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deep mantle cycle that largely depends on the preserva-
tion of carbonates during subduction is so far unknown. 
Carbonates are assumed to be present as accessory phases 
in the mantle because of the very low solubility of carbon 
in the mantle minerals (Keppler et al. 2003; Shcheka et al. 
2006). Previous experimental studies demonstrate that 
Mg- and Ca-bearing carbonates should be stable in mantle 
conditions (e.g., Biellmann et  al. 1993; Dalton and Wood 
1995; Molina and Poli 2000; Yaxley and Brey 2004; Ono 
et al. 2007; Oganov et al. 2008; Merlini et al. 2012). The 
many findings of crystalline carbonates within kimberlitic 
diamonds suggest the occurrence of carbonates in the deep 
mantle (e.g., Meyer and McCallum 1986; Wang et al. 1996; 
Sobolev et  al. 1997; Stachel et  al. 2000). Carbonate min-
erals may enter subduction zones incorporated in altered 
basaltic crust, overlying marine sediments and underlying 
mantle lithosphere. The deep subduction of carbonates is 
evident from geological observations. Coesite- and dia-
mond-bearing ultra-high-pressure metamorphic rocks con-
tain variable amounts of carbonate minerals (e.g., Sobolev 
and Shatsky 1990; Okay 1993; Dobrzhinetskaya et  al. 
2006; Korsakov and Hermann 2006; Perraki et  al. 2006). 
Therefore, it is important to investigate the physical prop-
erties of carbonate minerals for an understanding of the 
behavior of carbon in the deep mantle.

Carbonates usually occur as three phases, magnesite, 
dolomite, and calcite, at the Earth’s surface. Calcite trans-
forms into aragonite in the subducted slab. Ordered dolo-
mite, which is stable at ambient temperature, has a CO3

2− 
planar unit and exhibits a rhombohedral 

(

R3
)

 symmetry. 
At high temperatures, disordered dolomite, which is iso-
morphous 

(

R3c
)

 with magnesite and calcite, is stable. It is 
known that the reaction dolomite = magnesite + aragonite 
occurs at pressures higher than ~6  GPa and high temper-
atures in the subducted slab (Liu and Lin 1995; Martinez 
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Introduction

Carbon is recycled, mainly as carbonates, by means of a 
subduction process into the deep Earth. The extent of the 
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et al. 1996; Sato and Katsura 2001; Luth 2001; Shirasaka 
et al. 2002; Antao et al. 2004; Buob et al. 2006; Hammouda 
et al. 2011; Franzolin et al. 2012). Thus, magnesite, dolo-
mite, and aragonite may play an important role in the trans-
portation of carbon in the subducted slab. Recent advances 
in geophysical observations have allowed mapping of the 
electrical conductivity of the Earth’s mantle interior. Elec-
trical conductivity measurements on carbonates at high 
pressures and high temperatures can help the estimation of 
the distribution of carbon in the deep mantle.

 Measurements of the electrical conductivity of magne-
site and dolomite have been performed at ambient tempera-
ture with a piston-cylinder-type high-pressure apparatus 
(e.g., Papathannassiou and Grammatikakis 1996; Papathan-
nassiou 1998). The electrical conductivities of calcite and 
aragonite have been measured at high temperatures and 
pressures of 2.5–3.5 GPa (Bagdassarov and Slutskii 2003; 
Heege and Renner 2007). The effects of pressure and tem-
perature on magnesite and aragonite have been reported 
with a multi-anvil-type high-pressure apparatus up to 
1000  K and 6  GPa (Mibe and Ono 2011; Ono and Mibe 
2013). Although previous studies have investigated the 
electrical conductivity of carbonate minerals, the effect of 
pressure and temperature in dolomite is still an open ques-
tion. In this study, we determined the electrical conductiv-
ity of dolomite up to 6 GPa and 1000 K using in situ com-
plex impedance spectroscopy in a multi-anvil high-pressure 
apparatus.

Experimental procedure

The starting material was dolomite (Mg0.48Ca0.52CO3), 
synthesized from a starting mixture composed of finely 
powdered MgCO3 and CaCO3. The mixture was heated 
at 1.2  GPa and 1273  K for 2.0  h with a piston-cylinder-
type high-pressure apparatus. Powder X-ray diffraction 
measurements were performed on the synthesized sample 
to confirm the two carbonates reacted to form dolomite. 
The powder X-ray diffraction pattern of ordered dolomite 
(

R3
)

 has some additional lines, such as (101), (015), and 
(021), compared with that of fully disordered dolomite 
(

R3c
)

. These lines of the synthesized dolomite were con-
firmed. Although the degree of ordering could not be esti-
mated because of poor quality of X-ray diffraction data, 
the appearances of the additional lines indicated that the 
starting material was ordered dolomite. The chemical com-
position of the synthesized dolomite was analyzed by elec-
tron microprobe analysis. The starting material was dried 
at 383 K to minimize the effect of any adsorbed water on 
the electrical conductivity measurements. In this study, 

a conventional multi-anvil high-pressure apparatus was 
used comprising a pressure cell consisting of a 12-mm 
edge length Cr-doped MgO octahedron as the confin-
ing medium and a graphite sleeve heater (Mibe and Ono 
2011). The graphite heater in the cell was connected to the 
guide blocks of the multi-anvil high-pressure apparatus by 
Mo electrodes. The cell assembly was kept at 383 K in an 
oven and was removed just before the compression experi-
ments began. The experiments were performed at pressures 
up to 6 GPa and temperatures up to 1000 K. The sample 
temperature was measured with a Pt-Pt87Rh13 thermocou-
ple (Type-R), whose junction was placed outside the Mo 
electrode. No correction was made for the effect of pres-
sure on the thermocouple emf. Typical temperature fluctua-
tion during heating was within ±5 K. Alumina was used as 
an insulator between the electrical resistivity measurement 
lines and the heater lines. The resistivity of alumina used in 
this study was sufficiently higher than that of the sample at 
high pressures and high temperatures (Reynard et al. 2011).

Pressure calibration of the cell was carried out with 
standard calibration point materials: at room tempera-
ture for the Bi I-II transformation at 2.55 GPa, and at high 
temperatures for transformations of SiO2, quartz-coesite 
(Bose and Ganguly 1995) and Fe2SiO4, α-γ (Ono et  al. 
2013). The uncertainty in pressure was typically within 
10  %. The details of the high-pressure experiments have 
been described elsewhere (Mibe et al. 2003). The complex 
impedance was measured with a Solartron 1260 Imped-
ance/Gain-Phase Analyzer with a 1296 Dielectric Interface 
over a frequency range of 0.05  Hz–1  MHz. The samples 
were sandwiched between Mo disks in the center of the cell 
and were connected to the impedance analyzer through Pt-
Pt87Rh13 wires (Mibe and Ono 2011). In our experiments, 
the load was applied to the sample by compressing it to a 
set oil pressure in the high-pressure apparatus. The sample 
was then slowly heated until it reached the desired temper-
ature (1000 K) at a given oil pressure. After reaching the 
required temperature, the sample was annealed for 30 min, 
and measurements were taken after the annealing stage. 
The impedance data of the samples were acquired at tem-
peratures in the range of 650–1000 K at each 50 K inter-
val. The recovered samples were polished to measure the 
distance between the electrodes in the conductivity meas-
urements. Electron microprobe analysis was performed on 
the recovered samples to confirm that dolomite was stable 
in measurements of the electrical conductivity of the sam-
ples. To check the crystal structure of recovered carbonates, 
the samples were also examined with micro-Raman spec-
troscopy (Fig.  1). Raman scattering was excited with the 
333 nm line of a HeCd laser, and the focused laser spot had 
a diameter <10 μm.



775Phys Chem Minerals (2015) 42:773–779	

1 3

Results

The measurements of the electrical conductivity were per-
formed at pressures ≤6  GPa, because dolomite decom-
poses into magnesite and aragonite at high pressures (Liu 
and Lin 1995; Martinez et al. 1996; Sato and Katsura 2001; 
Luth 2001; Shirasaka et  al. 2002; Buob et  al. 2006). Fig-
ure  2 shows a representative complex impedance curve 
from a sample of dolomite. The real (Z′) and the imaginary 
(Z″) parts of the impedance spectra were obtained from the 
measured amplitude |Z| and the value of ϕ determined at 
a given frequency, by means of the following equations: 
Z
′ = |Z| cosϕ and Z ′′ = |Z| sin ϕ. The arc diameter, which 

gives the value of the electrical resistance, increased with 
decreasing temperature. In the temperature and frequency 
range studied, the samples only showed a simple arc, and 
so only a resistance–capacitance circuit was required to fit 
each curve. The fitting errors were <5 % for each conduc-
tivity measurement at a given temperature. The electrical 
conductivity of samples was calculated with the following 
equation: σ = 1

ρ
= L

RS
 where L, R, S, and ρ are the sam-

ple length (m), resistance of the sample (Ω), cross-sectional 
area of the electrode (m2), and resistivity of the sample 
(Ωm), respectively. The calculated conductivity was fitted 
to an Arrhenius equation:

where σ is the calculated conductivity (S/m), σ0 is the pre-
exponential factor, ΔH is the activation enthalpy (eV), k 
is the Boltzmann constant, and T is the temperature (K). 
The activation enthalpy is given by Eq.  (2), where ΔU 
is the activation energy, P is the pressure, and ΔV is the 

(1)σ = σ0e
−�H

kT

(2)�H = �U + P�V

activation volume. In this study, the temperature range was 
650–1000  K and the pressure range was between 3 and 
6 GPa.
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Fig. 1   Raman spectrum of the recovered sample from 6  GPa. All 
peaks are attributed to dolomite
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Fig. 2   Complex impedance spectra of dolomite. The solid diamonds 
denote the values of the real versus the imaginary components of the 
complex impedance in the frequency range 0.05 Hz–1 MHz at tem-
peratures of 800–1000 K at 3 GPa
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Fig. 3   Electrical conductivity of dolomite plotted as a function of the 
reciprocal of the temperature (K−1). The solid squares, diamonds, and 
circles denote data at 3.0, 4.5, and 6.0 GPa, respectively. The dashed 
lines represent linear fits to the data
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Figure 3 shows a graph of the logarithm of the electri-
cal conductivity versus the reciprocal of the temperature for 
the dolomite samples. Since these data showed one linear 
response over the experimental temperature range, there is 
only one conduction mechanism for dolomite. The meas-
ured values were fitted to obtain the parameters shown in 
Eq.  (1). Table 1 shows the results of the fitted parameters 
for each run. A small effect of pressure was observed in 
the temperature range investigated in our experiments. The 
change in activation enthalpy in the range of 3–6 GPa was 
small. The fitted parameters in Table 1 were used to obtain 
the parameters determining the effect of pressure with 
Eq. (2). The calculated activation energy and volume were 
1.64 eV and −1.00 cm3/mol, respectively (Table 2).

Discussion

Figure  4 shows a comparison of the change in the acti-
vation enthalpies in carbonate minerals. The activation 
enthalpies of dolomite and magnesite decrease as pressure 
increases. In contrast, that of aragonite increases as pres-
sure increases. According to Eq.  (2), a difference in pres-
sure effect is owed to a difference in the activation volume. 
It is known that the activation volume is related to the elec-
trical conduction mechanism (Lazarus and Nachtrieb 1963; 
Samara 1984). In the case when extrinsic ionic conduction 
is the dominant mechanism of the electric conductivity, 
then a diffusive ion in the saddle-point position expands in 
the interstitial space and displaces the surrounding ions. In 
this case, it is expected that the activation volume would 
have a positive value in the order of several to several tens 
of cm3/mol (e.g., Samara 1984). In contrast, the negative 
activation volume observed in this study would be expected 
for minerals with a hopping conduction mechanism (God-
dat et  al. 1999). If the system has aliovalent impurities, 
such as iron-bearing silicates, then the conductivity of min-
erals with a negative activation volume can be attributed to 
the hopping of small polarons. The activation energy was 
in the range between the measured value of the activa-
tion energy for the chemical diffusion of the Ca cation in 
magnesite (2.22 eV) and that for the chemical diffusion of 
Mg in calcite (0.79 eV) (Kent et al. 2001). The activation 

volume of −1.00 cm3/mol calculated in this study supports 
the idea that dolomite exhibits hopping conduction at high 
pressures and high temperatures.

Figure  5 shows the activation volumes of carbonates 
as a function of Mg/Ca ratio at pressures of 3–6  GPa. A 
significant change in the activation volume, which cor-
responded to a change in the conduction mechanism, was 
confirmed between dolomite and aragonite. The key to 
understanding this feature is a change in the crystal struc-
ture of carbonate. Magnesite and disordered dolomite have 
an R3c space group, which is the same as that of calcite. 
In our experimental conditions (≤1000  K), Mg and Ca 
in dolomite still were ordered, because a critical tem-
perature of ordering was 1343 ± 20 K at 3–4 GPa (Antao 
et  al. 2004; Hammouda et  al. 2011). As the structure of 
ordered dolomite synthesized in this study is similar to 
those of magnesite and calcite, the conduction mechanism 

Table 1   Measurements for dolomite

The results are fitted to the following equation σ = σ0e
−�H

kT . 
1 eV = 96.4856 kJ/mol

Experiment P (GPa) T range (K) σ0 (S/m) ΔH (eV)

Dol_4 4.5 650–1000 1.75 × 104 (54) 1.58 (3)

Dol_5 3.0 700–1000 1.65 × 104 (15) 1.61 (1)

Dol_6 6.0 650–1000 2.56 × 104 (33) 1.58 (1)

Table 2   Parameters for carbonates

The activation enthalpy in the Arrhenius equation is given by the 
following equation �H = �U + P�V , where ΔU is the activation 
energy, P is the pressure, and ΔV is the activation volume

ΔU (eV) ΔV (cm3/mol)

Dolomite, Mg0.48Ca0.52CO3 1.64 −1.00

Magnesite, MgCO3 1.76 −3.95

Aragonite, CaCO3 0.40 9.28
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Fig. 4   Comparison of pressure dependence of carbonates. The solid 
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of magnesite (Mibe and Ono 2011), aragonite (Ono and Mibe 2013), 
and dolomite (this study) in equation σ = σ0e
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in dolomite is expected to be similar to that in magnesite 
and dolomite. In the case of CaCO3 composition, calcite, 
whose space group is R3c, transforms to aragonite, whose 
space group is Pnma, as pressure increases at high tem-
peratures corresponding to the mantle conditions. The 
difference between two structures is the rotation angle of 
the CO3

2− units and a small displacement of the position 
of the cations. This structural difference and the displace-
ment of the ions induce a change in the coordination envi-
ronment of the Ca2+ cations from sixfold to ninefold. This 
change in the crystal structure may induce the change in 
the conduction mechanism. The theoretical model should 
be investigated in future works. As dolomite decomposes 
into magnesite and aragonite at around 6 GPa, the electrical 
conductivities of carbonate rocks are controlled by magne-
site and aragonite. Magnesite and aragonite are stable up 
to 80 GPa (Oganov et al. 2008; Fiquet et al. 2002) and up 
to 40  GPa (Ono et  al. 2005), respectively. Therefore, the 
electrical conductivities of these two carbonates are impor-
tant for interpreting anomalies in the electrical conductivity 
observed in the upper mantle.

Figure  6 shows a comparison of the electrical conduc-
tivities of carbonates and olivine. It is known that olivine 
is a major mineral present in the upper mantle, and so its 
electrical conductivity represents an average value of the 
upper mantle. The conduction mechanism in olivine is still 
debated. A discrepancy in the activation volume of olivine 
was reported by previous studies (Xu et al. 2000; Sakamoto 

et  al. 2002). However, there is no significant inconsist-
ency in the absolute value of the electrical conductivity 
of olivine at high pressures and high temperatures. The 
electrical conductivity of dolomite was of the same order 
of magnitude as that of olivine. Therefore, it is difficult to 
identify the dolomite-dominated rock bodies in the upper 
mantle from the perspective of electrical conductivity. In 
contrast, the electrical conductivity of aragonite was one to 
two orders of magnitude higher than that of olivine. When 
the calcium-dominated carbonate rocks, such as marine 
sediments, in the subducted slabs are dragged into the 
deep mantle, the electrical conductivity of the aragonite-
dominated rock bodies is higher than that of the surround-
ing rocks in the upper mantle. It is known that the electri-
cal conductivity of wet rock, which contains a hydroxyl ion 
component in its minerals and/or a fluid phase, is higher 
than that of dry mineral (e.g., Wang et  al. 2006; Yoshino 
et al. 2009; Yang et al. 2011). The calcium carbonates could 
contribute to the higher electrical conductivity in the same 
way as the water effect.

Conclusion

Experimental measurements on synthetic dolomite showed 
that electrical conductivity increased as pressure increased 
for the range of 3–6  GPa. The activation volume has the 
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negative value which indicates that the hopping of polarons 
is the dominant mechanism for the electrical conductivity. 
This electrical property of dolomite is the same as that of 
magnesite, which crystal structure is similar to that of dolo-
mite. Our direct measurements of dolomite at high pres-
sures and temperatures allow improving the estimation of 
the electrical conductivity of carbonates in the subducted 
slab.
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