations mismapped due to 
low coverage on each branch 
of the tree is explained with 
the red arrows that indicate the 
directionality of the mismap-
ping. A1 is shown to carry more 
damage-induced mutations 
than A2. Modified from Poznik 
et al. (2016), Supplementary 
Figure 18 
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large number of missing data, the haplogroups of other 
continental regions are less completely characterised in 
SNP arrays and therefore shotgun approach may be prefer-
able for the ancient DNA (aDNA) study of Y chromosome 
variation in those areas. As the accessible regions of the Y 
chromosome that are commonly used in genetic studies are 
haploid and do not undergo recombination imputation is 
more efficient in Y chromosome branches represented by 
multiple equivalent SNPs than it is in autosomal loci and 
therefore shotgun sequence data with fairly low cover-
age can be used for unbiased assessment of phylogenetic 
affinities of aY lineages. However, when using imputation, 
particularly in the more terminal branches of the tree, one 
should be cautioned that some of the ancient samples may 
in fact derive from clades that share only part of the SNPs 
defining the extant branch of the Y tree and not all of the 
SNPs.

Another complicating factor for determining Y chromo-
some haplogroups from ancient DNA data is that it can 
be challenging to distinguish true mutations from those 
induced by damage, particularly in case of C to T and G to 
A substitutions (Gilbert et al. 2003; Hofreiter et al. 2001). 
A commonly used strategy for dealing with post-mortem 
damage in ancient DNA studies is the removal of transi-
tions which are the main targets of deamination-induced 
miscalls via uracil DNA glycosylase treatment or data fil-
tering (Orlando et al. 2015). As transitions occur naturally 

more frequently than transversions their total removal can 
lead, however, to dramatic losses of data and thereby loss 
of phylogenetic resolution, particularly in cases where 
the sub-clade-defining branches are short. Therefore, aY 
sequences with low coverage (<0.1×) may not contain 
enough informative transversions to allow for robust hap-
logroup assignment at a resolution that would be useful for 
testing cases of genetic continuity or admixture. Capture 
approach may yield better coverage at targeted sites but it 
should be also cautioned that some SNP-targeting capture 
designs can be enriched for transitions due to the removal 
of strand ambiguous G<->C and A<->T transversions from 
the design of SNP-chips.

High coverage Y chromosome sequences, whether from 
modern or ancient samples, can be used to draw trees with 
informative branch lengths. With low coverage data gener-
ated from ancient human remains, it is typically not pos-
sible to make a clear distinction between damage-affected 
sites and true mutations (Fig.  1). This ambiguity makes 
it either highly problematic or impossible for the user to 
determine the lengths of the private branches of the ancient 
samples. Capture-based methods that are designed to tar-
get sequences surrounding a restricted number of known 
SNPs have a number of advantages, as reviewed earlier 
(Pickrell and Reich 2014), while at the same time being 
limited to detect only variants that are included in the cap-
ture design. This means that these methods do not allow for 
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the discovery of new variants nor to determine the length 
of the private branches of the Y chromosome tree. The cap-
ture designs targeting large regions of DNA that uniquely 
map to the Y chromosome, such as the BigY design of 
FamilyTree (https://www.familytreedna.com/learn/wp-
content/uploads/2014/08/BIG_Y_WhitePager.pdf) which 
has 67,000 probes that enable the generation of 4.36 Mbp 
sequence data from “globally covered” regions of the Y 
chromosome, or the smaller scale capture design of 500 kb 
non-recombining regions of Lippold et  al. (2014), have 
been successfully applied on modern samples. These cap-
ture approaches are able to detect new, previously unchar-
acterized variants within the captured regions but they 
are yet to be shown to work efficiently on ancient DNA. 
Hybridization enrichment approach targeting chromo-
some 21 has been successfully applied on the ~40 thousand 
year-old (KYA) human remains from Tianyuan Cave out-
side Beijing, China (Fu et al. 2013) suggesting that similar 
approaches can be applied in the future also on accessible 
(non-ampliconic) regions of the Y chromosome.

Although HTS methods enable us to generate sequence 
data from short ancient DNA molecules downstream 
analysis of extremely short Y chromosome mapping reads 
is limited by the complexity of the Y chromosome which 
includes large number of repeats and regions that map 
to other chromosomal regions. This means that female 
individuals may yield calls for Y chromosome SNPs sur-
rounded by sequence highly homologous to the X chromo-
some. Inclusion of SNPs that map outside unique single-
copy regions of the Y chromosome confounds phylogenetic 
mapping of ancient DNA samples and may also bias the 
analyses based on branch lengths and quantitative estimates 
of sequence divergence between samples. The approach 
most typically used in HTS studies of Y chromosome 
diversity is to filter out SNPs from high homology regions, 
typically converging to X chromosome degenerate regions 
of a total size <10 Mbp (Francalacci et  al. 2015; Karmin 
et  al. 2015; Poznik et  al. 2013; Wei et  al. 2013). Several 
attempts to infer Y chromosome mutation rate from these 
uniquely mapping regions using ancient DNA data have 
been made, as reviewed in the paper by Oleg Balanovsky 
in this volume.

Genetic history of Eurasian Y chromosomes

Consistent with generally higher genetic diversity in Afri-
can populations, the highest number of deeply splitting 
branches of human Y chromosome tree can be found in 
African populations (Cruciani et  al. 2011; Mendez et  al. 
2013; Poznik et  al. 2013; Wei et  al. 2013). The extant 
variation in other continents is mainly restricted to three 
branches of the M168 clade: D, C and F (Hallast et  al. 

2015; Karmin et al. 2015; Poznik et al. 2013, 2016; Scoz-
zari et al. 2014; Wei et al. 2013). Genetic variation within 
each of these three clades coalesces to a single founding 
lineage within 40–60 KYA time depth, consistent with the 
Out of Africa (OOA) dispersal model (Stringer 2002). In 
addition to these three clades, the populations of Near East 
and Europe also show the presence of young sub-clades 
of haplogroup E which are likely to reflect recent episodic 
gene flow from Africa within the last 25 KYA and a range 
expansion of a sub-clade E2a1-V13 in Europe within the 
last few thousand years (Cruciani et  al. 2007). The three 
basal Eurasian branches D, C and F split further into ~40 
extant branches that are older than 30KYA (Fig. 3). Know-
ing the age of the ancient human remains whose genomes 
have been sequenced, we can map their Y chromosomes on 
the phylogenetic tree relating these extant branches and ask 
whether they are consistent with the inferences of ancestral 
variation made from modern data or whether they represent 
distantly related clades that have left no living descend-
ants. In Fig. 3, aY sequences with known radiocarbon dates 
are mapped, on the basis of the derived alleles they share 
with modern sequences, on a tree summarizing variation 
in modern whole Y chromosome sequence data (Scozzari 
et al. 2014; Karmin et al. 2015; Hallast et al. 2015; Batini 
et  al. 2015; Poznik et  al. 2016). The nine oldest ancient 
Y chromosomes that have been sequenced so far at suffi-
ciently high coverage to allow for phylogenetic mapping 
are from northern parts of Eurasia (Fu et  al. 2014, 2015, 
2016; Raghavan et al. 2014b; Seguin-Orlando et al. 2014). 
Notably, all nine of these aY sequences can be assigned to 
one of the three major founding lineages that have been 
inferred from the analyses of extant Y variation. This good 
match between the ancestral lineages that are observed and 
those expected from present-day variation to have existed 
in the time frame of 20–50 thousand years ago supports the 
view of a robust recovery of non-Africans from extremely 
low values of male effective population size during the 
OOA bottleneck (Lippold et al. 2014).

Two of the oldest human Y chromosomes sequenced so 
far, Ust’Ishim Man (Fu et al. 2014) and the Oase Man (Fu 
et  al. 2015), are both placed near the root of haplogroup 
K, a sub-clade of F, which is globally the most frequent Y 
chromosome lineage alive today. K is an ancestral group 
that unites a number of regional haplogroups that are found 
widely spread today in Europe, East Asia, Oceania, and 
Americas. Notably, however, the Y chromosomes of these 
two ancient Eurasian colonists are not exactly equidistant 
to all living descendants of haplogroup K that are found 
today in the world. Both Ust’Ishim and Oase men share 
the derived allele of a marker M2308 (Poznik et al. 2016) 
which defines the basal root of two common haplogroups N 
and O (Fig. 3). These M2308-derived haplogroups have a 
wide spread today in Eurasia, extending from Finno-Ugric 

https://www.familytreedna.com/learn/wp-content/uploads/2014/08/BIG_Y_WhitePager.pdf
https://www.familytreedna.com/learn/wp-content/uploads/2014/08/BIG_Y_WhitePager.pdf
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populations of Northeast Europe to Tibeto-Burman, Aus-
troasiatic and Austronesian speaking groups of South and 
East Asia (Ilumae et al. 2016; Poznik et al. 2016). Although 
the Ust’Ishim and Oase men were separated from each 
other about 5 thousand years in time and about 5 thousand 
kilometres in space these two sampling points we have 
from the earliest period of peopling of Eurasia suggest 
some level of continuity in certain Y chromosome lineages 
that exist in present-day populations of Eurasia. In contrast, 
the analyses of autosomal genomes have shown that both 
Ust’Ishim and Oase men were equidistant to East and West 
Eurasian populations and therefore unlikely to have con-
tributed substantially to later humans in geographic regions 
where they were living in (Fu et al. 2014, 2015). The phy-
logenetic affiliation of these early Eurasian men with an 
NO-related clade is notable because phylogeographic infer-
ences made from present day Y chromosome variation 
have highlighted other haplogroups, I and R1-M173, as 
signatures of the genetic legacy of Palaeolithic humans in 
West Eurasia (Semino et al. 2000) while the origin of hap-
logroups N and O (Rootsi et al. 2007), as well as other sub-
clades of haplogroup K (Karafet et al. 2015), was deemed 

most likely to be, on the grounds of the highest genetic 
diversity, in Southeast Asia.

The 37 KYA Kostenki-14 Man, found on the west-
ern bank of river Don near Voronezh in Southwest Rus-
sia, and whose genome has been sequenced to an average 
depth of 2.8×, descended from a population that was more 
closely related to modern Europeans than to East Eura-
sians (Seguin-Orlando et al. 2014). Yet, his Y chromosome 
belonged to haplogroup C which is extremely rare or absent 
in most European populations sampled today (Semino et al. 
2000). So, although his autosomal genes show the highest 
affinity to European present-day populations his Y chromo-
some is different. Haplogroup C is common today in popu-
lations of Siberia, Southeast Asia and Oceania (Bergstrom 
et al. 2016; Karafet et al. 2001, 2002; Kayser 2010). This 
disparity may suggest, in line with similar findings of mito-
chondrial DNA haplogroup M lineages in pre-Holocene 
remains from Europe, that peopling of Europe involved 
several population replacements and turnovers (Posth et al. 
2016). Furthermore, the occurrence of haplogroup C line-
ages different from the Kostenki type, those belonging to 
a rare C6-V20 (Scozzari et al. 2012) sub-clade (Fig. 4), in 
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Iberian hunter-gatherer sample from La Brana (Olalde et al. 
2014) and in three Neolithic farmer samples from Anatolia 
and Central Europe (Mathieson et  al. 2015) shows that a 
diverse set of haplogroup C lineages may have been com-
mon and widely spread throughout Eurasia before Middle 
Holocene. Overall, this newly emerging aDNA evidence 
from late Pleistocene shows that the Y chromosome pool of 
West Eurasia has undergone significant changes over time 
and that inferences made from present-day genetic varia-
tion about the time and place of origin of Y chromosome 
haplogroups can be imperfect.

Besides the haplogroup C lineages that are atypical to 
present-day populations living in the area the Y chromo-
some pool of the early Holocene hunter-gatherer and 
farmer populations of Europe and Middle East was char-
acterised by a diverse set of haplogroups, such as G, H, I, J 
and R, which are restricted in their present-day distribution 
by and large to Europe, Middle East, North Africa, South 
and Central Asia. The geographic patterns of haplogroup 
G distribution in present-day populations have been sug-
gested to reflect the spread of Anatolian farmers to Europe 
(Semino et  al. 2000). Its sub-clades are most frequently 

found today in the Caucasus and West Asia while being 
rare in Europe (Cinnioglu et al. 2004; Firasat et al. 2007; 
Haber et al. 2012; Nasidze et al. 2008; Rootsi et al. 2012; 
Yunusbayev et al. 2012). Ancient DNA evidence from Ana-
tolia and Iran confirms that G, along with H, was the most 
common Y chromosome haplogroup of the early farmers in 
these areas (Fig. 5) as well as being characteristically fre-
quent in European Early Neolithic populations who also 
show low autosomal genetic distances with Anatolian farm-
ers (Broushaki et  al. 2016; Hofmanova et  al. 2016; Laza-
ridis et al. 2016; Mathieson et al. 2015). Coherent with the 
tight clustering of the autosomal genome of the Tyrolean 
Iceman, nicknamed Ötzi, together with present-day popula-
tions of Sardinia and Corsica (Keller et al. 2012), and the 
claims that Sardinians represent the genetic continuity from 
the early farmers of Europe (Sikora et al. 2014; Skoglund 
et  al. 2012), Ötzi’s Y chromosome lineage, G2a-L166, 
descends from the G2a-L91 lineage that was common 
among Anatolian Farmers 8 KYA (Lazaridis et  al. 2016). 
Today, the G2a-L91 sub-clade has survived in Europe as a 
rare lineage with the highest incidence in Sardinia and Cor-
sica (Francalacci et al. 2013; Keller et al. 2012).

Fig. 4   Major sub-clades of Y 
chromosome haplogroup C in 
ancient and present-day popula-
tions. The structure of the major 
sub-clades is drawn in propor-
tion to their coalescent time (the 
tip of each triangle) estimated 
from high coverage genomes 
of present-day populations 
(Bergstrom et al. 2016; Karmin 
et al. 2015; Poznik et al. 2016; 
Scozzari et al. 2012). The phy-
logenetic mapping of ancient 
Y chromosomes (Gamba et al. 
2014; Mathieson et al. 2015; 
Olalde et al. 2014; Seguin-
Orlando et al. 2014) is shown 
with red symbols. Haplogroup 
names are shown in brown font 
and haplogroup-defining SNP-
marker names in grey font next 
to relevant branches. The key 
areas of the present-day spread 
of the haplogroups are indicated 
with colour and white text 
inside the triangles. PNG Papua 
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In contrast to haplogroup G, the geographic distribution 
of haplogroup H is presently almost entirely restricted to 
South Asia, while one of its sub-clades, H4-L285 (Fig. 5), 
can be detected as an extremely rare lineage in some Euro-
pean populations. H4-L285 has also been found in the aY 
sequences of the Anatolian and Levantine farmers as well 
as in Iberian Chalcolithic samples (Gunther et  al. 2015; 
Lazaridis et  al. 2016). Overall, the comparisons of early 
and middle Holocene versus present-day distributions of 
haplogroup G and H suggest that as characteristic markers 
of the early farmer populations of Middle East they were 
introduced to Europe by the expanding Anatolian farming 
populations. Their frequency has remained high in some 
geographically isolated areas such as the Caucasus, Sar-
dinia, Corsica, whereas their frequency in main parts of 
Europe dropped later due to inflow of other Y chromosome 
lineages.

Haplogroup I frequency distribution is largely restricted 
to Europe where two major sub-clades I1 and I2 describe 
most of the extant variation (Fig. 6). It has been proposed 
that this restricted geographic area of its spread reflects 
local continuity since the Palaeolithic hunter-gatherers 
(Rootsi et al. 2004) standing in contrast to the geographic 
area of the highest frequency and diversity of its sister-
clade J which alongside with the cline of haplogroup G 
frequency has been interpreted as a reflection of demic 

diffusion of farmers from Middle East to Europe (Semino 
et  al. 2000). The ancient DNA evidence that has started 
to emerge recently confirms that haplogroup I was indeed 
common in Palaeolithic hunter-gatherers of Europe (Fu 
et  al. 2016; Lazaridis et  al. 2014); but it also points to a 
more complex picture with both hunter-gathers and farm-
ers carrying haplogroup I as well as J lineages. The minor 
sub-clade of haplogroup I, I3-L596 (Fig. 6), has been found 
spread across a wide geographic area in Early and Mid-
dle Holocene samples, being found in Anatolian Farmers 
(Lazaridis et  al. 2016) as well as in Scandinavian hunter-
gatherers from Motala (Mathieson et  al. 2015). I1-M253 
lineages which are common in Scandinavia today, at 
25–35% frequency (Rootsi et  al. 2004), coalesce to a 
recent common founder at 5KYA. Similarly to its present 
day peak frequency area aY sequences falling to this clade 
are by and large restricted to three Nordic Late Neolithic 
and Bronze Age samples (Allentoft et  al. 2015). Interest-
ingly, one Trans-Danubian Early Neolithic (7.6–6.9KYA), 
LBK, sample from Hungary has also been recovered with 
I1-M253 affiliation (Szecsenyi-Nagy et al. 2015), suggest-
ing that I1-M253 lineages may have been brought to Scan-
dinavia by Neolithic farmers rather than representing local 
continuity of a pre-Holocene pool of Y chromosome line-
ages. I2-PF3835 lineages were, second only to haplogroup 
G, among the most common Y chromosome groups in early 
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farmers of Central Europe (Gamba et al. 2014; Mathieson 
et al. 2015; Szecsenyi-Nagy et al. 2015). Lineages distantly 
related to the extant sub-clades of haplogroup I2a-M423, 
which are common in Western (I2a-L161) and Eastern (I2a-
L621) Europe today have been found in the aY sequences 
of hunter-gatherers from Switzerland, Hungary and Scan-
dinavia as well as in Neolithic and Bronze Age samples 
from Hungary, Germany and Iberia suggesting some level 
of regional continuity (Haak et al. 2015; Jones et al. 2015; 
Mathieson et al. 2015).

Haplogroup J, which, on the basis of its present-day 
clinal frequency distribution has been associated with the 
early spread of farming to Europe (Rosser et  al. 2000; 
Semino et al. 2000), has not been detected so far in Euro-
pean Neolithic context, instead, this haplogroup is found in 
hunter-gatherers from geographically distant areas, from 
the Caucasus and Karelia (Fig. 6), as well as in two early 
farmers from Iran and one from Anatolia (Jones et al. 2015; 
Lazaridis et al. 2016; Mathieson et al. 2015). In Central and 
Western Europe, J lineages start to emerge in the Bronze 
Age, likely being part of the demographic processes and 
population movements initiated from the North Caucasus 
area during that period. It is possible that these recent pro-
cesses also introduced to Europe sub-clades of haplogroup 
E (Cinnioglu et  al. 2004; Cruciani et  al. 2007; Trombetta 
et  al. 2015) which according to recent ancient DNA evi-
dence was a characteristic haplogroup of the Natufians, 

pre-pottery farmers of Levant and Ethiopians (Gallego 
Llorente et al. 2015; Lazaridis et al. 2016).

Y chromosome haplogroup R1b-M343 is currently the 
most common haplogroup among present day popula-
tions of Western Europe. It has a peak frequency of ~90% 
in the Basques who have been considered to represent a 
relict descendant group, by its genes and languages, of a 
pre-Neolithic population of Europe (Cavalli-Sforza et  al. 
1994; Richards et  al. 1996). The decreasing northwest to 
southeast frequency gradient of haplogroup R1b-M343 was 
interpreted first to have resulted from admixture of Meso-
lithic hunter-gatherers with Neolithic farmers carrying hap-
logroups J and G (Rosser et al. 2000; Semino et al. 2000). 
We now know from whole Y chromosome sequencing 
studies of modern samples that the coalescent time of the 
most common European sub-clade of R1b-M269 is shal-
low, 5–7 thousand years (Batini et  al. 2015; Hallast et  al. 
2015; Karmin et  al. 2015; Poznik et  al. 2016). From the 
aDNA studies we have learned that the oldest R1b-M343 
lineages, including 14 KYA Villabruna Man from Italy (Fu 
et al. 2016) and three European hunter-gatherers and three 
early farmer samples (Fig. 7), did not belong to the R1b-
M269 sub-clade. According to the ancient DNA evidence, 
the R1b-M269 lineages did not, in fact, become common 
in Europe before the Late Neolithic/Bronze Age (Allentoft 
et  al. 2015; Haak et  al. 2015; Mathieson et  al. 2015). We 
also know that modern-day Basques have the highest 
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affinity in their autosomal genes to the early farmers of 
Atapuerca from Spain (Gunther et al. 2015) while their Y 
chromosomes arguably reflect a more recent male-specific 
admixture from Eastern Europe, from the areas of the dis-
tribution of Yamnaya Culture (Goldberg et al. 2017; Haak 
et al. 2015).

In contrast to preceding Early and Middle Neolithic 
sections of time, a large proportion of the Y chromosomes 
recovered from Bronze Age remains of Central Europe, 
Northern Caucasus and the Steppe belt of Russia belong 
to a couple of sub-clades of haplogroups R1a-M420 and 
R1b-M343 (Fig. 7). Late Neolithic, Early Bronze Age and 
Iron Age samples from Central and Western Europe have 
typically the R1b-L11, R1a1-Z283 and R1a-M417 (xZ645) 
affiliation while the samples from the Yamnaya and Samara 
neighbourhood are different and belong to sub-clades 
R1b11-Z2105 and R1a2-Z93 (Allentoft et  al. 2015; Cas-
sidy et al. 2016; Haak et al. 2015; Mathieson et al. 2015; 
Schiffels et  al. 2016). The R1b11-Z2015 lineage is today 
common in the Caucasus and Volga-Uralic region while 
being virtually absent in Central and Western Europe 
(Broushaki et al. 2016). Interestingly, the earliest offshoot 
of extant haplogroup R1b-M343 variation, the V88 sub-
clade, which is currently most common in Fulani speak-
ing populations in Africa (Cruciani et al. 2010) has distant 

relatives in Early Neolithic samples from across wide geo-
graphic area from Iberia, Germany to Samara (Fig. 7). In 
a similar way, early offshoots of the R1b and R1a phylog-
enies, including R1b lineages derived at P297 and ances-
tral at M269, and R1a lineages which are derived at M459 
while ancestral at M198 and M417 markers have been 
found in mid-Holocene hunter-gatherer samples in a wide 
area in Eastern Europe, from Karelia, Latvia and Samara 
region (Haak et al. 2015; Jones et al. 2017; Mathieson et al. 
2015). Extremely rare extant sub-clades of R1a, such as 
R1a4-YP5061, R1a5-YP1272, and R1a6-YP4141 (Fig. 7), 
may bear witness to a long-term continuity of such old 
genetic lineages while the majority of present-day R1a and 
R1b lineages in West Eurasia derives from just a handful of 
Late Neolithic/Early Bronze Age male founders.

Ancient Y chromosomes of the Native Americans

The present-day pool of Native American Y chromosomes 
is a mixture of haplogroups that derive from pre-Colum-
bian dispersals from Siberia and more recent gene flow 
from Europe and Africa (Grugni et al. 2015; Kimura et al. 
2016; Roewer et al. 2013; Zegura et al. 2004). The diver-
sity derived from the first dispersals is restricted to just two 
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founding lineages within haplogroup Q and one or two 
in haplogroup C3-M217 (Fig. 3). The lineages specific to 
Native Americans within these two ancient haplogroups 
Q and C that have also branches that are commonly found 
in different parts of Eurasia have been suggested to have 
reached America by multiple independent dispersal events 
from Siberia (Lell et al. 2002). Lell et al. considered hap-
logroup Q, which is the most common clade in both North 
and South American Native populations, to derive from 
a migration from ‘Middle’ Siberia where it is highly fre-
quent today. C3-M217, which in Americas is restricted, as 
a minor haplogroup, to a small number of populations, is 
the most common Y chromosome haplogroup in North-
east Siberians. Lell et al. (Lell et al. 2002) argued that the 
different spread patterns of these two haplogroups in both 
America and in Siberia are the outcome of dual origins 
of Native Americans implying two early dispersal events 
with two distinct source populations. Similar levels of STR 
diversities, however, that have been observed in Native 
American C3-P39 and Q1a-M3 lineages have been inter-
preted in favour of both of these haplogroups being part of 
the initial pool of the first expansion of Native Americans 
some 10–17 thousand years ago and thus can be viewed 
as being in line with what is called the single wave model 
(Zegura et  al. 2004). The finding of a rare group of line-
ages of C3-M217 that share the ancestral allele for the P39 
marker in Ecuador has recently reignited the debate about 
dual origins of Native American haplogroup C and Q line-
ages (Roewer et al. 2013). The C3-M217 Y chromosomes 
without the P39 marker were found in association with 
STR diversity coalescing to 6000 years and Roewer et al. 
(2013) suggested that their presence could be explained 
by a secondary wave from East Asia, and possibly, more 
specifically from Japan, considering that certain similari-
ties in material culture exist between the areas where the 
C3-M217 lineages are found. However, analyses of autoso-
mal SNPs have not supported the model of additional gene 
flow from East Asia to Ecuador suggesting that instead the 
presence of the rare C3-M217 lineages without the P39 
marker represents a case of a rare founding lineage that has 
been lost elsewhere by drift (Mezzavilla et al. 2015).

Ancient DNA studies have cast new light on the debate 
of Native American origins and shown that the loss of rare 
lineages in post-contact Native Americans is not unusual 
and possibly part of the extensive lineage extinction pro-
cess that has been observed in mitochondrial lineages (Lla-
mas et al. 2016). The analyses of the genome of 24 KYA 
human remains, recovered from the Mal’ta site near Lake 
Baikal and shotgun-sequenced to an average depth of 1× 
(Raghavan et  al. 2014b), have shown that Native Ameri-
cans do have ‘dual ancestry’ but not in the sense of the 
dual ancestry model of Lell et  al. (2002). The autosomal 
genome of the Mal’ta Boy has close affinity to modern 

European and Native American populations while being 
more distant to East Asians which suggests, considering 
that overall Native Americans are more closely related to 
East Asians than to Europeans, that the Native Americans 
derive approximately one-third of their genetic ancestry 
from a population to which the Mal’ta Boy was related to 
while two-thirds of their ancestry derives from a different 
source, closely related to modern East Asian populations. 
The Y chromosome of the Mal’ta Boy (Fig.  3) is more 
closely affiliated to West Eurasian R lineages than to East 
Asian D, C or O lineages. It represents an extinct lineage 
that derives from the base of haplogroup R closely after 
the split of the ancestors of haplogroups Q and R. Because 
most Native American Y chromosomes belong to haplo-
group Q, they are more closely related to European Y chro-
mosomes while their maternal lineages (with the excep-
tion of rare haplogroup X2a) are all nested within East 
Asian variation. It should be noted, though, that since both 
mtDNA and Y are effectively single loci no firm conclu-
sions about the sex-specific nature of the admixture process 
that lies at the foundation of Native American ancestry can 
be made from these observations.

Haplogroup Q has two ancient sub-clades, Q1a-M3 and 
Q1b-M971, which were likely born somewhere in Siberia 
before the first dispersal into Americas, and which together 
capture the overwhelming majority of extant Native 
American Y chromosomes today (Jota et al. 2016; Zegura 
et  al. 2004). Besides these two major clades a number of 
rare sub-clades of Q that are geographically restricted to 
Europe, Central and South Asia, or Siberia have been iden-
tified (Jota et  al. 2016; Karmin et  al. 2015; Mallick et  al. 
2016; Poznik et al. 2016). Targeted PCR-based sequencing 
of a region surrounding the Q-M242 and Q1a-M3 markers 
confirmed the affiliation of the 10.3 KYA On Your Knees 
Cave Man (OYKCM) to haplogroup Q3-L275 (Kemp et al. 
2007). Shotgun sequences of two ancient genomes from 
the Americas, the Anzick Boy (Rasmussen et  al. 2014) 
associated with Clovis Culture, and the Kennewick Man 
(Rasmussen et  al. 2015), have revealed at a finer resolu-
tion Y chromosomes that are representative of the present 
day diversity of haplogroup Q in Americas and together 
with the OYKCM evidence provide, thus, a direct support 
to the case that the two extant clades Q1a-M3 and Q1b-
M971 have been in the Americas for at least 10,300 years. 
The Kennewick Man has a Y chromosome that belongs to 
the most common sub-clade Q1a-M3 while the Anzick’s 
Y chromosome belongs to the minor Q1b-M971 lineage 
(Fig. 8).

The third ancient Y chromosome sequence from the 
Americas, or in fact, technically, from Greenland comes 
from the Saqqaq site and is dated to 4 KYA. The Saqqaq 
Man’s mtDNA (Gilbert et  al. 2008) and his whole 
genome, shotgun sequenced to an average depth of 20× 
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(Rasmussen et al. 2010) provided the first direct evidence 
of a separate Palaeo-Eskimo dispersal event into the Arc-
tic North Americas. The Saqqaq Man’s Y chromosome 
belongs to Q2b-B143, which is a sub-clade of haplogroup 
Q that is only distantly related, at time depth >25KYA, 
to the Q1a-M3 and Q1b-M971 lineages (Fig.  8). The 
Saqqaq’s Q2b-B143 lineage was not found to be present 
in a survey of 1863 haplogroup Q lineages from South 
America making it unlikely to have been among the ini-
tial founding pool of Beringian Y chromosomes (Jota 
et  al. 2016). From further ancient DNA analyses, we 
know that the Palaeo-Eskimos had extremely low genetic 
diversity, with only a single characteristic mtDNA lineage 
of haplogroup D2a1 being found in a wide range of sites 
from Northeast Canada and Greenland dated between 
5000 to 700 years before present (Raghavan et al. 2014a). 
Analyses of autosomal genes and mtDNA of more recent 
remains associated with the Thule Culture suggest that 
the Palaeo-Eskimo population was completely replaced 
by the Neo-Eskimos within less than thousand years ago. 
Interestingly, though the Saqqaq Man’s Y chromosome 

lineage may have some continuity in the present day 
descendants of the Neo-Eskimo dispersal. Greenland Inu-
its have been shown to carry, at frequencies up to 54% in 
East Sermersooq, a lineage which is characterised by the 
NWT01 mutation (Olofsson et  al. 2015), a SNP which 
separates the Y chromosomes of Inuits, who have it, from 
Athabascans, who do not (Dulik et al. 2012), and which 
is equivalent to the F1202 SNP that defines the clade that 
unites the Q2b-B143 and Q2c-M120 sub-clades (Fig. 8). 
The Y chromosome of the Saqqaq Man has been shown 
to share a number of SNPs equivalent to B143 with a 
group of Koryaks from Northeast Siberia (Karmin et  al. 
2015). It is yet to be revealed, however, whether the Neo-
Eskimo Y chromosomes are derived at the SNPs defin-
ing the Q2b-B143 branch or whether they represent a yet 
another sub-clade of Q2-F1202. Further analyses of aY 
variation across the Americas would help to broaden our 
understanding of the past dynamics of the male effective 
population size and show to what extent the lineages pre-
sent in the past have survived up to the present.

Fig. 8   The main branches of 
Y chromosome haplogroup 
Q in ancient and present-day 
populations. The structure of 
the major sub-clades is drawn 
in proportion to time according 
to estimates from high cover-
age genomes of present-day 
populations (Karmin et al. 2015; 
Poznik et al. 2016), http://isogg.
org/tree/ISOGG_HapgrpQ.html, 
https://www.yfull.com/tree/Q/). 
The phylogenetic mapping of 
ancient Y chromosomes (Kemp 
et al. 2007; Rasmussen et al. 
2010, 2014, 2015) is shown 
with red symbols. Haplogroup-
defining marker names are 
shown in grey font next to 
relevant branches
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In sum, a number of aDNA studies have already started 
to reveal the potential of human Y chromosome to inform 
us about the demographic past complementing the study 
of autosomal genome and the X chromosome. When com-
pared against the results derived from the analyses of 
autosomes the unique inheritance patterns of Y, as well as 
the X chromosome and mtDNA will provide us the oppor-
tunity to explore sex-specific dispersal and admixture pro-
cesses in the future when further sampling will provide 
larger sample sizes and better coverage of the same geo-
graphic areas in time. Further breakthroughs of ancient 
DNA success in regions like Africa, Southeast Asia and 
Oceania will be most desirable to tackle broader range of 
questions about the continuity and nature of sex-specific 
dispersals and admixture in human evolutionary history. 
Recent cases of successful retrieval of ancient DNA from 
Ethiopia (Gallego Llorente et  al. 2015), Vanuatu and 
Tonga (Skoglund et al. 2016) provide some optimism for 
the retrieval of aY sequence data from warmer climate 
regions in the future.
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