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1 Introduction

A function is called barrier for an open set if it is superharmonic inside and van-
ishes outside, near a part of the boundary of the set. Barriers are important for study-
ing boundary behavior of solutions to the Dirichlet problem [2,4]. From a general

The research was supported in part by NCN grants 2011/03/B/ST1/00423 and 2012/07/B/ST1/03356 and
the Alexander von Humboldt Foundation.

K. Bogdan (B)
Institute of Mathematics of Polish Academy of Sciences, Warszawa, Poland
e-mail: krzysztof.bogdan@pwr.edu.pl

M. Ryznar
e-mail: michal.ryznar@pwr.edu.pl

K. Bogdan · T. Grzywny · M. Ryznar
Institute of Mathematics and Computer Science, Wrocław University of Technology,
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perspective, understanding boundary asymptotics of superharmonic functions gives
detailed information on the behavior of the underlyingMarkov process at the boundary.
The information is obtained by using maximum principle, super-mean value property
and Doob’s conditioning. Calculation of barriers is extremely delicate for open sets
with Lipschitz regularity, even for the Laplacian and cones in R

d , see, e.g., [3], [14,
Section 3]. The situation is somewhat easier for smooth open sets. For instance, the
Laplacian in a half-space has barriers which are linear functions, correspondingly
for smooth sets approximately linear barriers exist. Similar results, with non-linear
boundary decay, are known for the fractional Laplacian and generators of convolu-
tion semigroups corresponding to complete subordinate Brownian motions with weak
scaling (see [34,38] and Sect. 7 for discussion and references). Recall that for a sub-
Markovian semigroup (Pt , t � 0)we haveA f (x) = limt→0+[Pt f (x)− f (x)]/t � 0
if f is bounded, the limit exists and f (x) = max f � 0.Accordingly,we say that oper-
atorA on C∞

c (Rd) satisfies the positive maximum principle if for every ϕ ∈ C∞
c (Rd),

ϕ(x) = supy∈Rd ϕ(y) � 0 implies Aϕ(x) � 0. The most general operators which
have this property are of the form

Aϕ(x) =
d∑

i, j=1

ai j (x)Dxi Dx j ϕ(x) + b(x)∇ϕ(x) + q(x)ϕ(x)

+
∫

Rd

(
ϕ(x + y) − ϕ(x) − y∇ϕ(x) 1|y|<1

)
ν(x, dy).

Here for every x ∈ R
d , a(x) = (ai j (x))n

i, j=1 is a real nonnegative definite symmetric

matrix, vector b(x) = (bi (x))d
i=1 has real coordinates, q(x) � 0, and ν(x, ·) is a Lévy

measure. The description is due to Courrège, see, e.g., [28, Proposition 2.10]. For
translation invariant (convolution) operators of this type, a, b, q, and ν are independent
of x . If we further assume rotation invariance and conservativeness (A1 = 0), then

Aϕ(x) = σ�ϕ(x) + lim
ε→0+

∫

|y|>ε

[ϕ(x + y) − ϕ(x)] ν(dy), (1.1)

where σ � 0 and ν is isotropic. (1.1) gives the general setting of our paper; we shall
also consider the corresponding isotropic Lévy processes X .

It is in general difficult to determine barriers for non-local Markov generators,
even in the setting of (1.1) and for smooth open sets. In fact the wide range of Lévy
measures ν results in a comparable variety of boundary asymptotics of superharmonic
functions, not fully codified by the existing calculus. The situation might even seem
hopeless but it is not. For instance, the expected exit time x �→ ExτD of X from open
bounded set D ⊂ R

d is a barrier for D. We shall effectively estimate this function for
smooth open sets D and unimodal Lévy processes X by giving barriers for the ball
of arbitrary radius. To this end we use the renewal function V of the ladder-height
process of one-dimensional projections of X : the barriers are defined as compositions
of V with the distance to the complement of the ball. This and a similar definition
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Barriers, exit time and survival probability for unimodal Lévy processes 157

of functions subharmonic in the complement of the ball yield sharp estimates for the
expected exit time for open sets D ⊂ R

d which are of class C1,1. We also obtain sharp
estimates for the probability of X surviving in D longer than given time t > 0, even
for some unbounded D and rather general unimodal Lévy processes.

Thus, V allows for calculations accurate enough to exhibit specific super- and
subharmonic functions for the considered processes. The idea of usingV in this context
comes from Kim et al. [34] (see Introduction and p. 931 ibid.) and has already proved
very fruitful for complete subordinate Brownian motions.

When verifying superharmonicity, we calculate a version of the infinitesimal gen-
erator on the composition of V with the distance to the complement of the ball. In view
of the curvature of the sphere, the calculation requires good control of V ′. We carry
out calculations assuming that V ′ satisfies a Harnack-type condition (H), described
in (3.7) below. When using (H) we only need to estimate certain weighted integrals
of V ′ (given, e.g., by Lemma 3.7), rather than individual values of V ′. The condition
(H) holds, e.g., for special subordinate Brownian motions, a class of processes wider
than the complete subordinate Brownian motions. We should note that V is defined
implicitly but in the considered isotropic setting it enjoys simple sharp estimates in
terms of more elementary functions: the Lévy–Khintchine exponent ψ of X and the
following Pruitt’s function h [41] (see (2.5) below for details),

h(r) = σ 2d

r2
+
∫

Rd

( |z|2
r2

∧ 1

)
ν(dz), r > 0. (1.2)

Namely, it follows from Proposition 2.4 and (3.1) that for unimodal Lévy processes
with unbounded ψ we have

h(r) ≈ ψ(1/r) ≈ 1/V (r)2, r > 0. (1.3)

On the other hand, the control of V ′ is hard. For instance continuity and monotonicity
of V ′, although common, are open to conjectures (we actually know that V ′ may
fail to be monotone for some unimodal Lévy processes, see Remark 8). For complete
subordinate Brownian motions good control results from the fact that V ′ is completely
monotone. This sheds light on the results obtained by Chen et al. (cf. [17,36] and
Sect. 7.2 below). Our approach allows to lift this structure requirement that X is a
subordinate Brownian motion, thanks to new ideas employing unimodality, scaling
and (approximating) Dynkin’s operator.

The basic object of interest in our study is ExτBr , the expected exit time from the
ball Br centered at the origin and with radius r > 0, for arbitrary starting point x ∈ R

d

of X (for detailed definitions see Sect. 2). When x = 0, the classical result of Pruitt
[41] (see p. 954, Theorem 1 and (3.2) ibid.) provides in our setting constants c = c(d)

and C = C(d) such that

c

h(r)
� E

0τBr � C

h(r)
, r > 0. (1.4)
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Pruitt’s estimate may be called sharp, meaning that the ratio of its extreme sides is
bounded. One of our main contributions is the following inequality,

c∗
√

h(r)h(r − |x |) � E
xτBr � C√

h(r)h(r − |x |) , x ∈ B(0, r), (1.5)

where c∗ = c∗(r, d, X) > 0 is non-increasing in r and C = C(d). The estimate holds
for unimodal Lévy processes under condition (H) on V ′. The estimate is sharp up to
the boundary of the ball. As we note in Lemma 2.3, the upper bound in (1.5) easily
follows from the one-dimensional case (2.18), cf. [26]. The lower bound is muchmore
delicate. To the best of our knowledge the lower bound was only known for complete
subordinate Brownian motions satisfying certain scaling conditions (see Theorem 1.2
andProposition2.7 in [30]).Our results cover in a uniformway isotropic stable process,
relativistic stable process, sums of two independent isotropic stable processes (also
with Gaussian component), geometric stable processes, variance gamma processes,
conjugate to geometric stable processes [44] and much more which could not be
treated by previous methods. The fact that c in (1.5) depends on r is a drawback if
one needs to consider large r . In many situations, however, we may actually choose
c independent of r . For example if X is a special subordinate Brownian motion, then
we have c = c(d), which follows by combining Theorem 4.1 with Lemma 7.5 below.
We conjecture that in the case of isotropic Lévy processes, one can always choose c
depending only on d. This is certainly true in the one-dimensional case, see (2.18).
For d � 2 the conjecture is strongly supported by comparison of (1.4) and (1.5).

We test super- and subharmonicity by means of Dynkin’s generator of X in a way
suggested by [13]. We also rely on our recent bounds for the semigroups of weakly
scaling unimodal Lévy processes on the whole of Rd [10], and results of Grzywny
[24]. As we indicated above, delicate properties of V , indeed of V ′, are used to prove
(1.5) by way of calculating Dynkin’s operator on functions defined with the help of V .
Fortunately, the resulting asymptotics is directly expressed by V , rather than by V ′,
and may also be described by means of the Lévy–Khintchine exponent ψ or h, which
we indeed do in (1.5) (estimates expressed in terms of h may be considered the most
explicit, because h is given by a direct integration without cancellations).

On a general level our development rests on estimates for Dynkin-type generators
acting on smooth test functions (Sect. 2) and compositions of V (Sect. 3). This explains
our restriction to C1,1 open sets: we approximate them by translations and rotations of
the half-space H = {x ∈ R

d : x1 > 0}, and V (x1) is harmonic for X on H. Notewor-
thy, the so-called boundary Harnack principle (BHP) for harmonic functions of X is
negligible in our development; it is superseded in estimates by the ubiquitous function
V . Barriers resulting from V provide access to asymptotics of the expected exit time,
survival probability, Green function, harmonic measure, distribution of the exit time
and the heat kernel. In fact, our estimates imply explicit decay rate for nonnegative
harmonic functions near the boundary of C1,1 open sets, see Proposition 7.6. Fur-
thermore, in [8] we give applications to heat kernels for the corresponding Dirichlet
problem in C1,1 open sets. We also expect applications to Hardy-type inequalities,
cf. [2].
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It would be of considerable interest to further extend our estimates to Markov
processes with isotropic Lévy kernels dy �→ ν(x, dy) or to isotropic Lévy processes
with the Lévy measure approximately unimodal in the sense of (4.3). Partial results
in this direction are given in Corollary 4.3. We like to note that the case of Lipschitz
open sets apparently requires approach based on BHP and is bound to produce less
explicit estimates. We refer the reader to [3,9] for more information and bibliography
on this subject. In this connection we like to note that BHP fails for non-convex open
sets for the so-called truncated stable Lévy processes [32].

The rest of the paper is composed as follows. In Sect. 2 we estimate tails of Xt and
XτD by means ofExτD , V or h. In Lemma 3.8 and 3.9 of Sect. 3 we give mildly super-
and subharmonic functions for the ball and the complement of the ball, respectively. In
Sect. 4we estimate the expected exit time:Theorem4.1 provides (1.5) andTheorem4.6
states (with more detail) the following estimates of the expected exit time of unimodal
Lévy processes with unbounded Lévy–Khintchine exponent from C1,1 open bounded
sets D, under mild conditions including (H),

E
xτD ≈ V (δD(x)), x ∈ R

d .

In Sect. 5 we consider the case of transient X , and estimate the probability of ever
hitting the ball from outside in, say, dimension d � 3, by using the estimates of
Grzywny [24] for potential kernel: U (x) � cV 2(|x |)/|x |d for x ∈ R

d , and for the
capacity of the ball: Cap(Br ) ≈ rd/V 2(r) for r > 0. In Sect. 6 under weak scaling
conditions we estimate the survival probability:

P
x (τD > t) ≈ V (δD(x))√

t
∧ 1, x ∈ R

d , 0 < t � CV (r0)
2.

Here r0 is the C1,1-localization radius of D. The result is new even for complete
subordinate Brownian motions. Further estimates and information are given as we
proceed.

In Sect. 7 we discuss the role and validity of (H) and give specific examples of
Lévy processes manageable by our methods. Since V (δD(x)) ≈ [ψ(1/δD(x))]−1/2,
our estimates are often entirely explicit.

Aswe advance, the reader should observe the assumptions specified at the beginning
of each section: as a rule they bind the statements of the results in that section. Notably,
a large part of our estimates, especially of the upper bounds, are valid under minimal
assumptions including isotropy and, usually but not always (cf. Sect. 2), unimodality
of X . Scaling, unimodality, pure-jump character of X and the Harnack-type condition
(H) on V ′ are commonly assumed to prove matching lower bounds. We strive to
make explicit the dependence of constants in our estimates on characteristics of D and
X . Some of the constants depend only on d for all isotropic Lévy processes, others
depend on the assumption of unimodality, the parameters in the weak scaling and
other analytic properties of X expressed through the Lévy measure. Good control of
constants in estimates at scale r > 0 necessitates the use of rather intrinsic quantities
I(r) andJ (r) introduced in Sect. 4. Such control is especially important for the study
of unbounded sets.
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2 Preliminaries

We write f (x) ≈ g(x) and say that f and g are comparable if f, g � 0 and there
is a positive number C , called comparability constant, such that C−1 f (x) � g(x) �
C f (x) for all considered x . We write C = C(a, . . . , z) to indicate that (constant) C
may be so chosen to depend only on a, . . . , z. Constant may change values from place
to place except for capitalized numbered constants (C1, C2 etc.), which are the same
at each occurrence.

We consider the Euclidean space Rd of arbitrary dimension d ∈ N. All sets, func-
tions and measures considered below are assumed Borel. Let B(x, r) = {y ∈ R

d :
|x−y| < r}, the openballwith center at x ∈ R

d and radius r > 0, and let Br = B(0, r).
We denote by ωd = 2πd/2/�(d/2) the surface measure of the unit sphere in Rd . We
also consider exterior sets Bc(x, r) = (B(x, r))c = {y ∈ R

d : |x − y| � r},
Bc

r = (B(0, r))c and B
c
r = (B(0, r))c. For D ⊂ R

d we consider the distance to the
complement of D:

δD(x) = dist(x, Dc), x ∈ R
d .

We say that D is of class C1,1 at scale r if r > 0, D is open nonempty set in R
d

and for every Q ∈ ∂ D there are balls B(x ′, r) ⊂ D and B(x ′′, r) ⊂ Dc tangent at Q.
Thus, B(x ′, r) and B(x ′′, r) are the inner and outer balls at Q, respectively. Estimates
for C1,1 open sets often rely on the inclusion B(x ′, r) ⊂ D ⊂ B(x ′′, r)c, domain
monotonicity of the considered quantities and on explicit calculations for the extreme
sides of the inclusion. If D is C1,1 at some unspecified scale (hence also at all smaller
scales), then we simply say D is C1,1. The C1,1-localization radius,

r0 = r0(D) = sup{r : D is C1,1 at scale r},

describes the local geometry of such D, while the diameter,

diam(D) = sup{|x − y| : x, y ∈ D},

depends on the global geometry of D. The ratio diam(D)/r0(D) � 2 is called the
distortion of D. We remark that C1,1 open sets may be defined by using local coordi-
nates and Lipschitz condition on the gradient of the function defining their boundary
(see, e.g., [1, Section 2]), hence the notation C1,1. They can also be localized near the
boundary without much changing the distortion [11, Lemma 1]. Some of the com-
parability constants in our estimates depend on D only through d and the distortion
of D.

We denote by Cc(D) the class of the continuous functions on R
d with compact

support in (arbitrary) open D ⊂ R
d , and we let C0(D) denote the closure of Cc(D)

in the supremum norm.
A Lévy process is a stochastic process X = (Xt , t � 0) with values in R

d ,
stochastically independent increments, cádlág paths and such that P(X (0) = 0) = 1
[42]. We use P and E to denote the distribution and the expectation of X on the space
of cádlág paths ω : [0,∞) → R

d , in fact X may be considered as the canonical map:
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Xt (ω) = ω(t) for t � 0. In what follows, we shall use the Markovian setting for
X , that is we define the distribution P

x and the expectation E
x for the Lévy process

starting from arbitrary point x ∈ R
d : Ex F(X) = EF(x + X) for Borel functions

F � 0 on paths. For t � 0, x ∈ R
d , f ∈ C0(R

d) we let Pt f (x) = E
x f (Xt ), the

semigroup of X . The distribution of Xt under E = E
0 is denoted pt (dx) (t � 0) and

forms a convolution semigroup of probability measures on R
d .

We define the time of the first exit of X from (Borel) D ⊂ R
d :

τD = inf{t > 0 : Xt /∈ D}.

This random variable gives rise to a number of important objects in the potential theory
of X . We shall focus on the expected exit time,

sD(x) = E
xτD, x ∈ R

d , (2.1)

and the survival probability

P
x (τD > t), x ∈ R

d , t > 0.

We shall also use the harmonic measure of D for X defined as

�x
D(A) = P

x (XτD ∈ A), x ∈ R
d , A ⊂ R

d .

A real-valued function f on R
d is called harmonic (for X ) on open D ⊂ R

d if for
every open U such that U is a compact subset of D, we have

f (x) = E
x f (XτU ) =

∫

U c

f (y)�x
U (dy), x ∈ U, (2.2)

and the integral is absolutely convergent. In particular, if g is defined on Dc, and
f (x) = E

x g(XτD ) is absolutely convergent for x ∈ D, then f is harmonic on D.
This follows from the strong Markov property of X [6]. A function f is called regular
harmonic in D if (2.2) holds for U = D.

2.1 Isotropic Lévy processes

Lévy measure is a (nonnegative Borel) measure concentrated on R
d\{0} such that

∫

Rd

(
|x |2 ∧ 1

)
ν(dx) < ∞. (2.3)

We call measure on R
d isotropic if it is invariant upon linear isometries of Rd (i.e.

symmetric if d = 1). A Lévy process Xt [42] is called isotropic if all the measures
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pt (dx) are isotropic. Isotropic Lévy processes are characterized by Lévy–Khintchine
(characteristic) exponents of the form

ψ(ξ) = σ 2|ξ |2 +
∫

Rd

(1 − cos〈ξ, x〉) ν(dx), (2.4)

with isotropic Lévy measure ν and σ � 0. To be specific, by the Lévy–Khintchine
formula,

E ei〈ξ,Xt 〉 =
∫

Rd

ei〈ξ,x〉 pt (dx) = e−tψ(ξ), ξ ∈ R
d .

Unless explicitly stated otherwise, in what follows we assume that Xt is an isotropic
Lévy process inRd with Lévy measure ν and characteristic exponent ψ �≡ 0 (we shall
make additional assumptions in Sects. 2.2, 2.3 and 3). Since ψ is a radial function, we
shall oftenwriteψ(u) = ψ(x), where x ∈ R

d and u = |x | � 0. For the first coordinate
X1

t of Xt we obtain the same function ψ(u). Clearly, ψ(0) = 0 and ψ(u) > 0 for
u > 0.

For r > 0 we define, after [41],

K (r) =
∫

Br

|z|2
r2

ν(dz), L(r) = ν
(
Bc

r

)
,

h(r) = σ 2d

r2
+ K (r) + L(r) = σ 2d

r2
+
∫

Rd

( |z|2
r2

∧ 1

)
ν(dz).

(2.5)

We note that 0 � K (r) � h(r) < ∞, L(r) � 0, h is (strictly) positive and decreasing,
and L is non-increasing. The corresponding quantities for X1

t , say K1(r), L1(r), h1(r),
are given by the Lévymeasure ν1 = ν◦x−1

1 onR [42, Proposition 11.10], in particular

h1(r) = σ 2

r2
+
∫

R

(
u2

r2
∧ 1

)
ν1(du) = σ 2

r2
+
∫

Rd

( |z1|2
r2

∧ 1

)
ν(dz), r > 0.

We see that
h1(r) � h(r) � h1(r)d, r > 0. (2.6)

We shall make connections to the expected exit time of X for general open sets
D ⊂ R

d . By domain-monotonicity of exit times and Pruitt’s estimate (1.4), we have

sD(x) � sB(x,diam(D))(x) � C

h(diam(D))
< ∞. (2.7)

Our first lemma is a slight improvement of [24, Lemma 3].
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Lemma 2.1 If r > 0 and x ∈ Br/2, then P
x (|XτD | � r) � 24 h(r)ExτD.

Proof We assume that ExτD < ∞, otherwise the result is trivial. Let r > 0. LetA be
the generator of the semigroup of X acting on C0(R

d). If φ ∈ C2
c (Rd), then φ is in

the domain of A, by Dynkin’s formula,

E
x

τD∫

0

Aφ(Xs)ds = E
xφ(XτD ) − φ(x), x ∈ R

d , (2.8)

and the generator may be calculated pointwise as

Aφ(x) = σ 2�φ(x) +
∫ [

φ(x + z) − φ(x) − 1|z|<1 〈z,∇φ(x)〉] ν(dz).

Since ν is symmetric, we can replace 1|z|<1 in the above equation by 1|z|<r . We shall
use a function g : [0,∞) �→ [−1, 0] such that g(t) = −1 for 0 � t � 1/2, g(t) = 0
for t � 1, and ess supt�0 |g′(t)| and ess supt�0 |g′′(t)| are finite. In fact, we initially
let g′′ = 16 on (1/2, 3/4) and g′′ = −16 on (3/4, 1), which gives ‖g′′‖∞ = 16 and
‖g′‖∞ = 4. We then have

4 sup
t�0

|g′(t)| + 1

2
sup
t�0

|g′′(t)| = 24, (2.9)

2(d − 1) sup
t

|g′(t)| + sup
t

|g′′(t)| = 8(d + 1). (2.10)

These will only slightly increase as we modify g′′ to be continuous (such modified
g ∈ C2 is used below). Denote

φr (y) = g(|y|/r), y ∈ R
d .

We first consider φ1. Let v, z ∈ R
d be such that |v+ z|+|v| � 1/2. There is a number

θ between |v| and |v + z|, such that

φ1(v + z) − φ1(v) = g′(|v|)(|v + z| − |v|) + (1/2)g′′(θ)(|v + z| − |v|)2

= g′(|v|) (|v + z|2 − |v|2)
|v + z| + |v| + (1/2)g′′(θ)(|v + z| − |v|)2

= g′(|v|) |z|
2 + 2 〈v, z〉

|v + z| + |v| + (1/2)g′′(θ)(|v + z| − |v|)2

= g′(|v|) 〈v, z〉
|v| + g′(|v|) 〈v, z〉

|v|
|v| − |v + z|
|v + z| + |v|

+g′(|v|) |z|2
|v + z| + |v| + (1/2)g′′(θ)(|v + z| − |v|)2.
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Since |v + z| + |v| � 1/2, we have

∣∣∣∣g
′(|v|) 〈v, z〉

|v|
|v| − |v + z|
|v + z| + |v|

∣∣∣∣ � |g′(|v|)| |z|2
|v + z| + |v| � 2|g′(|v|)||z|2.

Also,

1

2
g′′(θ)(|v + z| − |v|)2 � 1

2
|g′′(θ)||z|2.

Since

〈z,∇φ1(v)〉 = g′(|v|) 〈v, z〉
|v| ,

we obtain

∣∣φ1(v + z) − φ1(v) − 1|z|<1 〈z,∇φ1(v)〉∣∣ �
(
4 sup

t
|g′(t)| + 1

2
sup

t
|g′′(t)|

)
|z|2.

If |v + z| + |v| < 1/2, then the latter inequality is also true because the left-hand side
equals 0. By changing variables we have

|φr (v + z) − φr (v) − 1|z|<r 〈z,∇φr (v)〉 | �
(
4 sup

t
|g′(t)| + 1

2
sup

t
|g′′(t)|

)
|z/r |2.

We also note that

|�φ1(z)| = |(d − 1)g′(|z|)/|z| + g′′(|z|)| � 2(d − 1) sup
t

|g′(t)| + sup
t

|g′′(t)|.

Applying (2.8) to φr (y) = g(|y|/r) we get

P
x (|XτD | � r

)
� E

x [φr (XτD )+1] = E
x

τD∫

0

Aφr (Xs)ds, |x | � r/2. (2.11)

By the preceding estimates,

Aφr (v) = σ 2�φr (v) +
∫ (

φr (v + z) − φr (v) − 1|z|<r 〈z,∇φr (x)〉) ν(dz)

� σ 2 2(d − 1) supt |g′(t)| + supt |g′′(t)|
r2

+4 supt |g′(t)| + 1
2 supt |g′′(t)|

r2

∫

|z|<r

|z|2ν(dz) + ν(Bc
r ). (2.12)

By (2.11), (2.12), (2.9), (2.10) and (2.5), we get the result. ��
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Remark 1 The approach generalizes to other stopping times, e.g. deterministic times
t > 0:

P
x (|Xt | � r) � 24 h(r) t, r > 0, |x | � r/2. (2.13)

Recall that pt (dx) has no atoms if and only if ψ is unbounded (if and only if
ν(Rd) = ∞ or σ > 0) [42, Theorem 30.10]. In fact, if σ > 0 or if d � 2 and
ν(Rd) = ∞, then (pt , t > 0) have lower semicontinuous density functions [49,
(4.6)]. We further note that the resolvent measures

A �→
∞∫

0

pt (A)e−qt dt, q > 0,

are absolutely continuous if and only if pt , t > 0, are absolutely continuous. This
consequence of symmetry of pt is proved in [23, Theorem 6], see also [42, Remark
41.13].

2.2 Isotropic Lévy processes with unbounded characteristic exponent

Unless explicitly stated otherwise, in what follows X is an isotropic Lévy process with
unbounded Lévy–Khintchine exponent ψ .

Let Mt = sups�t X1
s and let Lt be the local time at 0 for Mt − X1

t , the first
coordinate of X reflected at the supremum [6,22]. We consider its right-continuous
inverse, L−1

s , called the ascending ladder time process for X1
t . We also define the

ascending ladder-height process, Hs = X1
L−1

s
= ML−1

s
. The pair (L−1

t , Ht ) is a two-

dimensional subordinator [6,22]. In fact, since X1
t is symmetric and has infinite Lévy

measure or nonzero Gaussian part, by [22, Corollary 9.7], the Laplace exponent of
(L−1

t , Ht ) is

−1

t
log
(
E exp[−τ L−1

t − ξ Ht ]
)

= c+ exp

⎧
⎨

⎩
1

π

∞∫

0

log [τ + ψ(θξ)]

1 + θ2
dθ

⎫
⎬

⎭ , τ, ξ � 0,

Inwhat followswe let c+ = 1, thus normalizing the local time L [22]. In particular, L−1
s

is then the standard 1/2-stable subordinator (see also [21, (4.4.1)]), and the Laplace
exponent of Ht is

κ(ξ) = −1

t
log (E exp[−ξ Ht ]) = exp

⎧
⎨

⎩
1

π

∞∫

0

logψ(ξζ )

1 + ζ 2 dζ

⎫
⎬

⎭ , ξ � 0. (2.14)

The renewal function V of the ascending ladder-height process H is defined as

V (x) =
∞∫

0

P(Hs � x)ds, x∈ R. (2.15)
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Thus, V (x) = 0 if x < 0 and V is non-decreasing. It is also well known that V is
subadditive,

V (x + y) � V (x) + V (y), x, y ∈ R, (2.16)

and V (∞) = ∞. Furthermore, from (2.14) we infer that the Laplace transform LV
of V is

LV (ξ) = 1

ξκ(ξ)
. (2.17)

Both V and its derivative V ′ play a crucial role in our development. They were
studied by Silverstein as g andψ in [45], see (1.8) and Theorem 2 ibid., respectively. If
resolvent measures of X1

t are absolutely continuous, then it follows from [45, Theorem
2] that V (x) is absolutely continuous and harmonic on (0,∞) for the process X1

t , in
fact, V is invariant for the process X1

t killed on exiting (0,∞). Also, V ′ is a positive
harmonic function for X1

t on (0,∞), hence V is actually (strictly) increasing. Notably,
the definition of V is rather implicit and the study of V poses problems. In fact, we
shall shortly present sharp estimates of V by means of (simpler) functions ψ and h,
but decay properties of V ′ are more delicate and they are not yet fully understood.
Under structure assumptions satisfied for complete subordinate Brownian motions,
V ′ is monotone, in fact completely monotone (cf. Lemma 7.5). This circumstance
stimulated much of the progress made in [17,36]. The methods presented below in
this paper address more general situations, e.g. when the Lévy–Khintchine exponent
ψ has weak scaling or when X has a nonzero Gaussian part (see Sect. 7.1).

By [21, Corollary 4 and Theorem 3] and [44, Remark 3.3 (iv)] the following result
holds.

Lemma 2.2 We have limξ→∞ κ(ξ)/ξ = σ . Furthermore, if σ > 0, then V ′ is con-
tinuous, positive and bounded by limt→0+ V ′(t) = σ−1. In fact V ′ is bounded if and
only if σ > 0.

As we indicated in Sect. 1, estimates of ExτBr , the expected exit time from the ball
play an important role in this paper. The upper bound (1.4), sharp at the center of the
ball, was given byPruitt in [41, p. 954]. It was later generalized tomore generalMarkov
processes by Schilling in [43, Remark 4.8]. For every symmetric Lévy process X on
R
1 with unbounded Lévy–Khintchine exponent ψ , the following bound with absolute

constant C0 > 0 follows from [26, Proposition 3.5] by Grzywny and Ryznar and
subadditivity of V ,

C0V (r)V (r − |x |) � E
xτ(−r,r) � 2V (r)V (r − |x |), x ∈ R, r > 0. (2.18)

In Sect. 4 we establish a similar comparability result in arbitrary dimension under
appropriate conditions on X . The upper bound is, however, simpler, and we can give
it immediately.

Lemma 2.3 For all r > 0 and x ∈ R
d we have E

xτBr � 2V (r)V (r − |x |).
Proof Since X is isotropic with unbounded Lévy–Khintchine exponent ψ , by Blu-
menthal’s 0-1 law we have τBr = 0 Px -a.s. for all x ∈ Bc

r . Hence, it remains to prove
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the claim for x ∈ Br . If τ = inf{t > 0 : |X1
t | > r}, then domain-monotonicity of

the exit times and [26, Proposition 3.5] yield E
xτBr � E

xτ � V (r − |x1|)V (2r). By
(2.16) and rotations we obtain the claim. ��

We define the maximal characteristic function ψ∗(u) := sup0�s�u ψ(s), where
u � 0.

Proposition 2.4 The constants in the following comparisons depend only on the
dimension,

h(r) ≈ h1(r) ≈ ψ∗(1/r) ≈ [V (r)]−2 , r > 0. (2.19)

Proof We shall see that all of the comparisons are absolute, except for the first com-
parison in (2.19), which depends on the dimension via (2.6). Let r > 0. Since X1 is
symmetric,

h1(r) ≈ ψ∗(1/r), (2.20)

see [24, Corollary 1]. Let r > 0 and τr be the time of the first exit of X1
t from the

interval (−r, r). By (2.18) and (1.4), we have V 2(r) ≈ E
0τr ≈ 1/h1(r). ��

Lemma 2.5 We have limt→0+ t/V (t) = σ.

Proof By Proposition 2.4 and the dominated convergence theorem,

t2

V 2(t)
≈ t2h1(t) = σ 2 +

∫

Rd

(
t2 ∧ |z1|2

)
ν(dz) → σ 2 as t → 0.

This ends the proof when X is pure-jump. If σ > 0, then we use Lemma 2.2. ��
The next result on survival probability was known before in the situation when

ψ(r) and r2/ψ(r) are non-decreasing in r ∈ (0,∞), see [37, Theorem 4.6].

Proposition 2.6 For every symmetric Lévy process in R which is not compound Pois-
son,

P
x (τ(0,∞) � t) ≈ 1 ∧ 1√

tψ∗(1/x)
, t, x > 0, (2.21)

and the comparability constant is absolute.

Proof Considering that L−1
s is a 1/2-stable subordinator, from [37, Theorem 3.1] we

see that

P
x (τ(0,∞) � t) ≈ 1 ∧ V (x)√

t
, t, x > 0. (2.22)

The result now obtains from (2.22) and Proposition 2.4. ��
Remark 2 If � ⊂ R

d is an open halfspace, R > 0 and BR ⊂ �, then Px (τBR > t) �
P

x (τ� > t) and Px (τB
c
R

> t) � P
x (τ

�
c > t). By (2.22), for all t > 0 and x ∈ R

d we
obtain

P
x (τBR > t) � C

(
1 ∧ V (δBR (x))√

t

)
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and

P
x (τB

c
R

> t) � C−1

(
1 ∧

V (δB
c
R
(x))

√
t

)
,

where C is an absolute constant. Namely, we let ∂� touch ∂ BR at the point closest
to x . The inequalities hold for all isotropic Lévy processes which are not compound
Poisson.

From (2.19) and definitions of L1, L and h, we derive the following inequality,

L1(r) � L(r) � h(r) � c/[V (r)]2, r > 0. (2.23)

Lemma 2.7 There is C1 = C1(d) such that if r > 0, D ⊂ Br and x ∈ D∩Br/2, then

P
x (|Xt | � r) � C1

t

V 2(r)
, t > 0, (2.24)

P
x (|XτD | � r

)
� C1

E
xτD

V 2(r)
, and (2.25)

E
xτBr � V 2(r)/C1. (2.26)

Proof Lemma 2.1, Proposition 2.4 and (2.13) give (2.24) and (2.25), which yield
(2.26). ��
Corollary 2.8 There exist C2 = C2(d) and C3 = C3(d) such that for t, r > 0 and
|x | � r/2,

P
x (τBr � t) � C2

t

V 2(r)
,

and

P
x (τBr > C3V 2(r)) � 1/2.

Proof Observe that for |x | � r/2,

P
x (τBr � t) � P

0(τBr/2 � t).

By Lévy’s inequality and (2.24) we obtain the first claim with C2 = 8C1, because

P
0(τBr/2 � t) = P

0

(
sup
s�t

|Xs | � r/2

)

� 2P0(|Xt | � r/2) � 2C1
t

V 2(r/2)

� 8C1
t

V 2(r)
.

Taking t = V 2(r)/(16C1) we prove the second claim with C3 = (16C1)
−1. ��
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We observe the following regularity of the expected exit time.

Lemma 2.9 If the resolvent measures of X are absolutely continuous and the open
bounded set D ⊂ R

d has the outer cone property, then sD ∈ C0(D).

Proof Recall that sD is bounded. We also have sD(x) = 0 for x ∈ Dc. Indeed, for
x ∈ ∂ D, by Blumenthal’s 0-1 law we have τD = 0 P

x -a.s., because X is isotropic
with unbounded Lévy–Khintchine exponent ψ and D has the outer cone property.
Due to [23, Theorem 6] and [27, Lemma 2.1], X is strong Feller. Hence, for each
t > 0, x �→ P

x (τD > t) is upper semicontinuous [19, Proposition 4.4.1, p. 163].
Therefore sD(x) = ∫∞

0 P
x (τD > t)dt is also upper semi-continuous. In consequence,

sD(x) → 0 as δD(x) → 0, and so sD is continuous at ∂ D. To prove continuity of sD

on D, we let D � z → x ∈ D, and denote

D′ = D − (z − x), U = D ∩ D′, R = D\U.

We have sD(x) = sU (x) + ∫R sD(y)ωx
U (dy) and sD(z) = sD′(x) � sU (x), thus

sD(z) � sD(x)− ∫R sD(y)ωx
U (dy) → sD(x), because if y ∈ R, then δD(y) � |z − x |

and sD(y) is small. We see that sD is lower semi-continuous on D, hence continuous
in D, in fact on R

d . ��
Remark 3 The resolvent measures are absolutely continuous in dimensions bigger
than one, hence sD ∈ C0(D) if D is an open bounded set with the outer cone property
in R

d and d � 2. This is also the case in dimension d = 1 under the assumptions of
the next section.

2.3 Isotropic absolutely continuous Lévy measure

Inwhat follows, unless stated otherwise, we assume that X is an isotropic Lévy process
inRd with the Lévymeasure ν(dx) = ν(x)dx and unbounded Lévy–Khintchine expo-
nentψ . In particular, X is symmetric, not compound Poisson, has absolute continuous
distribution for all t > 0 and absolutely continuous resolvent measures. Indeed, the
case of d � 2 was discussed in Sect. 2.1 and Remark 3, and for d = 1 we invoke
[46, Theorem 1 (i)(ii)]. We may assume that the density functions x �→ pt (x) are
lower-semicontinuous for every t > 0, see [27, Theorem 2.2].

The transition density of the process X killed off open D⊂ R
d is defined by Hunt’s

formula,

pD(t, x, y) = p(t, x, y) − E
x[p(t − τD, XτD , y); τD < t

]
, t > 0, x, y ∈ R

d .

We call pD the Dirichlet heat kernel of X on D. The Green function of D for X is
defined as

G D(x, y) =
∞∫

0

pD(t, x, y)dt.
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Here is a connection between the main objects of our study,

sD(x) = E
xτD =

∫

Rd

G D(x, y)dy =
∞∫

0

P
x (τD > t)dt. (2.27)

If x ∈ D, then the Px -distribution of (τD, XτD−, XτD ) restricted to XτD− �= XτD is
given by the following density function [29],

(0,∞) × D × (D)c � (s, u, z) �→ ν(z − u)pD(s, x, u). (2.28)

Integrating against ds, du and/or dz gives marginal distributions. For instance, if
x ∈ D then

P
x (XτD ∈ dz) =

⎛

⎝
∫

D

G D(x, u)ν(z − u)du

⎞

⎠ dz on (D)c. (2.29)

Identities resulting from (2.28) are called Ikeda–Watanabe formulae for X . Notewor-
thy, they allow for intuitive interpretations in terms of the expected occupation time
measures pD(s, x, u)du and G D(x, u)du, and in terms of the measure of the intensity
of jumps, ν(z − u)dz, cf. [7, p. 17].

3 Barriers for unimodal Lévy processes

A measure on R
d is called isotropic unimodal, in short, unimodal, if it is absolutely

continuous on R
d\{0} with a radial non-increasing density function (such measures

may have an atom at the origin). ALévy process Xt is called (isotropic) unimodal if the
distributions pt (dx) are unimodal. Unimodal Lévy processes are characterized in [48]
by unimodal Lévy measures ν(dx) = ν(x)dx = ν(|x |)dx . For the unimodal process,
pt (dx) has a radial nonincreasing density pt (x) on Rd\{0}, and an atom at the origin,
with mass exp[−tν(Rd)] (no atom if ψ is unbounded, i.e. if σ > 0 or ν(Rd) = ∞).
We refer to [10] for additional discussion. Unless explicitly stated otherwise, in what
follows we always assume that X is a unimodal Lévy process in R

d with unbounded
Lévy–Khintchine exponent ψ . Recall that by [10, Proposition 2],

ψ(u) � ψ∗(u) � π2 ψ(u) for u � 0. (3.1)

For f : Rd → R, t > 0 and x ∈ R
d we consider the (approximating) Dynkin

operator,

At f (x) = E
x f (XτB(x,t) ) − f (x)

ExτB(x,t)
,

whenever Ex f (XτB(x,t) ) is well defined. For instance, if sD(x) = E
xτD and 0 < t �

δD(x), then by the strong Markov property, sD(x) = sB(x,t)(x) +E
x sD(XτB(x,t) ), and
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so
At sD(x) = −1. (3.2)

By a similar argument, if f is harmonic on D, x ∈ D and 0 < t < δD(x), then
At f (x) = 0, by the (harmonic) mean-value property. In particular, let H = {x =
(x1, . . . , xd) ∈ R

d : x1 > 0} and V1(x) = V (x1). Since V is harmonic on (0,∞) ⊂
R for X1, V1 is harmonic in H for X and so At V1(x) = 0, if 0 < t < δH(x) (this
is the main reason why V is relevant for the construction of barriers for C1,1 sets
in R

d ). We also observe the following minimum principle: if x is a point in R
d and

f (x) = inf y∈Rd f (y), then At f (x) � 0 for every t > 0.

Corollary 3.1 If At f (x) < 0 for some t > 0, then f (x) > inf y∈Rd f (y).

Lemma 3.2 If f ∈ C0(D) and for every x ∈ D there is t > 0 such that At f (x) < 0,
then f � 0 on R

d .

Proof Since f attains its infimum on R
d , but not on D (cf. Corollary 3.1), we have

f � 0. ��
We make a simple observation on local regularity of harmonic functions, motivated
by [12, proof of Lemma 6] (see [5,47] for more in this direction).

Lemma 3.3 Let X be an isotropic Lévy process with absolutely continuous Lévy
measure. If g is bounded on R

d and harmonic on open D ⊂ R
d , then g is continuous

on D.

Proof For r > 0, let �r (dy) = P
0(X (τBr ) ∈ dy). Note that g(x) = ∫

Rd g(y
+ x)�r (dy) if 0 < r < δD(x). By the isotropy and Ikeda–Watanabe formula,
�r (dy) = crσr (dy) + φr (y)dy, where σr is the normalized spherical measure on
∂ Br , 0�cr �1, and

φr (y) =
{∫

Br
G Br (0, v)ν(y − v)dv, if |y| > r,

0 else.

Let ρ > 0. Note that the measure
∫ 2ρ
ρ

crσr (A)dr has density function

ω−1
d 1ρ<|x |<2ρ |x |1−d c|x |. Therefore �ρ(A) = ρ−1

∫ 2ρ
ρ

�r (A)dr is absolutely con-
tinuous, with density function denoted Fρ . We have g(x) = ∫

Rd g(y + x)�ρ(dy) =∫
Rd g(y)Fρ(y−x)dy if δD(x) > 2ρ. So, locally on D, g is a convolution of a bounded
function with an integrable function, so it is continuous on D. ��
Lemma 3.4 Let D ⊂ R

d be an open bounded set with the outer cone property and
let function f be continuous on R

d . If
∫

Bc
r
| f (y)|ν(y/2)dy < ∞ for some r > 0, then

g(x) = E
x f (XτD ) is continuous on R

d .

Proof Since D has the outer cone property, f (x) = g(x) for all x ∈ Dc, and so g is
continuous as a function on Dc. To prove the continuity of g on D, we first notice that
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f is locally bounded, hence
∫

Bc
r
| f (y)|ν(y/2)dy < ∞ for all r > 0. Let r1 > 0 be

such that D ⊂ Br1/2, and let r � r1. We have

g(x) = E
x f (XτD )1Br (XτD ) + E

x f (XτD )1Bc
r
(XτD ), x ∈ R

d . (3.3)

For clarity, the second term in (3.3) is finite because by the Ikeda–Watanabe formula,

∫

Bc
r

| f (y)|
∫

D

G D(x, z)ν(y − z)dzdy � E
xτD

∫

Bc
r

| f (y)|ν(y/2)dy < ∞. (3.4)

It follows that g is well defined and finite everywhere. Of course, g and each term in
(3.3) are (regular) harmonic in D. Let x0 ∈ ∂ D, 0 < ρ < r1/2 and |x − x0| < ρ/2.
We have

g(x) − g(x0) = E
x [ f (XτD ) − f (x0)

]
1B(x0,ρ)(XτD )

+ E
x [ f (XτD ) − f (x0)

]
1Br \B(x0,ρ)(XτD )

+ E
x [ f (XτD ) − f (x0)

]
1Bc

r
(XτD ).

By Lemma 2.1 and (3.4),

|g(x) − g(x0)| � sup
y∈B(x0,ρ)

| f (y) − f (x0)| + 48h(ρ)ExτD sup
y∈Br

| f (y)|

+ E
xτD

∫

Bc
r

| f (y) − f (x0)|ν(y/2)dy.

By this and Remark 3 we see that g(x) → g(x0) as x → x0.
By (3.3), Lemma 3.3 and (3.4) we see that locally on D, g is a uniform limit of

continuous functions. Thus, g is continuous on R
d . ��

Lemma 3.5 There is c = c(d) such that for every r > 0,

∫

Bc
r

V (|y|)ν(y)dy � c

V (r)
.

Proof Recall that L(r) = ν
(
Bc

r

)
. Integration by parts and (2.23) yield

∫

Bc
r

V (|y|)ν(y)dy =
∞∫

r

ωd ν(ρ)ρd−1V (ρ)dρ = L(r)V (r) +
∞∫

r

V ′(ρ)L(ρ)dρ

� c/V (r) + c

∞∫

r

V ′(ρ)/V 2(ρ)dρ � c/V (r),

where c = c(d). ��
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Ourmain goal in the remainder of this section is to approximate harmonic functions
of X in the ball and the complement of the ball. We start with estimates of auxiliary
integrals.

Recall that h is defined in (2.5). In (3.5) below we make an important observation
on h′.

Proposition 3.6 There is C = C(d) such that

r∫

0

V (ρ)ρdν(ρ)dρ � C
r

V (r)
, r > 0.

Proof Recall that K (u) = ωdu−2
∫ u
0 ρd+1ν(ρ)dρ, L(u) = ωd

∫∞
u ρd−1ν(ρ)dρ, and

h(u) = K (u)+ L(u)+ u−2σ 2d. Since ν is non-increasing, hence a.e. continuous, for
a.e. u ∈ R we have

h′(u) = −2u−1K (u) + ωdud−1ν(u) − ωdud−1ν(u) − 2u−3σ 2d

= −2u−1
(

K (u) + u−2σ 2d
)

. (3.5)

Also,
r∫

0

V (ρ)ρdν(ρ)dρ � c1

r/2∫

0

V (u)L(u)du, (3.6)

because

ρdν(ρ) = d2d

2d − 1

ρ∫

ρ/2

ud−1ν(ρ)du � d2d

2d−1

ρ∫

ρ/2

ud−1ν(u)du � d2d

ωd(2d − 1)
L(ρ/2).

By (2.19), V (u) ≈ h−1/2(u), and so (3.5) yields

V (u)L(u) ≈ h−1/2(u)(h(u) − K (u) − u−2σ 2d) = h−1/2(u)
(

h(u) + u

2
h′(u)

)

= (uh1/2(u))′ a.e.

From this and (3.6) we obtain the result

r∫

0

V (ρ)ρdν(ρ)dρ � c2rh1/2(r) ≈ r

V (r)
.

��
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Lemma 3.7 There exists a constant C = C(d), such that for 0 < x < r ,

r∫

0

V ′(y/2)

r∫

|y−x |
ρdν(ρ/2)dρdy � C

r

V (r)
,

and

r∫

0

V ′(y/2)|y − x |d+1ν(|y − x |/2)dy � C
r

V (r)
.

Proof Since ν is decreasing, we have

|y − x |d+1ν(|y − x |/2) � 2(d + 1)

|y−x |∫

|y−x |/2
ρdν(ρ/2)dρ,

hence

r∫

0

V ′(y/2)|y − x |d+1ν(|y − x |/2)dy � 2(d + 1)

r∫

0

V ′(y/2)

r∫

|y−x |/2
ρdν(ρ/2)dρdy.

To completely prove the lemma it is enough to estimate the latter integral. It equals

2

r∫

0

ρdν(ρ/2)

(x/2+ρ)∧r/2∫

(x/2−ρ)∨0
V ′(z)dzdρ

� 2

r∫

0

ρdν(ρ/2)[V (x/2 + ρ) − V (x/2 − ρ)]dρ

� 4

r∫

0

ρdν(ρ/2)V (ρ)dρ � cr/V (r),

where we used subadditivity (2.16) of V on R and Proposition 3.6. ��
Recall that V > 0 and V ′ > 0 on (0,∞).

Definition 1 We say that condition (H) holds if for every r > 0 there is Hr � 1 such
that

V (z) − V (y) � Hr V ′(x)(z − y) whenever 0 < x � y � z � 5x � 5r. (3.7)

We say that (H∗) holds if H∞ = supr>0 Hr < ∞.
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We consider (H) and (H∗) as Harnack type because (H) is implied by the following
property:

sup
x�r,y∈[x,5x]

V ′(y) � Hr inf
x�r,y∈[x,5x]

V ′(y), r > 0. (3.8)

Both conditions control relative growth of V . If (H) holds, then we may and do chose
Hr non-decreasing in r . Each of the following situations imply (H):

1. X is a subordinate Brownian motion governed by a special subordinator (see
Lemma 7.5).

2. d � 3 and the characteristic exponent of X satisfies WLSC (see (5.1) and
Lemma 7.2).

3. d � 1 and the characteristic exponent of X satisfies WLSC and WUSC (see (5.2)
and Lemma 7.3).

4. σ > 0 in (2.4) (see Lemma 7.4).

A more detailed discussion of (H) and further examples are given in Sect. 7.
The following Lemma 3.8 and Lemma 3.9 are the main results of this section.

They exhibit nonnegative functions which are superharmonic (hence barriers) or sub-
harmonic near the boundary of the ball, inside or outside of the ball, respectively. The
functions are obtained by composing V with the distance to the complement of the
ball or to the ball, respectively. Super- and subharmonicity are defined by the left-hand
side inequality in (3.9) and (3.16), respectively. The super- and subharmonicity of the
considered functions are relatively mild as we have good control of the right-hand
sides of these inequalities (see the proof of Theorem 4.1 for an application). In com-
parison with previous developments, it is the use of Dynkin’s operator that allows
for calculations which only minimally depend on the differential regularity of V (the
dependence on V ′ is via the mean value type inequality (H)).

Lemma 3.8 Assume that (H) holds or d = 1. Let x0 ∈ R
d , r > 0 and g(x) =

V (δB(x0,r)(x)). There is a constant C5 = C5(d) such that

0 � lim sup
t→0

[−At g(x)
]

� C5 Hr

V (r)
if 0 <δB(x0,r)(x) < r/4. (3.9)

Proof In what follows we use the notation y = (ỹ, yd), where y = (y1, . . . , yd) ∈ R
d

and ỹ = (y1, . . . , yd−1). Without loosing generality we may consider

x0 = (0̃, r) and x = (0̃, xd), where 0 < 4t < xd < r/4 (3.10)

as shown on Fig. 1 (in dimension d = 1 we mean yd = y, x0 = r and xd = x). We
define

R(y) = V (yd) − g(y), y ∈ R
d .
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Fig. 1 The settings for the proofs of Lemma 3.8 (right) and Lemma 3.9 (left)

We note that R � 0 and R(x) = 0. Since V (yd) is harmonic for X in {yd > 0}, we
have

−At g(x) = At R(x) = 1

ExτB(x,t)
E

x [R(XτB(x,t) )] � 0.

In fact, by (2.29),

At R(x) = 1

ExτB(x,t)
E

x [R(XτB(x,t) ), XτB(x,t) ∈ B(x, 2t)]

+ 1

ExτB(x,t)

∫

B(x,2t)c

R(y)

∫

B(x,t)

ν(y − w)G B(x,t)(x, w)dwdy. (3.11)

We shall split the integral into several parts. First, if y ∈ Bc
r/2 ⊂ B(x, t)c and w ∈

B(x, t), then ν(y − w) � ν(3y/8) � ν(y/4), and by (2.27),

∫

B(x,t)

ν(y − w)G B(x,t)(x, w)dw � E
xτB(x,t)ν(y/4).

By this, change of variables, subadditivity (2.16) of V and Lemma 3.5,

1

ExτB(x,t)

∫

Bc
r/2

R(y)

∫

B(x,t)

ν(y − w)G B(x,t)(x, w)dwdy �
∫

Bc
r/2

R(y)ν(y/4)dy

�
∫

Bc
r/2

ν(y/4)V (|y|)dy = 4d+1
∫

Bc
r/8

ν(y)V (|y|)dy � c/V (r).
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If d = 1, then R(y) = 0 on Br/2 = (−r/2, r/2), and the proof is complete.
In what follows we assume that d � 2 and (3.7) holds. We denote (half-ball)

F = B(x0/2, r/2) ∩ {yd < r/2} = {y : |y|2/r < yd < r/2}, and we have

yd/2 � δB(x0,r)(y) � yd and yd − δB(x0,r)(y) � |ỹ|2/r, if y ∈ F (3.12)

(see the right side of Fig. 1). We leave verification of (3.12) to the reader. By (3.7) and
(3.12),

R(y) � Hr V ′(yd/2)
|ỹ|2

r
, y ∈ F. (3.13)

If y ∈ B(x, 2t) ⊂ F , then by (3.10) and (3.12) we further have

R(y) � 4Hr V ′(xd/4)
t2

r
. (3.14)

By (3.14), (1.4), (2.19) and Lemma 2.5,

1

ExτB(x,t)
E

x [R(XτB(x,t) ), XτB(x,t) ∈ B(x, 2t)]

� 4Hr

ExτB(x,t)
V ′(xd/4)

t2

r
� cHr V ′(xd/4)

t2

r V 2(t)

→ cHr V ′(xd/4)
σ 2

r
, as t → 0.

If σ > 0, then by Lemma 2.2 we have supx>0 V ′(x) � 1/σ , hence V (r) � r/σ and
so

V ′(xd/4)
σ 2

r
� σ

r
� 1

V (r)
.

If y ∈ Br/2 \ B(x, 2t) and w ∈ B(x, t), then |y −w| � |y − x |/2. Thus, (3.9) follows
if ∫

Br/2

R(y)ν

(
y − x

2

)
dy � C5Hr

V (r)
. (3.15)

To prove (3.15), we note the singularity at y = x ∈ F , cover Br/2 with sets {y ∈ F :
|yd − xd | � |ỹ|}, {y ∈ F : |ỹ| < |yd − xd |}, {y ∈ R

d : |ỹ| < r/2,−r/2 < yd �
|y|2/r}, and consider the corresponding integrals. By (3.13), and Lemma 3.7, the first
integral does not exceed

Hr

r
ωd−1

r∫

0

V ′(yd/2)

r∫

|yd−xd |
ρdν(ρ/2)dρ dyd � C Hr

V (r)
.
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Similarly, using (3.13) and Lemma 3.7, we bound the second integral by

Hr

r

r∫

0

V ′(yd/2)ν (|yd − xd |/2)
∫

|ỹ|<|yd−xd |
|ỹ|2d ỹdyd

= C Hr

r

r∫

0

V ′(yd/2)ν(|yd − xd |/2)|yd − xd |d+1dyd � C Hr

V (r)
.

By a change of variables, subadditivity (2.16) of V , and Proposition 3.6, we bound
the third integral by

r/2∫

0

V (s)
∫

rs−s2�|ỹ|2<(r/2)2

ν(ỹ/2)d ỹds� ωd−1

r/2∫

0

ρd−2ν(ρ/2)dρ

2ρ2/r∫

0

V (s)ds

� 2

r
ωd−1

r/2∫

0

ρdν(ρ/2)V (2ρ)dρ � C

V (r)
.

This completes the proof of (3.15), and so the proof of the lemma. ��
Lemma 3.9 Assume that (H) holds or d = 1. Let x0 ∈ R

d , r > 0 and g(x) =
V (δBc(x0,r)(x)). There is a constant C6 = C6(d) such that

0 � lim sup
t→0

At g(x) � C6Hr

V (r)
, if 0 < δBc(x0,r)(x) < r/4. (3.16)

Proof As in the proof of Lemma 3.8, we use the notation y = (ỹ, yd) and without
loosing generality we consider x = (0̃, xd), 0 < 4t < xd < r/4, and x0 = (0̃,−r)

(in dimension d = 1 we mean yd = y, x0 = −r and xd = x). This time we define

R(y) = g(y) − V (yd), y ∈ R
d .

We have R � 0 and R(x) = 0. Since V (yd) is harmonic for Xt at yd > 0,

At g(x) = At R(x) = 1

ExτB(x,t)
E

x [R(XτB(x,t) )] � 0.

To prove (3.16) we repeat verbatim the proof of Lemma 3.8, starting from (3.11) there,
except for the following minor modification: we replace (3.12) with

yd � δBc(x0,r)(y) � 3yd/2 and δBc(x0,r)(y) − yd � |ỹ|2/r, if y ∈ F, (3.17)

where F = B(x0/2, r/2) ∩ {yd < r/2}, as before. ��
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4 Estimates of the expected exit time

Unless explicitly stated otherwise,wekeep assuming that X is a unimodalLévyprocess
in R

d with unbounded Lévy–Khintchine exponent ψ . The following theorem gives a
sharp estimate for the expected exit time of the ball. Recall that the upper bound in
Theorem 4.1 actually holds for arbitrary rotation invariant Lévy process, as proved in
Lemma 2.3.

Theorem 4.1 If (H) holds, then there is C7 = C7(d) such that for r > 0,

C7

Hr
V (δBr (x))V (r) � E

xτBr � 2V (δBr (x))V (r), x ∈ R
d . (4.1)

Proof Due to Lemma 2.3 it suffices to prove the lower bound in (4.1). Of course
it holds on B

c
r . Denote s(x) = E

xτBr and g(x) = V (δBr (x)), x ∈ R
d . By (2.26),

domain-monotonicity of the exit times and subadditivity (2.16) of V , the bound holds
on B3r/4, i.e. there is C = C(d) so large that

Cs(x) − V (r)g(x) � 0 if δBr (x) � r/4.

Let 0 < δBr (x) < r/4. If t > 0 is small, then by Lemma 3.8 we have |At g(x)| �
C5Hr/V (r), and by (3.2) we obtain

At [(C5Hr + 1)s − V (r)g] (x) = −(C5Hr + 1) − V (r)At g(x) � −1.

Let c = C ∨ (C5Hr + 1) and f = cs − V (r)g, a continuous function. By Corol-
lary 3.1, f cannot attain global minimum on Br\B3r/4. Since f � 0 elsewhere, f � 0
everywhere. ��

The above argument was inspired by the proof of Green function estimates for the
ball and stable Lévy processes given by Bogdan and Sztonyk in [13].

Corollary 4.2 If D is bounded, convex and C1,1 at scale r > 0, and if (H) holds, then

C7

Hr
V (δD(x))V (r) � E

xτD � V (δD(x))V (diam(D)), x ∈ R
d . (4.2)

Proof Fix x ∈ D and consider a strip � ⊃ D of width not exceeding diam(D)

and ball B ⊂ D of radius r ∨ δD(x) such that δD(x) = δ�(x) = δB(x). Since
sB(x) � sD(x) � s�(x), the result follows from (2.18) and Theorem 4.1. ��
Remark 4 All the results in this section also hold if ν is isotropic, infinite and approx-
imately unimodal in the sense of (4.3) below. Here is an example and explanation.

Corollary 4.3 Let X be isotropic with absolutely continuous Lévy measure ν(dx) =
ν(|x |)dx. Let ν0 : (0,∞) → (0,∞) be monotone and let C∗ be a constant such that

(C∗)−1ν0(r) � ν(r) � C∗ν0(r), r > 0. (4.3)
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If (H) holds, then there is c = c(d, C∗) such that for r > 0,

E
xτBr � c

Hr
V (δBr (x))V (r), x ∈ R

d .

Proof Let Y be unimodal with characteristic function ψY (ξ) = σ |ξ |2 + ∫
Rd (1

− cos〈ξ, z〉)ν0(|z|)dz. By Proposition 2.4 we have V Y (r) ≈ V (r), r > 0. By Propo-
sition 3.6,

r∫

0

V (ρ)ρdν(ρ)dρ ≈
r∫

0

V Y (ρ)ρdν0(ρ)dρ � C
r

V (r)
, r > 0. (4.4)

The inequality and approximate monotonicity of ν yield extensions of Lemmas 3.7
and 3.8, from which the present corollary follows in a similar manner as Theorem 4.1.

��
For r > 0 we define functions

I(r) = inf
0<ρ�r/2

[
ν(Br\Bρ)V 2(ρ)

]
, (4.5)

and
J (r) = inf

0<ρ�r

[
L(ρ)V 2(ρ)

]
. (4.6)

We note that J is non increasing. By (2.23),

0 � I(2r) � J (r) � c(d), r > 0. (4.7)

We shall use J immediately, but I shall only be discussed and used later, in Sects. 5
and 6.

Lemma 4.4 Let (H) hold. Denote D = Bc
1 . Let 0 < r < 1, x ∈ D and 0 < δD(x) �

r/2. Let x0 = x/|x | and D1 = B(x0, r) ∩ D. There is C8 = C8(d) such that

E
xτD1 � C8

H1

(J (1))2
V (δD(x)) V (r). (4.8)

Proof Wemay and do assume that x = (0̃, xd) with 1 < xd � 1+ r/2. If a, b, c � 0,
k � 2, a − b + c � 0 and b � kc, then a � b − c � (k − 1)c � kc/2, so c � 2a/k.
We shall use this observation to compare a(v) = V (δD(v)), b(v) = E

va(XτD1
) and

s(v) = E
vτD1 , where v ∈ R

d . We first let 0 < r � 1/4, and consider

f (v) = a(v) − b(v) + C6H1 + 1

V (1)
s(v), v ∈ R

d .
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If v /∈ D1 then a(v) = b(v), s(v) = 0, and so f (v) = 0. By Lemmas 2.9, 3.4 and 3.5,
and by subadditivity of V , f ∈ C0(D1). If v ∈ D1, and t > 0 is small enough, then
Lemma 3.9 and (3.2) yield

At f (v) � C6H1

V (1)
− C6H1 + 1

V (1)
< 0.

By Lemma 3.2, f � 0 on D1. Consider a point z∗ ∈ ∂ B1 ∩ ∂ B(x0, r). We have
z∗

d = 1 − r2/2. Let F = {y : yd > 1 + r}. For all z ∈ D1, F − z = {y : yd >

1+ r − zd} ⊃ {y : yd > r + r2/2} = F − z∗, hence inf z∈D1 ν(F − z) = ν(F − z∗) =
(1/2)L1(r + r2/2). By Ikeda–Watanabe,

b(v) � V (r)Pv(XτD1
∈ F) � V (r)EvτD1 inf

z∈D1
ν(F − z)

= 1

2
V (r)EvτD1 L1(r + r2/2) � 1

2
V (r)EvτD1 L1(9r/8).

Since Xt is rotation invariant, there is c1 = c1(d) such that L1(9r/8) � 8c1L(2r).
Indeed, Bc

2r may be covered by a finite number of rotations of {y ∈ R
d : |yd | > 9r/8}.

Thus, for r � 1/4, we have L1(9r/8) � 8c1L(2r) � 8c1J (1)
V 2(2r)

� 2c1J (1)
V 2(r)

, hence

b(v) � E
vτD1

c1J (1)

V (r)
= c1J (1)

C6H1 + 1

V (1)

V (r)

C6H1 + 1

V (1)
s(v).

If c1J (1)
C6H1+1

V (1)
V (1/4) � 2, then we let r0 = 1/4, else we pick r0 > 0 so that c1J (1)

C6H1+1
V (1)
V (r0)

=
2. By the observation at the beginning of the proof, for 0 < r � r0, we have s(v) �
2V (δD(v))V (r)/(c1J (1)) for all v, in particular for v = x .

For r0 < r < 1 we proceed in the following standard way. First assume that
δD(x) � r0/2, and let D′ = B(x0, r0) ∩ D. Then by the strong Markov property,

s(x) = E
xτD1 = E

xτD′ + E
x s(XτD′ ).

As stated in Theorem 4.1, s(x) � 2V 2(r). By Lemma 2.7, we thus obtain,

E
x s(XτD′ ) � 2V 2(r)Px (|XτD′ − x0| � r0)

� 2C1V 2(r)
E

xτD′

V 2(r0)
.

If this is combined with the estimates already proved, then c2 = c2(d) exists such that

s(x) � (2C1 + 1)ExτD′
V 2(r)

V 2(r0)

� c2
V (r)

J (1)V (r0)
V (δD(x))V (r) � c2

V (1)

J (1)V (r0)
V (δD(x))V (r).

123



182 K. Bogdan et al.

If δD(x) � r0/2, then by Lemma 2.3 and subadditivity of V , we trivially have

s(x) � 2V 2(r) � 2V (r)

V (r0/2)
V (δD(x))V (r) � 4V (1)

V (r0)
V (δD(x))V (r).

Summarizing, by taking c3 = 4 + c2, in all the cases we get

E
xτD1 � c3

V (1)

V (r0)

(
1 + 1

J (1)

)
V (δD(x))V (r).

By the choice of r0, subadditivity of V and (4.7), V (1)/V (r0) � 4 + 2(C6H1 + 1)/
(c1J (1)) � c4H1/J (1), where c4 = c4(d). Therefore,

E
xτD1 � c4H1

J (1) + 1

J (1)2
V (δD(x))V (r).

This is equivalent to (4.8). ��
Corollary 4.5 Let (H) hold. Denote D = Bc

R. Let 0 < r < R, x ∈ D, 0 < δD(x) �
r/2, x0 = x R/|x |. If D1 = B(x0, r) ∩ D, then

E
xτD1 � C8

HR

(J (R))2
V (δD(x)) V (r). (4.9)

Proof Let R > 0, Yt = Xt/R and denote by VY , τY
B , LY , J Y∞, H Y· the quan-

tities V , τB , L , J , H· corresponding to Y . By (2.14) and (2.17), we infer that
VY (s) = V (Rs), s � 0. Furthermore, LY (s) = L(Rs) for s > 0. Hence, we obtain
V 2

Y (s)LY (s) = V 2(Rs)L(Rs), which shows that J Y (1) = J (R). Also, HY
1 = HR

and

E
xτD1 = E

x/RτY
D1/R .

Here the expectation on the right hand side corresponds to Y . Lemma 4.4 finishes the
proof. ��
The above argument shall be called scaling (a different, weak scaling is discussed in
Sect. 5).

The following is one of our main results.

Theorem 4.6 If (H) holds and D ⊂ R
d is open, bounded and C1,1 at scale r > 0,

then C9 = C9(d) and C10 = C10(d) exist such that

C9

Hr
V (δD(x))V (r) � E

xτD � C10
Hr

(J (r))2
V 2(diam D)

V 2(r)
V (δD(x))V (r), x ∈ R

d .

Proof Denote s(x) = E
xτD . By Lemma 2.3, s(x) � 2V 2(diam(D)). Let Q ∈ ∂ D

be such that |x − Q| = δD(x). Let δD(x) � r/2. Since D is C1,1 at scale r , there
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exist x1 ∈ Dc and x2 ∈ D such that B(x1, r) ⊂ Dc, B(x2, r) ⊂ D and {Q} =
B(x1, r) ∩ B(x2, r). Let D1 = B(Q, r) ∩ D. By the strong Markov property and
(2.25),

s(x) = E
xτD1 + E

x s(XτD1
) � E

xτD1 + 2V 2(diam(D))Px (|XτD1
− Q| > r)

� E
xτD1

(
1 + 2C1

V 2(diam(D))

V 2(r)

)
.

Corollary 4.5 yields the upper bound, since E
xτD1 � E

xτD2 , where D2 =
B(Q, r) ∩ B(x1, r)

c
. The lower bound is a consequence of Theorem 4.1, because

s(x) � E
xτB(x2,r).

For the case δD(x) � r/2, we see from (2.26) that s(x) � E
xτB(x,δD(x)) �

C−1
1 V 2(δD(x)) � (2C1)

−1V (δD(x))V (r). By this, the general upper bound s(x) �
2V 2(diam(D)) and the observations that Hr � 1 and J (r) � c(d), we finish the
proof. ��
For instance, V 2(diam D)/V 2(r) is bounded by the square of the distortion of D, if r
equals the localization radius of D.

In the one-dimensional case in the proof of Theorem 4.6 we may apply (2.18)
instead of Theorem 4.1 and Corollary 4.5, to obtain the following improvement.

Corollary 4.7 If X is a symmetric Lévy process in R with unbounded Lévy-
Khintchine exponent, and D ⊂ R is open, bounded and C1,1 at scale r > 0,
then absolute constant c � 1 exists such that c−1V (δD(x))V (r) � E

xτD �
cV 2(diam D)V −2(r) V (δD(x))V (r) for x ∈ R.

5 Scaling and its consequences

Let X be an isotropic unimodal Lévy process in R
d with infinite Lévy measure ν. In

view of the literature of the subject (cf. [10,34,35,39]), power-like asymptotics of the
characteristic exponent of X is a natural condition to consider. Let I = (θ,∞), where
θ ∈ [0,∞) and let φ � 0 be a non-zero function on (0,∞). We say that φ satisfies the
weak lower scaling condition (at infinity) if there are numbers α > 0 and c∈ (0, 1],
such that

φ(λθ) � cλαφ(θ) for λ � 1, θ∈ I . (5.1)

In short we say that φ satisfies WLSC(α, θ, c) and write φ ∈ WLSC(α, θ, c). If φ ∈
WLSC(α, 0, c), then we say that φ satisfies the global weak lower scaling condition.

Similarly, we consider I = (θ,∞), where θ ∈ [0,∞) and we say that the weak
upper scaling condition holds if there are numbers α< 2 and C∈ [1,∞) such that

φ(λθ) � Cλαφ(θ) for λ � 1, θ∈ I . (5.2)

In short, φ ∈ WUSC(α, θ, C). For global weak upper scaling we require θ = 0 in
(5.2). We write φ ∈ WLSC or WUSC if the actual values of the parameters are not

123



184 K. Bogdan et al.

important. We shall study consequences of WUSC and WLSC for the characteristic
exponent ψ of Xt .

Recall that ψ is a radial function and we use the notation ψ(u) = ψ(x), where
x ∈ R

d and u = |x |. Our estimates below are expressed in terms of V , ψ or ψ∗. In
view of Proposition (2.4), these functions yield equivalent descriptions (ψ or ψ∗ are
even comparable, see (3.1)). Our main goal is to find connections between the scaling
conditions onψ and themagnitude of the quantitiesJ and I defined in (4.6) and (4.5).
In the preceding section we saw thatJ plays a role in estimating the expected exit time
from C1,1 open sets. The next three results prepare analysis of survival probabilities
in Sect. 6. The first one comes from [10, Corollary 15].

Lemma 5.1 C = C(d) exists such that if ψ∈ WUSC(α, θ, C), a = [(2
− α)C] 2

2−α C
α−2
2 , then

L(r) � aψ(r−1), 0 <r �
√

a/θ.

The following result makes use of the complete Bernstein function φ(λ) ≈ ψ(
√

λ),
constructed in the proof of [10, Theorem 26]. For the convenience of the reader we
repeat some of the arguments from [10].

Proposition 5.2 (i)ψ satisfies WUSC if and only if there is R > 0, such that J (R) >

0. (ii) ψ satisfies WUSC and WLSC (global WUSC and WLSC) if and only if for some
R > 0 (R = ∞, resp.) we have infr<R I(r) > 0.

Proof Assume that ψ satisfies WUSC(β1, θ, C). By Lemma 5.1 and (2.19), there is
a constant c1 such that L(r)V 2(r) � c1 > 0 for r � √

a/θ , and so J (r) � c1 > 0
for such r . On the other hand, if R ∈ (0,∞) is given and J (R) > 0, then

L(r) � J (R)/V 2(r), r � R. (5.3)

By [44, proof of Theorem 6.2] and (2.3), the following defines a complete Bernstein
function:

ϕ(λ) =
∞∫

0

λ

λ + s
s−1ν(s−1/2)s−d/2ds =

∞∫

0

(
1 − e−λu)μ(u)du, λ � 0,

where μ(u) = L[ν(s−1/2)s−d/2](u). In fact, by changing variables, and (2.5) for
λ > 0 we have

ϕ(λ) = 2

∞∫

0

λu2

λu2 + 1
ν(u)ud−1du ≈

∞∫

0

[
1 ∧ (λu2)

]
ν(u)ud−1du = ω−1

d h
(
λ−1/2

)
.
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By (2.19), there exists c1 = c1(d) such that

c1ϕ(λ) � ψ
(√

λ
)

� c−1
1 ϕ(λ), λ � 0. (5.4)

Since ϕ is a complete Bernstein function, ϕ1(λ) = λ/ϕ(λ) is a special Bernstein
function (see [44, Definition 11.1 and Proposition 7.1]). Since Xt is pure-jump,
lim|ξ |→∞ ψ(ξ)/|ξ |2 = 0. Thus, limλ→∞ ϕ1(λ) = ∞. By [44, (11.9) and Theo-
rem 11.3], the potential measure of the subordinator with the Laplace exponent ϕ1 is
absolutely continuous with the density function f (s) = ∫∞

s μ(u)du since ϕ(0) = 0.
In particular L f = 1/ϕ1 (see [44, (5.20)]). We obtain

ν(x) �
∫∞
|x |−2 e−s|x |2ν(s−1/2)s−d/2ds
∫∞
|x |−2 e−s|x |2s−d/2ds

� μ(|x |2)
�(1 − d/2, 1)|x |d−2 , x �= 0, (5.5)

where �(1 − d/2, 1) = ∫∞
1 e−uu−d/2du is the upper incomplete gamma integral.

Hence,

f (r) � c

∞∫

r

u(d−2)/2ν(u1/2)du = cL(r1/2), r > 0. (5.6)

By (5.6), (5.3), (2.19) and (5.4)

f (r) � cJ (R)/V 2(r1/2) � c2ϕ(r−1) = c2
rϕ1(r−1)

, 0 < r � R2. (5.7)

Since f is decreasing and L f (u) = 1/ϕ1(u), by [10, Lemma 5] we obtain

f (s) � 1

γ (2, 1)s2

(
1

ϕ1

)′
(s−1) = 1

γ (2, 1)s2
ϕ′
1(s

−1)

ϕ2
1(s

−1)
, s > 0,

where γ (2, 1) = ∫ 1
0 e−uu du is the lower incomplete gamma integral. By (5.7),

c3ϕ1(λ) � λϕ′
1(λ), where λ > 1/R2 and c3 = c2γ (2, 1). It follows that λ−c3φ1(λ)

is nondecreasing on (R−2,∞). By [10, Lemma 11], ϕ1 ∈ WLSC(c3, R−2, 1). Since
ϕ1 is concave, λϕ′

1(λ) � ϕ1(λ), hence c3 � 1. In fact, ϕ1 is not a linear function,
because ϕ is unbounded, and so c3 < 1. Therefore ϕ ∈ WUSC(1 − c3, R−2, 1), and
so ψ ∈ WUSC(2(1 − c3), R−1, c−2

1 ), by (5.4).
To prove the second part of the statement we suppose that ψ satisfies WUSC

(β1, θ, C) and WLSC(β2, θ, c). By [10, Corollary 22] and (2.19),

ν(x) � c∗

V 2(|x |)|x |d , |x | � b/θ.
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If 2ρ � b/θ , then by monotonicity of V we have

V 2(ρ)ν(B2ρ\Bρ) � V 2(ρ)

∫

B2ρ\Bρ

c∗dx

V 2(|x |)|x |d �
∫

Bρ\Bρ/2

c∗ dx

|x |d .

Therefore I(r) � c∗(1 − (1/2)d)ωd/d for all r � b/θ , as needed.
To prove the reverse implication we assume that there exist constants c∗ and R,

such that for 0 < r < R, I(r) � c∗. By radial monotonicity of ν,

ν(x) � c∗

|B2| − |B1|
1

V 2(|x |)|x |d , |x | < R/2.

By (2.19) and [10, Theorem 26], we obtain WLSC and WUSC for ψ . ��
Proposition 5.3 If ψ satisfies WUSC but not WLSC, then lim infr→0 I(r) = 0 but
there is R > 0 such that I(r) > 0 for r < R.

Proof Let R = 2 sup{r : ν(r) > 0}. We have R > 0. If ψ satisfies WUSC, then by
Lemma 5.1 and Proposition 2.4, there are c1, r1 > 0, such that L(ρ) � c1/V 2(ρ) for
ρ < r1. Since limρ→0 V (ρ) = 0,

lim inf
ρ→0

V 2(ρ)ν(Br\Bρ) = lim inf
ρ→0

V 2(ρ)L(ρ) � c1,

for every r > 0. Fix r ∈ (0, R). There is r2 > 0 such that

V 2(ρ)ν(Br\Bρ) � c1/2 if ρ � r2.

If r2 < ρ � r/2, then by monotonicity of V ,

V 2(ρ)ν(Br\Bρ) � V 2(r2)ν(Br\Br/2) > 0,

hence I(r) > 0. If lim infr→0 I(r) > 0, then by Proposition 5.2, ψ satisfies also
WLSC. ��

5.1 Hitting a ball

We shall estimate the probability that X ever hits a fixed ball of radius R > 0. If X
is transient and its starting point is far from the ball, then the probability of such an
event is small; X instead drifts to infinity with probability bounded below by a positive
constant. Indeed, define

U (x) =
∞∫

0

pt (x)dt, x ∈ R
d ,
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the potential kernel of X . If the process is transient [40], then U is finite almost
everywhere, in fact on R

d\{0}. This is the case, e.g. if d � 3. We denote by Cap
the capacity with respect to X . Recall that for every non-empty compact set A ⊂ R

d

there exists a measure μA, supported on A (see, e.g., [6, Section II.2]), called the
equilibrium measure, such that

UμA(x) =
∫

U (x − y)μA(dy) = P
x (τAc < ∞), x ∈ R

d , (5.8)

and μA(A) = Cap(A). The following two lemmas were proved in [24].

Lemma 5.4 (Theorem 3 of [24]) If d � 3, then there is C15 = C15(d) such that

U (x) � C15
V 2(|x |)

|x |d , x ∈ R
d .

We note in passing that lower bounds for U are given in [24] under WLSC.

Lemma 5.5 (Proposition 3 of [24]) If d � 3, then there is C16 = C16(d) such that

C−1
16

Rd

V 2(R)
� Cap(BR) � C16

Rd

V 2(R)
, R > 0.

If ψ ∈ WUSC(α, 0, C) and d > α > 0, then the process X is transient (even if
d < 3), and we may extend the two previous lemmas by using the weak upper scaling
condition.

Lemma 5.6 If ψ ∈ WUSC(α, 0, C) and α < d � 2, then c = c(d, α, C) exists such
that

U (x) � c
V 2(|x |)

|x |d , x ∈ R
d .

Proof Using the global upper weak scaling condition instead of [24, Lemma 1] one
can prove as in [24, Lemma 6] that for d > α,

L

⎛

⎜⎝
∫

B√·

U (y)dy

⎞

⎟⎠ (λ) ≈ 1

λψ∗(
√

λ)
, (5.9)

and then we proceed as in the proof of the first part of [24, Theorem 3]. ��
Lemma 5.7 If ψ ∈ WUSC(α, 0, C) and α < d � 2, then c = c(d, α, C) exists such
that

c−1 rd

V 2(r)
� Cap(Br ) � c

rd

V 2(r)
, r > 0.
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Proof We follow the proof of [24, Proposition 3], using (5.9) instead of [24, Lemma
6]. ��
As a consequence of the above lemmas we obtain the following upper bound of the
probability that the process ever hits a ball of arbitrary radius, a close analogue of a
well knownBrownian result.We note that [39, Lemma 2.5] gives the inequality (5.10),
in fact comparability of both sides of (5.10), for d � 3 under the global weak lower
scaling condition.

Proposition 5.8 For d � 3 there exists a constant C17 = C17(d) such that for |x | >

R > 0,

P
x (τB

c
R

< ∞) � C17
V 2(|x |)

|x |d
/V 2(R)

Rd
. (5.10)

If α < d � 2 and ψ ∈WUSC(α, 0, C), then (5.10) holds with C17 = C17(d, α, C).

Proof We have

P
x (τB

c
R

< ∞) =
∫

BR

U (y − x)μBR (dy).

By Lemma 5.4, for y ∈ BR and |x | � 2R we get

U (x − y) � 2dC15|x |−d V 2(|x |).

Hence, by Lemma 5.5,

P
x (τB

c
R

< ∞) � 2dC15|x |−d V 2(|x |) Cap(BR) � 2dC15C16
Rd V 2(|x |)
|x |d V 2(R)

.

Since [Rd V 2(|x |)]/[|x |d V 2(R)] � 2−d , for |x | � 2R we have

P
x (τB

c
R

< ∞) � 2d(C15C16 + 1)
Rd V 2(|x |)
|x |d V 2(R)

, |x | > R.

To prove the second claim we use Lemma 5.6 and 5.7 above instead of 5.4 and 5.5. ��
The following result is important in Sect. 6.

Corollary 5.9 If d � 3, then c = c(d) exists such that

P
x (τB

c
R

= ∞) � 1/2, |x | � cR.

If α < d � 2 and ψ ∈WUSC(α, 0, C), then the above inequality holds with c =
c(d, α, C).
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6 Estimates of survival probability

In this section we assume that X is a pure-jump (isotropic) unimodal Lévy process
with infinite Lévy measure.

Proposition 6.1 Let (H) hold. There are C11 = C11(d) < 1 and C12 = C12(d) such
that if R > 0 and t � C11V 2(R), then

P
x (τBR > t) � C12

I(R)

HR

(
V (δBR (x))√

t
∧ 1

)
.

Proof Let R = 1 and C11 = C3/64. Due to Corollary 2.8 and subadditivity of V ,

P
0(τBr/8 > C11V 2(r)) � 1/2. (6.1)

Suppose that 0 < t � C11V 2(1) and pick r � 1 such that t = C11V 2(r). Let x ∈ B1.
If δB1(x) � r/8, then P

x (τB1 > t) � 1/2 by (6.1). To complete the proof for R = 1,
it is enough to consider the case δB1(x) < r/8. Let δB1(x) < r/8. Let r0 = r/2∧ 1/4
and Dr = B1\B1−r0 . Notice that B(z, r/4) ⊂ B1 for z ∈ B1−r0 . By the strongMarkov
property,

P
x (τB1 > t) � E

x
[
P

XτDr (τB1 > t); XτDr
∈ B1−r0

]

� inf
z∈B1−r0

P
z(τB1 > t)Px [XτDr

∈ B1−r0

]

� P
0(τBr/4 > C11V 2(r))Px [XτDr

∈ B1−r0

]

� (1/2)Px [XτDr
∈ B1−r0

]
.

If |z0| = 1, then by the Ikeda–Watanabe formula, isotropy and monotonicity of the
Lévy density,

P
x [XτDr

∈ B1−r0

]
� E

xτDr inf
z∈Dr

ν(z − B1−r0) � ν(z0 − B1−r0)E
xτDr .

By Theorem 4.6, subadditivity of V , ExτDr � C9
Hr0/2

V (r0/2)V (δB1(x)) � C9
8H1

V (r)

V (δB1(x)). Since ν is isotropic, ν(z0 − B1−r0) � c1ν(B1 \ B2r0) � c1
I(1)

4V 2(r)
, where

c1 = c1(d). Therefore,

P
x (τB1 > t) � c1

C9

64H1
I(1)

V (δB1(x))

V (r)
= C12

I(1)

H1

V (δB1(x))√
t

,

where C12 = c1C9
√

C3/512.
For arbitrary R > 0 we use scaling as in the proof of Corollary 4.5. ��

Remark 5 The estimate in Proposition 6.1 is sharp if t � C11V 2(R); a reverse inequal-
ity follows immediately from Proposition 2.6. If t > C11V 2(R), then one can use
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spectral theory to observe exponential decay of the Dirichlet heat kernel and the sur-
vival probability in time if, say, supx pt (x) < ∞ for all t > 0 (see [10, Corollary 7],
[20, Theorem 4.2.5], [25, Theorem 3.1]).

Lemma 6.2 Let R > 0, D = B
c
R and let (H) hold. There is C13 = C13(d) such that,

P
x (τD > t) � C13

HR

(J (R))2

V (δD(x))√
t ∧ V (R)

, t > 0, x ∈ R
d .

Proof Let x ∈ D and x0 = x R/|x |. If 0 < t � V 2(R), then we choose r so that
V (r) = √

t , otherwise we set r = R. We define

D1 = B(x0, r) ∩ Bc
R .

Since HR � 1 and J (R) � c(d), we may assume that 0 < δD(x) � r/2. By
Corollary 4.5,

E
xτD1 � C8

HR

(J (R))2
V (r)V (δD(x)).

By (2.25),

P
x (|XτD1

−x0| � r) � C1
E

xτD1

V 2(r)
.

Finally, we get the conclusion:

P
x (τD > t) � P

x (τD1 > t) + P
x (|XτD1

−x0| � r) � E
xτD1

t
+ C1

E
xτD1

V 2(r)

� (C1 + 1)C8HR(J (R))−2 V (δD(x))√
t ∧ V (R)

.

��
Remark 6 If d = 1, then regardless of (H), we have for any t > 0,

P
x (τD > t) � C13

V (δD(x))√
t ∧ V (R)

.

This is easily seen from the above proof and the estimateExτD1 � 2V (r/2)V (δD(x)).
The estimate is not, however, sharp for large t if D is bounded.

We end this section with bounds for the survival probabilities in the complement
of the ball. Noteworthy the constants in the bounds do not depend on the radius.

Theorem 6.3 Suppose that ψ ∈ WLSC(α, 0, c) ∩ WUSC(α, 0, C). Let R > 0 and
D = B

c
R.
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(i) There is a constant C∗ = C∗(d, α, c, α, C) such that,

P
x (τD > t) � C∗

(
V (δD(x))√
t ∧ V (R)

∧ 1

)
, t > 0.

(ii) If d > α, then

P
x (τD > t) ≈ V (δD(x))√

t ∧ V (R)
∧ 1, t > 0,

where the comparability constant depends only on d, α, c, α, C.

Proof In the proof we make the convention that all the starred constants may only
depend on d, α, c, α, C . By Remark 6 we only need to deal with the first part only
for d � 2. By the assumption on ψ and Proposition 5.2, inf R>0 J (R) � c∗

1 > 0.
Furthermore, for d � 2, by Lemma 7.2 or Lemma 7.3 we have H∞ < ∞. The first
claim now follows from Lemma 6.2.

Let d > α. By (2.21) we have absolute constant c2 such that

P
x (τD > t) � c2

V (δD(x))√
t

∧ 1, t > 0, x ∈ R
d .

Therefore, it is enough to show that there is c∗
3 such that

P
x (τD = ∞) � c∗

3

(
V (δD(x))

V (R)
∧ 1

)
. (6.2)

Since d > α, by Corollary 5.9, there is c∗
4 � 2 such that for |x | � c∗

4 R, Px (τD =
∞) � 1/2. It is now enough to show (6.2) for R � |x | � 3R/2. Let F = B( 3Rx

2|x | ,
R
2 ).

By the strong Markov property,

P
x (τD = ∞) � E

x
(
P

XτF (τD = ∞), |XτF | � c∗
4 R
)

� (1/2)Px (|XτF | � c∗
4 R).

By the Ikeda–Watanabe formula,

P
x (|XτF | � c∗

4 R) � ν({y : y1 � c∗
4 R})ExτF .

By Theorem 4.1 and subadditivity of V we have E
xτF � c∗

5V (δD(x))V (R). By
Lemma 5.1 and Proposition 2.4 for X1

t and subadditivity of V we obtain ν({y : y1 �
c∗
4 R}) � c∗

6/V 2(R) for some c∗
6 > 0. This proves (6.2). ��

We note that the assumption d > α cannot in general be removed from the second
part of the theorem. For example, if d = 1, then the survival probability of the Cauchy
process has asymptotics of logarithmic type, see [9, Remark 10]. Precise estimates
of the tails of the hitting time of the ball for the isotropic stable Lévy processes are
given in [9]. For the Brownian motion, [15] gives even more-precise estimates of the
derivative of the survival probability.
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Remark 7 We conclude this section with an obvious but necessary remark: if B, B ′ ⊂
R

d are balls (open and closed, correspondingly) and B ⊂ D ⊂ B ′c, then the survival
probability of D is bounded as follows

P
x (τB > t) � P

x (τD > t) � P
x (τB′c > t), x ∈ R

d , t � 0.

This leads to immediate bounds for the survival probabilities for general C1,1 open
sets D ⊂ R

d : If ψ ∈ WLSC(α, 0, c) ∩WUSC(α, 0, C) and D is C1,1 at scale r , then
by Proposition 6.1, Remark 5 and Theorem 6.3, there is C∗ = C∗(d, α, α, c, C) such
that if x ∈ R

d and t � C11V 2(r), then

1

C∗

(
V (δD(x))√

t
∧ 1

)
� P

x (τD > t) � C∗
(

V (δD(x))√
t

∧ 1

)
. (6.3)

7 Discussion of assumptions and applications

7.1 Condition (H)

Recall that function v > 0 is called log-concave if log v is concave, and if this is the
case, then the (right hand side) derivative v′ of v exists and v′/v is non-increasing.
The next lemma shows that (H∗) is satisfied with H∞ = 5 if V is log-concave.

Lemma 7.1 If V is log-concave and 0 <x� y � z �5x, then V (z) − V (y) �
5V ′(x)(z − y).

Proof We have V > 0 increasing, and V ′/V > 0 non-increasing. Therefore,

log V (z) − log V (y) =
z∫

y

V ′(s)
V (s)

ds � V ′(x)

V (x)
(z − y),

and

log V (z) − log V (y) =
V (z)∫

V (y)

1

u
du � V (z) − V (y)

V (z)
.

By this and subadditivity of V ,

V (z) − V (y) � V (z)V ′(x)

V (x)
(z − y) � 5V ′(x)(z − y).

��
The next lemma shows that for dimension d � 3, the weak lower scaling condition

implies (H), while the weak global lower scaling implies (H∗). This helps extend
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many results previously known only for complete subordinate Brownian motions with
scaling (see below for definitions).

Remark 8 A sufficient condition for log-concavity of V is that V ′ bemonotone, which
is common for subordinate Brownian motions, for instance if the subordinator is
special. For complete subordinate Brownian motions, V is even a Bernstein function
(see [37, Proposition 4.5]). It is interesting to note that V ′ is not monotone for the
so-called truncated α-stable Lévy processes with 0 < α < 2 [32]. Indeed, if the Lévy
measure has compact support, then by [21, (5.3.4)] the Lévy measure of the ladder-
height process (subordinator) has compact support as well. By [44, Proposition 11.16],
κ is not a special Bernstein function, therefore by [44, Theorem 11.3], V ′ is not
decreasing. We, however, note that the truncated stable processes have global weak
lower scaling with α = α, and our estimates of the expected exit time for the ball
hold for these processes with the comparability constant independent of r . This shows
flexibility of our methods.

Lemma 7.2 If d � 3 and ψ ∈ WLSC(β, θ, c), then (H) holds with HR = HR(β, θ,

c, R) for any R ∈ (0,∞). If, furthermore, θ = 0, then (H∗) even holds.

Proof By [24, Corollary 5], the scale invariant Harnack inequality holds for X1, the
one-dimensional projection of X . Namely, for every R > 0 there is CR < ∞ such
that if 0 < r � R, h � 0 on R and h is harmonic for X1 on (−r, r), then

sup
y∈(−r/2,r/2)

h(y) � CR inf
y∈(−r/2,r/2)

h(y).

Since V ′ is harmonic on (0,∞) for X1 and x0 � 2r , then by spatial homogeneity,

sup
θ∈(x0−r,x0+r)

V ′(θ) � CR inf
θ∈(x0−r,x0+r)

V ′(θ).

Using the inequality with (x0, r) = (x, x/2), (9x/4, x), (4x, x), where 0 < x � R
we get

sup
θ∈(x/2,5x)

V ′(θ) � C3
R inf

θ∈(x/2,5x)
V ′(θ) � C3

R V ′(x).

The absolute continuity of V yields the conclusion. ��
Lemma 7.3 Let d � 1 and ψ ∈ WLSC(α, θ, c) ∩ WUSC(α, θ, C). Then (H) holds
with HR = HR(α, α, θ, c, C, R) for all R ∈ (0,∞). If, furthermore, θ = 0, then (H∗)
even holds.

Proof By the same arguments as given in Lemma 7.2 it is enough to show that the
scale invariant Harnack inequality holds for X1. By [10, Corollary 22 and (16)] and
Proposition 2.4 applied to X1, there exists r0 > 0 such that

ν1(u) ≈ 1

V (|u|)2|u|d , 0 < |u| < r0/θ.

123



194 K. Bogdan et al.

At first, let θ > 0. By [16, Theorem 5.2] used with auxiliary function

φ(r) =
{

V 2(r) if 0 < r � r0/θ,

V 2(r0/θ)(rθ/r0)α if r > r0/θ,

we infer that the scale invariant Harnack inequality holds for X1.
For θ = 0 we use [18, Theorem 4.12] instead of [16, Theorem 5.2] to get the global

scale invariant Harnack inequality for X1. In consequence we obtain (H∗). ��
Lemma 7.4 If σ > 0, then (H) holds.

Proof If σ > 0, then V ′ is positive, continuous and bounded by σ−1 (see Lemma 2.2).
By Cauchy’s mean value theorem, for R > 0 we have

V (z) − V (y) � σ−1(z − y) � HR V ′(x)(z − y) 0 < x � y � z � 5R,

where HR = (σ inf z�5R V ′(z))−1 < ∞. ��
The case when X is a subordinate Brownian motion is of special interest in this

theory: we consider a Brownian B motion in R
d and an independent subordinator η,

and we let

X (t) = B(2η(t)).

The process X is then called a subordinate Brownian motion. The monograph [44] is
devoted to the study of such processes. Furthermore, X is called a special subordi-
nate Brownian motion if the subordinator is special (i.e. given by a special Bernstein
function [44, Definition 11.1]), and it is called complete subordinate Brownian motion
if the subordinator is even complete [44, Proposition 7.1]. We let ϕ be the Laplace
exponent of the subordinator, i.e.

E exp[−uη(t)] = exp[−tϕ(u)], u � 0.

Since

Eei〈ξ,Bt 〉 = e−t |ξ |2/2, t � 0, ξ ∈ R
d ,

we have

ψ(ξ) = ϕ(|ξ |2).

Then by [37, Theorem 4.4], V (r) ≈ ϕ(r−2)−1/2. For clarity, [37] makes the assump-
tion that ϕ is unbounded, but it is not necessary for the result. In connection to [37,
Remark 4.7] we note that ϕ(x) and x/ϕ(x) are monotone. For instance, by concavity,
if s � 1 and x � 0, then ϕ(sx) � sϕ(x), hence sx/ϕ(sx) � x/ϕ(x).
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Remark 9 If X is a subordinate Brownian motion, then due to [24, Theorem 7] we
may skip the assumption d � 3 in Lemma 7.2. This is related to the fact that Harnack
inequality is inherited by orthogonal projections of isotropic unimodal Lévy processes,
and every subordinate Brownian motion in dimensions 1 and 2 is a projection of a
subordinate Brownian motion in dimension 3 (this observation was used before in
[31]).

Lemma 7.5 If X is a special subordinate Brownian motion, then V is concave.

Proof By [33, Proposition 2.1], the Laplace exponent κ given by (2.14) is a special
Bernstein function. In fact, [33] makes the assumption that the Laplace exponent of a
subordinator is a complete Bernstein function, but the same proof works if it is only a
special Bernstein function, since it suffices that |x |2/ψ(x) be negative definite. Then
[44, Theorem 11.3] implies that V ′ is non-increasing, which ends the proof. ��
Remark 10 Lemma 7.5 implies (H∗) with H∞ = 1 for special subordinate Brownian
motions.

We finish this sectionwith a simple argument leading to boundary Harnack inequal-
ity.

Proposition 7.6 Let ν be continuous in R
d\{0}. Assume that ψ satisfies the global

weak lower and upper scaling conditions, D is C1,1 at scale ρ > 0, z ∈ ∂ D, 0 < r < ρ

and u � 0 is regular harmonic in D∩B(z, r) and vanishes in B(z, r)\D. Then positive
c = c(d, ψ), c1 = c1(d, ψ) exist such that

u(x)

u(y)
� c

V (δD(x))

V (δD(y))
� c1

√
ψ(1/δD(y))

ψ(1/δD(x))
, x, y ∈ D ∩ B(z, r/2).

Proof [10, Corollary 27] shows that the assumptions of [35] are satisfied. By [35,
Lemma 5.5] we get

u(x)

u(y)
� c

E
xτD∩B(z,r)

ExτD∩B(z,r)

, x, y ∈ D ∩ B(z, r/2).

for c = c(d, ψ). In fact [35, Lemma 5.5] is stated only for r < 1 but under global
weak scaling conditions one can repeat arguments of [35] to obtain the global boundary
Harnack inequality (see [36]). Then we estimate the expected exit time of D ∩ B(z, r)

by using Lemma 7.3, Theorem 4.1, Corollary 4.5 and Proposition 5.2, and we obtain
the first inequality. The second inequality follows from Proposition 2.4 and (3.1). ��

7.2 Examples

Our results apply to the following unimodal Lévy processes. In each case our sharp
bounds for the expected first exit time from the ball apply and the comparability
constants depend only on the dimension and the Lévy–Khintchine exponent of the
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process but not on the radius of the ball. Our estimates of the probability of surviving
in Br and Br

c
also hold with constants independent of r if the characteristic exponent

of X has global upper and lower scalings (see [10] for a simple discussion of scaling).
If the scalings are not global, then the constants may deteriorate as r increases.

Example 1 Chapter 15 of [44] lists more than one hundred cases and classes of com-
plete Bernstein functions. All of those which are unbounded and have killing rate 0
are covered by our results (see Lemma 7.5): we obtain sharp estimates of the expected
first exit time from the ball. In fact, the comparability constants depend only on the
dimension. This is, e.g., the case for Lévy process with the characteristic exponent

ψ(ξ) =
[
|ξ |α2 + (|ξ |2 + m)α3/2 − mα3/2

]1−α1/2
logα1/2(1 + |ξ |α4),

where α1, α2, α3, α4 ∈ [0, 2], α1 + α2 + α3 > 0, α2 + α3 + α4 > 0 and m � 0, and
also when

ψ2(ξ) = u(|ξ |) − u(0+),

where u(r) = mr2+r2/ logα1/2(1+rα4). These include, e.g., isotropic stable process,
relativistic stable process, sums of two independent isotropic stable processes (also
with Gaussian component) and geometric stable processes, variance gamma processes
and conjugate to geometric stable processes [44].

Example 2 Let 0 < α0 � α1 � · · · � 2, α∗ = limk→∞ αk , and define f (r) = r−α�r� ,
r > 0. Then f (1/r) ∈ WLSC(α0, 0, 1) ∩ WUSC(α∗, 0, 1), if α∗ < 2. Con-
sider a unimodal Lévy process with Lévy density ν(x) = f (|x |)|x |−d , x �= 0.
By [10, Proposition 28], ψ ∈ WLSC(α0, 0, c). For d � 3 by Lemma 7.2 we get
E

xτBr ≈ 1/
√

f (r) f (r − |x |), where |x | < r < ∞, and the comparability constant is
independent of r . If α∗ < 2, then by [24, Proposition 8] ψ ∈ WUSC(α∗, 0, C). The
above approximation for ExτBr is valid for d = 2, too, cf. Lemma 7.3.

Example 3 Let d � 3, σ � 0, ν(x) = f (|x |)/|x |d , x ∈ R
d\{0}. Let f � 0

be non-increasing and let β > 0 be such that f (λr) � cλ−β f (r) for r > 0
and λ > 1 (see [24, Example 2 and 48] and Lemma 7.2). So is the case for
the following processes (with α, α1 ∈ (0, 2)): truncated stable process ( f (r) =
r−α1(0,1)(r)), tempered stable process ( f (r) = r−αe−r ), isotropic Lamperti stable
process ( f (r) = reδr (er − 1)−α−1, where δ < α + 1) and layered stable process
( f (r) = r−α1(0,1)(r) + r−α11[1,∞)(r)).

More examples of isotropic processeswith scalingmaybe found in [10, Section4.1].
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